
Copyright 2006 Stewart WeissCopyright 2009 Stewart Weiss

I/O and Text ProcessingI/O and Text Processing

Data into and out of programs

2 CSci 132 Practical UNIX with Perl

Extending I/O

You have seen that input to your program can come from the
keyboard and that in Perl, a statement such as

$var = <STDIN>;

reads a line of text typed at the keyboard into the variable
named $var.

You have also seen that you can send output to the console
with the print statement.

In this lesson, a program's ability to perform I/O is extended
to include I/O to and from arbitrary files and devices.

3 CSci 132 Practical UNIX with Perl

I/O connections

So far you have been able to get input from the keyboard and
send input to the console from within Perl using <STDIN>
and <> to read lines and the print statement to send
output.
You have also seen how shell I/O redirection operators can be
used to replace standard input by data from files, to send
output data to files instead of the console, and to pipe data
from a command into your program, as in
$ nextdemo_02.pl < datafile
$ cat datafile | nextdemo_02.pl > outfile

How does UNIX make this possible?

4 CSci 132 Practical UNIX with Perl

Device independent I/O

UNIX makes it possible for you to write programs that do not
need to be aware of whether data comes from the keyboard, a
different input device, a file, or even a program running on
the computer. The same concept holds for output.
It achieves this by creating a level of abstraction that
separates your program from the source of input and
destination of output.
The abstraction is called a byte stream, or data stream.

5 CSci 132 Practical UNIX with Perl

Byte streams

A byte stream is an abstraction of a flow of data into or out of
your program. The data can be a stream of characters typed on
the keyboard, flowing into your program, or the characters
sent to the terminal by your program.
Data can come from or go to devices, such as keyboards or
terminals, files, other programs, and network connections.

program
input byte streamoutput byte stream

6 CSci 132 Practical UNIX with Perl

File structures

To allow a data stream to be transmitted to or from a program,
the UNIX kernel maintains a file structure to control the flow
of that data stream. This structure provides, among other
things, temporary storage for the data, status information, and
pointers to the next place to read or write. Data passes
through this file structure en route to or from your program.

program
file structure input data stream

7 CSci 132 Practical UNIX with Perl

I/O under kernel control

In UNIX, user programs are not allowed to read from or write
to devices or files; all input and output operations are
performed by the operating system.
When your program needs I/O, the program issues a request
to the UNIX kernel to perform that I/O. The kernel itself
performs the operation and notifies the program when it is
finished, and whether it was successful.
Not all I/O is successful; errors do happen. The kernel detects
errors and responds to device failures and other I/O problems.
It also provides a means for programs to obtain the status of I/
O jobs.

8 CSci 132 Practical UNIX with Perl

File descriptors

In order to allow a program to perform I/O, UNIX creates the
byte stream's file structure that was mentioned earlier, and
creates a unique identification number for that structure. This
identification number is called a file descriptor.
The file descriptor is needed in order to perform any I/O
operation on the stream, whether it is reading, writing, or
both.

9 CSci 132 Practical UNIX with Perl

File handles

Perl programs do not use file descriptors. They use file
handles. A file handle is a name in a program associated with
a file descriptor. A file handle is what the program uses to
access the byte stream that the file descriptor references.

filehandle
file structure input data stream

10 CSci 132 Practical UNIX with Perl

Three standard file handles

When a Perl program starts, it is given three, predefined file
handles: STDIN, STDOUT, and STDERR.
 STDIN is the standard input stream, usually associated

with the keyboard unless the program was opened with an
I/O redirection operator such as <.

 STDOUT is the standard output stream, usually associated
with the console, unless I/O redirection was used.

 STDERR is the standard error stream, usually associated
with the console. It is the output stream in which error
messages are written.

11 CSci 132 Practical UNIX with Perl

Using the standard file handles

You have already seen that when STDIN is enclosed in angle
brackets, it becomes an input operator.
Truth be told, <> is an operator called the angle operator, or
input operator. If a file handle is placed inside it, it acts as a
source of input data.
In contrast, to print to STDOUT, you put the file handle
directly after the word print in a print statement, e.g.,
 print STDOUT "Welcome.\n";

Of course if you omit STDOUT, output goes to the console
anyway. Notice that there are no commas before or after
STDOUT.

12 CSci 132 Practical UNIX with Perl

Writing to standard error

To print to STDERR, you put the file handle STDERR directly
after the word print in a print statement.
print STDERR "Error 52 occurred. Call tech
support at 1-800-NOWHERE.\n";

Standard error is a separate stream in UNIX. It is useful to be
able to separate error messages from ordinary output, because
certain users do not want to see the errors and others should
not see the messages. You can redirect standard error in bash
using the syntax 2> file. For example:

$ prog 2> errormessages

13 CSci 132 Practical UNIX with Perl

Creating a file handle

To open a file and associate a file handle to it, use the Perl
open() function. The function call

open(FILEHANDLE, 'filename');

attempts to open the file named filename in the current
working directory for reading.
If it is successful, it attaches the file handle named
FILEHANDLE to this file and returns the number 1. The
program can then use FILEHANDLE to read from
filename.

14 CSci 132 Practical UNIX with Perl

Responding to failed open() calls

The open() function can fail for many reasons. The file may
not exist; your program may not have permission to read it;
the file may be opened for writing by another process and
cannot be opened by any process at the moment.
If the open() function fails, it returns undef. Your
program should not attempt to read from the file if open()
failed. It must check if open() failed, print an error
message, and exit gracefully.

15 CSci 132 Practical UNIX with Perl

The die() function

The die() function in Perl has the form

die LIST;

die() will print LIST to STDERR and exit the program
(returning the error number or error string of the last error in a
system call in a special variable named $! in Perl.)

The LIST is usually just a string, as in the previous example.
If the last element of the list has a newline as its last
character, just the LIST is printed. If no newline is there,
die() prints the line number and file number at which it
exited.

16 CSci 132 Practical UNIX with Perl

Using the die() function

Because open() returns undef, which is FALSE, if it
fails, and 1, which is TRUE, if it succeeds, in the expression:

open(FILE, 'filename') or
 die 'failed to open filename';

the die() function will be executed only if open() fails,
because or is a lazy operator (as described in Lesson 15).

Your program can print the error number from the failed
open() as follows:

open(FILE, 'filename') or die "failed to open",
 "filename: error number $!", "stopped";

17 CSci 132 Practical UNIX with Perl

Example

The following opens the file named strings and searches for
the string ctagcatgccag in it, line by line, printing out
the lines that contain it.

open(DNA, "strings") or
 die "Could not open strings;
stopped";

while ($line = <DNA>) {
 if ($line !~ /ctagcatgccag/) {
 next;
 }
 print $line;
}

18 CSci 132 Practical UNIX with Perl

Opening files for writing and more

The open() function can open files for reading, for writing
only, for reading and writing, and for appending. The syntax
is:
open(FILE, "filename"); # opens for reading
open(FILE, ">filename"); # for writing only
open(FILE, "+<filename");# for reading and writing
open(FILE, ">>filename");# for appending

Opening a file for writing erases any contents the file had
before. Opening a file for reading and writing means that the
program can read from the file and also write to it.
Appending means adding to the end of the file.

19 CSci 132 Practical UNIX with Perl

The close Function

A program that opens a file and associates a file handle to it,
should close the file when it is finished with it. There are a
few reasons for closing a file:
 If the file is opened for writing, changes to the file will not

take effect until it is closed.
 If the file is opened for exclusive reading, no other

processes will be able to access the file until your program
finishes with it. To use files efficiently, programs should
close them as soon as they are finished with them.

To close the file associated with FILEHANDLE, use

 close FILEHANDLE;

20 CSci 132 Practical UNIX with Perl

Reading using the input operator

The input operator <> returns a single line from the input
stream when it is used in a scalar context, as in

while ($line = <FILE>) { … }

When it is used in an array context, as in
@lines = <FILE>;

the entire file is copied into the array variable, @lines, one
line of the file per array entry. Thus, the first line is in
$lines[0], the second in $lines[1], and so on.

21 CSci 132 Practical UNIX with Perl

Example of list context input

This program reads all lines from file input at once, stores
them in array variable @lines, and prints them out one by
one, prefixing each with a line number.
open(FILE, "input") || die "Could not open\n";
my @lines = <FILE>;
my $count = 1;
foreach my $line (@lines) {
 print "$count:\t",$line;
 $count++;
}

22 CSci 132 Practical UNIX with Perl

Perl's predefined variables

Perl has many predefined variables. Some of these have
"punctuation names" that many people find hard to
remember or just too strange to accept. For example, $_ is a
predefined variable.
To appeal to those people who are unhappy with punctuation
names, Perl has a module named English that can be
included in a program with a use pragma:

use English;

By including this module, a programmer has the additional
choice of using English versions of these names, for instance
$ARG instead of $_.

23 CSci 132 Practical UNIX with Perl

Some useful predefined variables

In the rest of these slides, when I introduce a predefined
variable, I will include its English name in parentheses.
You already saw one predefined variable, $! (in English,
$ERRNO), which is the value of the last error caused by a
system call. It is a number in numeric context and a string in
string context.
You can use the value of $! only immediately after the
system call, because its value may change soon after.

24 CSci 132 Practical UNIX with Perl

The default input/output variable $_

$_ (in English, $ARG) is the single, most important
predefined variable. It is the default input and pattern
matching variable. Also, for many functions, such as print,
Perl will use this variable when you do not give the function
an argument.
The $_ variable is automatically used in an input operation
inside the condition of a while loop when no variable is
supplied, as in

while (<STDIN>) { … }

This is equivalent to
while ($_ = <STDIN>) { … }

25 CSci 132 Practical UNIX with Perl

The $_ variable for input and output

Example:
while (<FILE>) {

 print;
 }

is equivalent to
while (defined($_ = <FILE>)) {

 print $_;
 }

because the input is placed in $_ and print prints $_ if no
variable is supplied. defined() returns undef if there is
no input.

26 CSci 132 Practical UNIX with Perl

$_ for pattern matching

The $_ variable is also used when you do not specify what to
match against a pattern. For example, the following two
statements are equivalent.

/^pattern/
$_ =~ /^pattern/

because in the absence of a variable, the pattern is matched
against $_. They both mean, "check if the string stored in $_
is matched by the pattern /^pattern/" and have the value
true if there is a match and false if there is not.

27 CSci 132 Practical UNIX with Perl

$_ in loops

The following are equivalent:
foreach (@mylist) {
 print;
}

and
foreach $_ (@mylist) {
 print $_;
}

because $_ is used if no iterator variable is used in the
foreach loop.

28 CSci 132 Practical UNIX with Perl

$_ used in other functions

If you write
chomp;

it is short for
chomp($_);

It is also used in many functions that expect a single
argument, such as int() and others you have not seen yet,
like abs(), sin(), cos() and other numeric functions.

29 CSci 132 Practical UNIX with Perl

The input record separator $/

$/ ($INPUT_RECORD_SEPARATOR) defines what Perl thinks
of as a line in an input file. When you use a statement such as

$var = <FILE>;

to read a line from the file associated with FILE, Perl uses
this variable to determine what you mean by a "line". The
default is all characters up to and including the next newline
character. These chunks of characters are called records.
You can change this by assigning a different string or
character to $/.

30 CSci 132 Practical UNIX with Perl

Uses of $/

If $/ is set to the empty string, Perl will treat all sequences of
characters up to the next empty line as a record. This is a way
of storing paragraphs separated by blank lines into separate
variables or cells of an array.
If $/ is set to "\n\n" Perl will treat two consecutive
newline characters as the record separator, in case records are
separated by double blank lines.
If $/ is a reference to an integer N or to a scalar containing an
integer N, Perl will treat each sequence of N characters as a
line.

31 CSci 132 Practical UNIX with Perl

Example

This reads the chunk size from the command line and then
reads chunks of the given size.

 my $size = shift(@ARGV);
 $/ = \$size;
 while (<>) {
 $count++;
 $chunk = $_;
 print "$count\t$chunk\n";
 }

32 CSci 132 Practical UNIX with Perl

Output field separator $,

$, ($OUTPUT_FIELD_SEPARATOR) is what Perl uses to
separate the arguments in the list given to the print()
function:

print 5, 6, 7;

will print 567 by default, i.e., $, is the empty string. You can
make it any string, such as a blank, a comma, or whatever
suits the application.

$, = ', ';
print 5, 6, 7; # prints 5, 6, 7

33 CSci 132 Practical UNIX with Perl

The @ARGV array

The @ARGV array is a special, predefined array in Perl. When
a program is run from the command line, all of the arguments
on the command line are stored in the @ARGV array. For
example, if you enter

$ myprog file1 file2 file3

then @ARGV contains the list ('file1','file2','file3')
when the program starts up. The first argument after the
command name itself (myprog) is stored in $ARGV[0].

34 CSci 132 Practical UNIX with Perl

Example of @ARGV

This is a program that will display its command line
arguments, one per line:

my ($count, $arg) = (0);
foreach $arg (@ARGV) {
 $count++;
 print "Argument $count is $arg \n";
}

35 CSci 132 Practical UNIX with Perl

More about command line parsing

The angle operator <> has special meaning when it is empty.
When it is used in the condition of a while loop, each word
contained in the @ARGV array is treated like the name of a file
and opened for reading.
Since the command line arguments are stored in @ARGV, <>
in the while condition reads each file's contents in the order
they are listed on the command line.
The name of the current file is stored in the special variable
$ARGV and the file handle to it is in the special file handle
ARGV.

36 CSci 132 Practical UNIX with Perl

Using $ARGV

This is a program that will display each command line
argument, open it, and display its contents:
my $oldfilename = "";
while (<>) {
 if ($oldfilename ne $ARGV) {
 print "\n$ARGV:\n";
 $oldfilename = $ARGV;
 }
 print;
}

It does no error checking; if a command line argument is not a
readable file, the program will fail.

37 CSci 132 Practical UNIX with Perl

More About <>

Another useful thing to remember about the <> operator is
that it first tries to read the contents of the @ARGV array and
use them as filenames. If a program assigns a list of filenames
to @ARGV, then <> will use that list instead of the files on the
command line.
To demonstrate, this program always displays itself, ignoring
the command line arguments:

@ARGV = ($0); # $0 is the program pathname
while (<>) {
 print;
}

38 CSci 132 Practical UNIX with Perl

Regular expressions in Perl

Pattern matching in Perl is pretty much an extension of the
regular expression capabilities found in the UNIX shell.
Fortunately, almost all of the syntax of regular expressions
used in the various shell tools (as defined by the regex (7)
man page) carries over into Perl.
For example, the bracket operators [], the quantifiers *, +,
and ?, the anchors ^ and $, the escape character \, and the
wildcard . are all in Perl's regular expression language. The
use of parentheses to remember matched substrings
(backreferences) is also in Perl.

39 CSci 132 Practical UNIX with Perl

Help with Perl regular expressions

The easiest way to get started with Perl's regular expressions
is to read the man pages. The following Perl man pages
provide help with regular expressions:

perlrequick Basics of regular expressions

perlretut Tutorial on regular expressions

perlreref Quick reference for regular expressions

perlre Reference page for regular expression
syntax

perlop Sections on regex operators such as m//

40 CSci 132 Practical UNIX with Perl

What is different in Perl

Perl has many more capabilities than are present in the
regex language of the shell. I will not cover all of these
capabilities in this set of slides.
 Perl has an alternation operator | that is like logical-or

and is the same as the one in the extended regular
expressions.

 It lets you choose between greedy and non-greedy
quantifiers.

 It has many more character classes than the shell.
 It has different word boundary anchors
 It has different rules for backreferences.

41 CSci 132 Practical UNIX with Perl

Pattern matching revisited

Pattern matching is the act of checking whether a string is
matched by a pattern. Remember that a regular expression is a
compact notation that defines a possibly infinite set of strings.
 A regular expression matches a string (or the string is
matched by the regular expression) if the string is in the set
defined by the regular expression. Thus,
"abracadabra" is matched by abra…abra and by
(abra)…\1

A pattern match is therefore a test: it is an expression that is
true if the pattern matches the string and false if it does not.

42 CSci 132 Practical UNIX with Perl

The pattern matching operator

The pattern matching operator in Perl is used where
conditions are expected, such as in if statements and while
statements.
The pattern matching operator is

m/pattern/

where pattern is a regular expression. It is true if $_ is
matched by pattern and false if it is not. To check whether a
different variable is matched by the pattern, you use the
binding operator =~ or its negation, !~, as in

if ($var =~ m/pattern/) { … }

43 CSci 132 Practical UNIX with Perl

Other forms of pattern match

The m can be omitted from the match operator m//. Instead,
one can use

if ($var =~ /pattern/) { … }

Or, you can keep the m and choose other paired delimiters
such as m(pattern) or m<pattern>.

As a third alternative, you can keep the m and use any single
non-alphanumeric character repeated, as in m|pattern| or
m#pattern#.

I usually use the /pattern/ form since it is the least typing. :-)

44 CSci 132 Practical UNIX with Perl

Example

Here is a simple Perl program that combines many of the
ideas introduced in this chapter.
my $pattern = shift(@ARGV);
while (<>) {
 if (/$pattern/) { # if $pattern matches line
 print; # print line on output
 }
}

The shift removes the first argument from the command line
and stores it in $pattern. The loop then reads lines from each
file left on the command line, checking if they match the
pattern. This is a simple version of grep!

45 CSci 132 Practical UNIX with Perl

Character classes in Perl

Perl has several constructs besides [] for defining character
classes :
\w word char, same as [a-zA-Z0-9_]
\W non-word char
\d digit, same as [0-9]
\D non-digit
\s white space, same as [\r\f\n\t]
\S non-white space char
\b word boundary
\B not a word boundary
. any char except newline

46 CSci 132 Practical UNIX with Perl

More on boundaries

When the beginning or end of line anchors ^ and $ are used
in a pattern, Perl interprets them as anchors to the beginning
and end of a string. Thus,

$var =~ /^\d+$/

anchors \d+ to the beginning and end of $var, so the
expression is true if and only if $var consists exactly of one
or more digits.
The anchors /A and /Z are equivalent to ^ and $.

Examples of word anchors follow in the next slide.

47 CSci 132 Practical UNIX with Perl

Word boundary examples

Word and non-word boundaries examples:
/fred\b/; matches fred and alfred but not

 freddy

/\bfred/; matches fred and freddy but not

 alfred
/\bfred\b/; matches only fred - neither freddy nor

 alfred
/\bfred\B/; matches freddy but not fred or

 alfred

48 CSci 132 Practical UNIX with Perl

Quantifiers

Recall that Perl has regular expression modifiers that alter the
meaning of the regular expression to their left. They are called
quantifiers because they change the quantity required in the
string.

* match 0 or more occurrences
+ match 1 or more occurrences
? match 0 or 1 occurrence
{n} match exactly n occurrences

{n,} match at least n occurrences

{n,m} match at least n but not more than m occurrences

49 CSci 132 Practical UNIX with Perl

Quantifier examples

In the following table, '' denotes the empty string.

Expression Matched by:
(ab)* '', ab, abab, ababab, abababab, …
(ab)+ ab, abab, ababab, abababab, …
(ab)? '' and ab
[abc]{2} aa, ab, ac, ba, bb,bc,ca,cb,and cc
b{3,} bbb, bbbb, bbbbb, bbbbbb, …
b{2,3} bb and bbb

50 CSci 132 Practical UNIX with Perl

Alternation

The alternation metacharacter | is like an "or" -- the pattern
a | b matches either a or b.

At first this does not seem like it adds much to the language,
since you could write [ab] and it would mean the same
thing, if a and b were single characters each. But the
arguments to | can be arbitrary patterns or strings, as in

/Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec/

which matches any three letter month name.

51 CSci 132 Practical UNIX with Perl

Captured matches

The construct (re) creates a capture buffer in Perl. Perl
saves the sub-string that matched the re in this buffer. The
program can refer to this buffer using the notation \1,\2,\3,
and so on. The first captured sub-string is in \1, the second in
\2, and so on.

Thus,
/([acgt])([acgt])([acgt])[acgt]*\3\2\1/

matches any string that starts with three nucleotides and ends
with the same nucleotides in reverse order, such as
acgtttagca.

52 CSci 132 Practical UNIX with Perl

More about captured matches

Inside a pattern \1, \2, \3, ... refer to the first, second, thirds
matched sub-strings
Outside of the pattern, the variables $1, $2, $3, refer to the
same buffers as \1, \2, and so on, so that these captured
strings can be accessed in other Perl statements. E.g.,

 /href[]*="([^"]*)"/ and print "$1\n";

This matches lines containing a webpage link of the form
 href = "url"

 captures the url in $1 and prints $1.

53 CSci 132 Practical UNIX with Perl

Capture buffer examples

A few interesting things are going on in the code below.
 $month = "Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|

Oct|Nov|Dec";
 while (<STDIN>) {
 print $1,"\n" if /\b($month)\b/;
 }

First, you can store a pattern in a variable and use the variable
name in the capturing brackets. Second, the backreference,
$1, textually precedes the pattern, but it still refers to the
match because the print statement is evaluated after the
pattern. This prints the month name if it is found on the line.

54 CSci 132 Practical UNIX with Perl

Position of Matches

 There are three useful special variables: after a matching
operation, Perl sets $` to the part of the string before the
match, sets $& to the part of the string that matched, and sets
$' to the part of the string after the match:

 $x = "the lion ate the lamb";
 $x =~ / ate /;
 # $` = 'the lion', $& = ' ate ' # $' = 'the lamb'
 $x =~ /the/;
 # $` = '', $& = 'the', $' = ' ate the lamb'

In the second match, $` equals '' because the regexp
matched at the first character position in the string and
stopped; it never saw the second 'the'.

55 CSci 132 Practical UNIX with Perl

Substitution

The substitution operator has the form
s/target-pattern/replacement-text/

This searches a string for the target pattern, and if found,
replaces that pattern with the replacement text and returns the
number of substitutions made. Otherwise it returns false
(really, the empty string, which is false in a logical context).
To perform a substitution in a string in a variable, use

$var =~ s/pattern/replacement/;

If no variable is specified, it uses $_ by default.

56 CSci 132 Practical UNIX with Perl

Examples

This is a simple example, for starters.

my $string = 'Barney said, "Yabadabadoo."';
$string =~ s/Y.*a/Fred will /;
print "$string\n";
prints: Barney said, "Fred will doo."

The above example also illustrates that Perl chooses the
longest matching string when matching. It could have
matched Ya, Yaba, Yabada, or Yabadaba. It chose the
longest.

57 CSci 132 Practical UNIX with Perl

Another example

The ability to capture substrings makes substitution powerful.
In this example, a substitution occurs only if the string
contains other text matching a pattern, but that text is
preserved.

 while (<>) {
 s/(.*:.*:.*:300:.*)csh/$1bash/;
 print;
}

If we pass the contents of the passwd file to this script, it will
replace the word csh by bash in each line in which the
group field is 300. It does not change the original file -- it
only prints a changed copy on the console.

58 CSci 132 Practical UNIX with Perl

Global Replacement

The substitution operator takes optional modifiers, the most
useful of which is the 'g' (global) modifier. The syntax is
s/pattern/replacement-text/g

With the /g modifier, every occurrence of the pattern in the
string is replaced by the replacement text. Without it, only the
first occurrence is replaced. For example:
my $string = 'Barney said, "Yabadabadoo."';
$string =~ s/aba/aka/g;
print "$string\n";
prints: Barney said, "Yakadakadoo."

59 CSci 132 Practical UNIX with Perl

The join() function

Splitting was introduced in an earlier lesson without
mentioning its mate, join(), which is like the inverse of
split() -- it glues the components of an array into a string.

join(gluestring, list)

joins the separate strings of list into a single string with fields
connected with the gluestring, and returns that new string.
 For example:

$string = join('-', 0,1,2,3,4,5,6,7,8,9);
print $string;

prints
0-1-2-3-4-5-6-7-8-9

60 CSci 132 Practical UNIX with Perl

Another example

This is another example of joining things:
my $rhyme = 'Humpty Dumpty sat on a wall';

 my @Humpty = split($rhyme);
 # @Humpty is a list of words now
 my $Dumpty = join(':',@Humpty);
 # $Dumpty is @Humpty together again

print $Dumpty;
 # prints Humpty:Dumpty:sat:on:a:wall

61 CSci 132 Practical UNIX with Perl

The substr() Function

The substr() function is very useful.
substr($mystr,$offset, $length)

returns the substring of $mystr starting at offset $offset,
of length $length. If length is omitted, it returns
everything to the end of the string. If length is negative, it
leaves that many characters off the end of the string:

$str = “The black cat climbed the tree";

substr($str,4,5) # “black”

substr($str,4) # “black cat climbed the tree”

substr($str,4,-9) # “black cat climbed”

62 CSci 132 Practical UNIX with Perl

The DATA Filehandle

In addition to STDIN, STDOUT, and STDERR, Perl
predefines the DATA file handle. A program does not have to
open this handle; it is open automatically, and used in
conjunction with the literal __DATA__ (two underscores on
each side, not one.) The program can use __END__ instead
of __DATA__; there is no difference.

The token __DATA__ is placed at the end of the file
containing the program, and the data that the DATA filehandle
reads are all the lines after the __DATA__ token and before
the real end of the file. The program must close the DATA
handle when it is finished reading.

63 CSci 132 Practical UNIX with Perl

For What Purpose?

Sometimes programs can only run when they are
accompanied by datasets such as lookup tables. If these tables
are in separate files, they can get separated from the program
when users install them. Putting the data in the program file
itself prevents this.
When you are working on a program and need to test it,
instead of having to open and edit test files, add open()
statements, and go back and forth between program and test
file, you can read from the DATA filehandle and just put the
tests after the __DATA__ token. This makes testing easier.

64 CSci 132 Practical UNIX with Perl

Example

This simple example just prints out the data following the
__DATA__ token. It is like an executable text file that displays
itself.
while (<DATA>) {
 print;
}
close DATA;
the data is here
__DATA__
LET us go then, you and I,
When the evening is spread out against the sky
Like a patient etherised upon a table;

65 CSci 132 Practical UNIX with Perl

 DATA handle example

This stores constant type data in a program instead of an
external file:
while (<DATA>) {
 /([^:]*):.*:(.*)/;
 $category{$1}= $2;
}
close DATA;

the data is here
__DATA__
Ser:Serine:S:polar
Phe:Phenylalanine:F:non-polar
His:Histidine:H:basic
Asp:Aspartate:D:acidic
...

66 CSci 132 Practical UNIX with Perl

Putting things together

This chapter added several new capabilities to your Perl
toolkit. The logical next step is to integrate these new tools
into a few short programs.
The demo directory for this chapter has a few programs that
integrate these new tools and concepts. You should study
them and tinker with them.

67 CSci 132 Practical UNIX with Perl

Perl Documentation

There is a wealth of documentation and help for using Perl on
a UNIX system. The default Perl installation comes with a
collection of over one hundred man pages on various topics.
The root page is simply named perl. Typing man perl
will display a table of contents of the other man pages. If you
want to read about predefined variables, read perlvar. The
page about Perl's built-in functions is perlfunc. The page
with its operators is perlop, and so on.

Perl also has 10 perlfaq man pages (frequently asked
questions), named perlfaq, perlfaq1, …, perlfaq9.

68 CSci 132 Practical UNIX with Perl

Perl Tutorials

Among the man pages are a few tutorials. They are:
perlreftut Perl references short introduction
perldsc Perl data structures intro
perllol Perl data structures: arrays of arrays
perlrequick Perl regular expressions quick start
perlretut Perl regular expressions tutorial
perlboot Perl OO tutorial for beginners
perltoot Perl OO tutorial, part 1
perltooc Perl OO tutorial, part 2
perlbot Perl OO tricks and examples
perltrap Perl traps for the unwary
perldebtut Perl debugging tutorial

69 CSci 132 Practical UNIX with Perl

Summary

A byte stream is a conceptualization of any I/O, whether from files,
devices, or other programs.
Filehandles are names that are associated with byte streams, and are
used in I/O statements to connect the program to those streams.
Perl has 4 predefined filehandles: STDIN, STDOUT, STDERR, and
DATA.

open() binds data streams to file handles; close() breaks the
binding.
<> is the input operator in Perl.

die() allows a program to exit and send output to STDERR.

Perl has several predefined variables such as $_, @ARGV, $, and $\.

70 CSci 132 Practical UNIX with Perl

Summary continued

@ARGV is the array that stores the command line arguments.

The m// operator is the pattern match operator in Perl.

The s/// operator is the substitution operator.

Perl has a rich set of regular expression characters and
metacharacters that includes all of the characters from the shell's
regex language.
Perl also has alternation and a more powerful set of metacharacters
than the shell.
Perl also has split() and join() functions for working with text
data and lists.

	I/O and Text Processing
	Extending I/O
	I/O Connections
	Device Independent I/O
	Byte Streams
	File Structures
	I/O Under Kernel Control
	File Descriptors
	File Handles
	Three Standard File Handles
	Using The Standard File Handles
	Writing to Standard Error
	Creating a File Handle
	Responding to Failed open() Calls
	The die() function
	Using the die() Function
	Example
	Opening Files for Writing and More
	The close Function
	Reading Using the Input Operator
	Example of List Context Input
	Perl's Predefined Variables
	Some Useful Predefined Variables
	The Default Input/Output Variable $_
	The $_ Variable For Input and Output
	$_ For Pattern Matching
	$_ In Loops
	$_ Used in Other Functions
	The Input Record Separator $/
	Uses of $/
	Example
	Output Field Separator $,
	The @ARGV Array
	Example of @ARGV
	More About Command Line Parsing
	Using $ARGV
	More About <>
	Regular Expressions in Perl
	Help With Perl Regular Expressions
	What is Different in Perl
	Pattern Matching Revisited
	The Pattern Matching Operator
	Other Forms of Pattern Match
	Pattern Match Example
	Character Classes in Perl
	More on Boundaries
	Word Boundary Examples
	Quantifiers
	Quantifier Examples
	Alternation
	Captured Matches
	More About Captured Matches
	Capture Buffer Examples
	Position of Matches
	Substitution
	Examples
	Another Example
	Global Replacement
	The join() Function
	Another Example
	Substring Function
	The DATA Filehandle
	For What Purpose?
	Example
	DATA Handle Example
	Putting Things Together
	Perl Documentation
	Perl Tutorials
	Summary
	Summary Continued

