
Copyright 2006 Stewart WeissCopyright 2009 Stewart Weiss

Documenting CodeDocumenting Code

Plain Old Documentation (POD) markup language

2 CSci 132 Practical UNIX with Perl

Suppose that you have reached the point where you are
creating useful programs and modules. Suppose too that you
have been very diligent about documenting the source code so
that someone reading your program will fully understand how
it works.

This is fine for the people who want to know how the
program works. What about the people who will just use your
program? They do not need to know how the program works;
they just need to know how to use the program.

They need a user manual, an instruction manual that tells
them how to use the program. This is called user
documentation.

User documentation

3 CSci 132 Practical UNIX with Perl

User documentation for programs

Programs can be used by non-programmers, ordinary end-
users. The documentation for a program should include how to
run the program, which includes

(1) what arguments are required,

(2) what arguments are optional,

(3) what options there are (switches, for example),

(4) what output is produced and where (on standard output,
any log files, where error messages go, etc.), and

(5) the detailed answers to all of these questions.

4 CSci 132 Practical UNIX with Perl

User documentation for modules

Perl programmers, not end-users, use modules. Hence, the
documentation for a module must include the module's
programming interface, meaning:

(1) the list of exported symbols (functions, constants, objects
such as hashes or lists),

(2) for each function, a description of all arguments and return
values, and any error values and messages that might be
produced by the function, and

(3) any modules on which this module depends (so that the
programmer knows to install those modules.)

5 CSci 132 Practical UNIX with Perl

Plain Old Documentation: POD

The standard way to document a Perl program or module is to
embed the documentation within the program itself in such a
way that a special Perl program called perldoc can extract the
documentation and construct a manual page from it.

In order for perldoc to do this, the documentation must be
written in a special markup language called POD, which is the
acronym for Plain Old Documentation.

A markup language is a language for annotating text in a way
which is syntactically distinguishable from the text itself.

6 CSci 132 Practical UNIX with Perl

Markup languages

Examples of markup languages include:

 Editors' revision instructions on manuscripts: a system of
indicating changes to text,

 HTML (hypertext markup language): a system of formatting
tags for text and hypertext,

 photo and graphical artists markup language: a system for
marking graphic art to indicate formatting and changes,

 dozens of electronic markup languages created in the last
ten years.

7 CSci 132 Practical UNIX with Perl

About POD

Pod is a simple-to-use markup language used for writing
documentation for Perl programs and modules.

Translators are available for converting Pod to various
formats like plain text, HTML, man pages, and more.

Pod markup consists of three basic kinds of paragraphs:
ordinary, verbatim, and command.

Pod is easy to learn and easy to use.

8 CSci 132 Practical UNIX with Perl

Basic POD rules

Separate all paragraphs above and below by blank lines.

Start all command and ordinary paragraphs at the left margin –
no leading space of any kind!

Although POD can be interspersed between Perl statements, it
requires care to do so. Therefore, in the beginning, put all POD
after the end of the program, but before any __DATA__ cut the
program might have.

The very last line of any POD markup must be the =cut
command, no leading space!

=cut

9 CSci 132 Practical UNIX with Perl

POD command paragraphs

The basic commands in POD are:

=head1 heading text level 1 heading

=head2 heading text level 2 heading

=head3 heading text level 3 heading

=head4 heading text level 4 heading

=over starts a list

=item a list item

=back ends a list

=cut ends pod

10 CSci 132 Practical UNIX with Perl

Ordinary POD paragraphs

Most paragraphs in your documentation will be ordinary blocks
of text. You can type the text without any markup at all and
with just one blank line before and after. When it gets
formatted, it will undergo minimal formatting, like being re-
wrapped, maybe put into a proportionally spaced font, and
possibly justified.

Ordinary paragraphs can have special formatting tags, such as
I<text> to italicize, B<text> to bolden, C<text> for code, and
F<filename> for special highlighting of filenames, to name a
few.

11 CSci 132 Practical UNIX with Perl

Verbatim paragraphs

A verbatim paragraph is a what-you-see-is-what-you-get block.

Verbatim paragraphs are usually used for presenting a code
block or other text which does not require any special parsing
or formatting, and which shouldn't be wrapped.

To create a verbatim paragraph, make the first character a
space or a tab. It will be reproduced exactly, with tabs assumed
to be on 8-column boundaries. Formatting codes are not
allowed inside them -- you can't italicize or anything like that.

12 CSci 132 Practical UNIX with Perl

Lists

A list is started with the =over command. The =over
command has an optional integer argument that specifies the
indentation for the list items in ems. The default is 4 if omitted.

Each item begins with an =item command. The =item
command should be followed by one of

 an asterisk to create a bullet,

 a number, for a numbered list, or

 text, to create text labels instead.

13 CSci 132 Practical UNIX with Perl

Bulleted lists

A bulleted list is illustrated below, but without the blank lines
between paragraphs, to make it fit in a slide.

 =over

 =item *

 This is the first of a bulleted list.

 =item *

 This is the second bulleted item.

 =item *

 This is the third item.

 =cut

14 CSci 132 Practical UNIX with Perl

Numbered lists

In a numbered list, the numbers replace the asterisks. You must
provide the correct numbers yourself – Perl will not compute
them

 =over

 =item 1

 This is the first of a bulleted list.

 =item 2

 This is the second bulleted item.

 =cut

15 CSci 132 Practical UNIX with Perl

Labeled lists

You can create labeled lists by placing the label after the
=item command:

 =over

 =item Inputs

 The inputs come in several forms...

 =item Parameters

 The program depends on the …

 =item Outputs

 The program writes to …

 =cut

16 CSci 132 Practical UNIX with Perl

Components of user documentation

A properly documented Perl program or module must contain
the following four sections:

 NAME

 SYNOPSIS

 DESCRIPTION

 AUTHOR

Other sections may be warranted in specific cases. You might
need an OPTIONS section to describe in detail command-line
options to a program, a SEE ALSO section in case there are
related documents, and perhaps EXAMPLES to be very helpful.

17 CSci 132 Practical UNIX with Perl

The NAME section

The purpose of the NAME section is to provide a one line
description of the software, such as

 random – assorted random object generation routines

It must have the program or module name followed by the
summary, and it is best to keep it short enough to fit on an
unwrapped text line.

18 CSci 132 Practical UNIX with Perl

The SYNOPSIS section

The SYNOPSIS section is where proper usage of the program/
module is specified. There is flexibility in how much to put
here. At the very least, it should have the different ways to use
the program or module, e.g.,

 use random;

 use random qw(randint randlist randsting);

 or

 gendata [-avgt] [-s <int>] file file …

Sometimes it is a good idea to even show examples. Run
perldoc Integer or perldoc bignum to see examples of
this.

19 CSci 132 Practical UNIX with Perl

The DESCRIPTION Section

The DESCRIPTION must provide enough detail so that a user
can learn exactly how to use every feature and option of the
software. It cannot be vague or ambiguous, but it need not be
highly technical. It should use complete and correct English
sentences, and provide ample examples.

You should take a look at the man pages for some of the most
detailed shell commands or Perl modules to get an idea of the
level of detail required.

20 CSci 132 Practical UNIX with Perl

Escape sequences

There are various character escape sequences, in case you want
to put a symbol into the documentation that has special
meaning in POD, such as < or >. These symbol escape
sequences are

 E<lt>

 E<gt>

 E<verbar>

 E<sol>

If the system supports it, you can use E<0nn> where nn is an
octal code. It may not display properly.

21 CSci 132 Practical UNIX with Perl

Other translators

Perl POD can be translated to html with the pod2html
program:

 pod2html -infile=myprog.pl > myprog.html

will produce an html version of your user documentation,
suitable for posting on a website, for example.

The pod2man translator will produce a man page that can be
installed in one of the directories that the man page viewer
(man) searches:

 pod2man myprog.pl > myprog.1

22 CSci 132 Practical UNIX with Perl

Help with POD

Perl is bundled with a program called podchecker that can
check the syntax of your POD. Running

 podchecker myprog.pl

on a program with embedded POD will tell you if it has syntax
errors and where they are.

You can also consult the perlpod man page.

	Documenting Code
	User Documentation
	User Documentation for Programs
	User Documentation for Modules
	Plain Old Documentation: POD
	Markup Languages
	About POD
	Basic POD Rules
	POD Command Paragraphs
	Ordinary POD Paragraphs
	Verbatim Paragraphs
	Lists
	Bulleted Lists
	Numbered Lists
	Labeled Lists
	Components of User Documentation
	The NAME Section
	The SYNOPSIS Section
	The DESCRIPTION Section
	Escape Sequences
	Other Translators
	Help With POD

