
Copyright 2006 Stewart WeissCopyright 2009 Stewart Weiss

Modularity and Reusability IModularity and Reusability I

Functions and code reuse

2 CSci 132 Practical UNIX with Perl

On being efficient

When you realize that a piece of Perl code that you wrote may
be useful in future programs, you may wonder if there is an
easy way to reuse it, other than copying and pasting it into
these programs (provided that you can even remember where
you put it.)
Even in a single program, you may find that there is some
sequence of instructions that has to get repeated in several
places in a program and may wonder whether there is a more
efficient way of repeating them other than copying them over
and over.

3 CSci 132 Practical UNIX with Perl

Example

As an example, suppose that a program that you are writing
contains several arrays, and each must be printed in the same
format, with array elements one per line with numbered lines.
You would need something like this in many places in the
program:

 $count = 0;
 foreach $item (@the_given_array) {
 printf "%d %s\n",$count++, $item;
 }

Wouldn't it be useful if there were a way to give this code a
name, like a mini-program, and just call the program
whenever you need to print an array?

4 CSci 132 Practical UNIX with Perl

Subprograms

You cannot simply put this code into a separate program
because one program cannot call another directly.
More importantly, even if you could, your program would
have no way of giving the other program the array data in
order to print it.
What you really need is something like a program contained
in your program that can be called from within your own
program.
Such things exist. They used to be called, quite naturally,
subprograms, but that term has gone by the wayside. Now
subprograms are known as functions.

5 CSci 132 Practical UNIX with Perl

Not such a far-fetched idea

The idea of having a subprogram inside a program dates back
to the first high-level language, Fortran. In Fortran,
subprograms were called subroutines.
Whether you realized it or not, you have used subprograms in
your Perl programs. Things like print, rand, chomp,
push, split, and int are subprograms. We were calling
them functions.
In the early days, people distinguished two different kinds of
subprograms: those that performed an action but did not
"return" a value, and those that "returned a value."

6 CSci 132 Practical UNIX with Perl

Return values

We tend not to use the value that print, push, or chomp
returns; their usefulness is that they perform an action, not
that they return something. We write things like

 print @codons;

because we want print to do something for us, not to return
a value.
On the other hand, the only reason we use rand, split,
and int is for the value they return. For example, we write

 $number = rand(10);

so that rand can return a random number that we then store
into $number.

7 CSci 132 Practical UNIX with Perl

Functions

In some languages, there is a distinction between
subprograms that return values and those that do not. In Perl,
all subprograms return a value, whether or not we use it,
and subprograms are called functions.
The functions that are "part of" Perl, such as print, rand,
and chomp, are called pre-defined functions.

We will spend a little time understanding these before writing
our own.

8 CSci 132 Practical UNIX with Perl

Pre-defined functions

You have seen so far that a function, such as print, is a
piece of code that a program can call, possibly passing
parameters to it. That piece of code is executed, and when it
finishes execution, the program that called it continues its
execution at the statement immediately after the call to the
function.
The next slide illustrates how execution flows through a
function call.

9 CSci 132 Practical UNIX with Perl

Function control flow

my $greeting = "Hello.\n";

print $greeting;

my $count = 0;

more stuff follows

code for print
function

When a function is called, the flow jumps to the code of the
function, flows through that code, and returns to the point
immediately following the function call.

contents of
$greeting

$count = 0

10 CSci 132 Practical UNIX with Perl

Data passed to a function

The print function is supplied with a list of values to be
printed. In Perl, functions such as print, rand, and chomp
have one or more arguments that are provided following the
function name, or enclosed within parentheses, e.g.:

 rand(10) or chomp($string)

The functions themselves have a way to extract the values of
these arguments. We will soon see how you can write
functions that can also be passed argument lists.
To start we look at functions without any arguments.

11 CSci 132 Practical UNIX with Perl

User-defined functions

Perl lets users define their own functions, which are called
user-defined functions. For simplicity, most people just call
them functions when the meaning is clear.
To define your own function, you use the syntax

sub function-name { block }

in which function-name is a name you choose for the
function and block is a sequence of zero or more statements.
sub is a Perl keyword that introduces function definitions.
(It comes from Basic, which called them subroutines; note
the reference to their origin.)

12 CSci 132 Practical UNIX with Perl

 Function example 1

The following is a simple function definition.

sub DisplayGreeting
{

print "Welcome to the program.\n";
}

This both declares and defines a function that prints a
welcome message on the screen. Later I will explain the
difference between declaring a function and defining it.
This function does something and returns no value.

13 CSci 132 Practical UNIX with Perl

 Function example 2

The following is a function that returns a value and does
nothing else.

 sub pi
 {

 return 4*atan2(1,1);
 }

The simplest way to return a value is to use the return
statement:

 return expression

evaluates and returns the expression in either scalar or list
context, depending on how it is used in the calling program,
and then terminates the function.

14 CSci 132 Practical UNIX with Perl

Naming functions

Function names can be any legal Perl identifiers. Function
names have their own namespace, like scalars, arrays, and
hashes. This means that you can have a function foo, a scalar
$foo, an array @foo, and a hash %foo.

If a function is used primarily to do something, you should
name it with a verb, such as DisplayGreeting, or
ConvertString, or CleanUp. Names like these convey
to the reader that the function is taking some specific action.

15 CSci 132 Practical UNIX with Perl

Naming functions (2)

If a function is used primarily to return a value, you should
name it with a noun, such as

 DistanceBetweenPoints, or

 ShortestPath, or

 UsersInput.

Names like these convey to the reader that the function is
returning specific data to the calling program.

16 CSci 132 Practical UNIX with Perl

Where do function definitions belong?

Function definitions can go anywhere in a Perl program, but
that does not mean that you should put them anywhere.
All of the functions that you define should be placed either
 in the beginning of the program, after all use pragmas, or
 after the "main" program, i.e., at the end of the file, or
 in a separate file, which would be included in the program

with a use pragma.

For small programs, put all function definitions at the
beginning or the end of the program.

17 CSci 132 Practical UNIX with Perl

An example program

The following is a small program with a function.
#!/usr/bin/perl -w
use strict;
Define function DisplayGreeting:
sub DisplayGreeting
{
 print "Welcome to the program.\n";
}
#***
main program starts here:
DisplayGreeting(); # Call the function

18 CSci 132 Practical UNIX with Perl

Calling functions

The preceding program demonstrates that one way to call a
program is to write the program name followed by a pair of
empty parentheses:

DisplayGreeting();

If the function has arguments, then these would be put in a
comma-separated list between the parentheses. We will get to
that later.
An alternative to using the parentheses is to prepend an
ampersand to the name:

&DisplayGreeting;

19 CSci 132 Practical UNIX with Perl

Functions with arguments

Arguments are passed to user-defined functions in the same
way that they are passed to predefined functions, either
 within the parentheses in a comma-separated list, or
 without parentheses, as a list following the function (but

only if the function name begins with "&" or its definition
appears before the call.

The arguments to a function are placed into the special array
variable @_, which is available inside the function. The next
slide demonstrates.

20 CSci 132 Practical UNIX with Perl

A function with one argument

Notice below that $_[0] is the first element of @_; the value
in $name is copied into it during the call.
sub DisplayGreeting
{ # $_[0] is first argument to DisplayGreeting
 print "$_[0], Welcome to the program.\n";
}
#***
main program starts here:
print "Enter your name:";
chomp(my $entered_name = <STDIN>);
DisplayGreeting($entered_name);

21 CSci 132 Practical UNIX with Perl

More about function arguments

The elements of the @_ array are $_[0], $_[1], and so on,
NOT $[0], $[1]! Remember the underscore !!

It is a bad idea to use these variables inside the function
because the names are not meaningful. It is better to
immediately copy them into variables declared within the
function, as in this version of DisplayGreeting:
sub DisplayGreeting
{
 my $name = $_[0];
 print "$name, Welcome to the program.\n";
}

22 CSci 132 Practical UNIX with Perl

About the @_ array

The elements of the @_ array act as aliases for the list of
arguments passed to the function.
Remember from the description of the foreach statement
that an alias is just another name for a variable.
The fact that @_ is an array of aliases means that any changes
made within the function to $_[0], $_[1], etc. are actually
made to the arguments in the calling program, as the next
slide will demonstrate.
Some terminology first: the variables $_[0], and so on are
called parameters of the function. The values that are passed
to the function are called arguments.

23 CSci 132 Practical UNIX with Perl

Example of aliasing effect

The following program calls the double() function,
defined below, which doubles the array elements' values.

 #************ main program ***************
 my @values = (1, 2, 4, 8);
 double(@values);

print "@values\n"; # prints 2 4 8 16

 # function definition:

sub double {
 foreach my $i (@_) {
 $i = $i * 2;

 }
}

24 CSci 132 Practical UNIX with Perl

Preventing the aliasing effect

Sometimes the change caused by the aliasing effect is what
you want; sometimes, not.
If you need to prevent the changes made in a function from
changing the actual arguments in the caller, you should first
copy the values from the @_ array into lexical variables, as
the next slide demonstrates.
A lexical variable, by the way, is a variable defined using the
my keyword. This concept will be covered later.

25 CSci 132 Practical UNIX with Perl

Preventing the aliasing effect: example

 #************ main program ***************
 my @values = (1, 2, 4, 8);
 printDouble(@values);

 # function definition:
sub printDouble {
 my @list = @_; # copy into lexical
 foreach my $i (@list) {
 $i *= 2;

 }
 print "@list\n";
}

26 CSci 132 Practical UNIX with Perl

More about function return values

Remember that
return <expression>;

does two things: (1) it terminates the function and (2) it
supplies the value of the expression as the return value of the
function.
If you do not put a return() statement in your function, the
function will return the value of the last expression
evaluated during its execution.
Even if a function does not return a value, the return
statement is a way to stop a function from continuing.

27 CSci 132 Practical UNIX with Perl

Returning a value without return()

This is a variation of the pi function that we saw earlier,
without the return statement. It returns the value of pi because
the last expression evaluated has the value of pi.
It also has a meaningless statement that has no effect on
anything, just to demonstrate that only the last expression
evaluated matters.

 sub pi
 {
 my $number = 10;
 4*atan2(1,1);
 }

28 CSci 132 Practical UNIX with Perl

Using return to exit the function

This function has a return in the while block, even
though it does not return a value. It prints the lines from the
input file until it finds the first line that matches the string
passed to it in $_[0]. It uses return to exit immediately.

 sub match {
 my ($line, $key) = ("", $_[0]);
 while (chomp($line = <>)) {
 if ($line eq $key) {

 return;
 } else {
 print "$line\n";
 }

 }
}

29 CSci 132 Practical UNIX with Perl

Return value context

Functions can return scalars or lists. The following returns a
list, for example:
sub randlist {
 my ($size, $limit) = @_;
 my @list = ();
 for (my $i = 0; $i < $size; $i++) {
 push @list, int(rand($limit));
 }
 return @list;
}

This function creates a list of $size many random integers
in the range [0..$limit-1].

30 CSci 132 Practical UNIX with Perl

Determining context

The return value of a function will be evaluated in whatever
context the function is called. If I called the preceding
function in a scalar context, it would evaluate to the size of
the list.
You can design a function to check what context it is called in
and return the appropriate value for each context. The
wantarray() function returns true if the function is called
in a list context and false if it is called in a scalar context. By
checking the wantarray() function within your
subroutine, you can select the return value. The next slide
demonstrates this.

31 CSci 132 Practical UNIX with Perl

wantarray() example

In scalar context, this function returns the concatenation of all
strings in the array argument passed to it, but in array context,
it returns the array itself, unmodified.

sub all {
 if (!wantarray()) {
 return join("",@_);
 }
 else {
 return @_;
 }
}

32 CSci 132 Practical UNIX with Perl

Passing multiple list arguments

When you pass several arguments to a function, they are all
stored in consecutive positions in the @_ array. In other
words, they are flattened out in the array. For example, in

my @words = qw(words of silent prayer.);
my @jabberwocky = qw(The slithy toves wabe);
Upcase(@words, @jabberwocky);
print "@words\n@jabberwocky\n";
sub Upcase {

 foreach (@_) { tr/a-z/A-Z/; }
}

the @_ array in Upcase sees a single array.

33 CSci 132 Practical UNIX with Perl

Passing multiple list arguments (2)

The problem with this is that the function does not "know"
where one array ends and the other starts. In fact, it does not
know how many arguments are passed to it. The only
information it has is the total number of words and their
values.
But what if the function needs to know? For example, what if
we wanted a function that created a times table with the
elements in two numerical arrays. The next slide demonstrates
the problem.

34 CSci 132 Practical UNIX with Perl

A Times Table

We want, given (1, 2, 3, 4) and (1, 2, 3, 4, 5), to generate the
table

* 1 2 3 4 5

1 1 2 3 4 5

2 2 4 6 8 10

3 3 6 9 12 15

4 4 8 12 16 20

More generally, we would like a function, that given any arrays
@x and @y, creates the table whose ijth entry is xi * yj.

35 CSci 132 Practical UNIX with Perl

An incorrect solution

If we tried the following function, it would not work:
sub makeTable {

my (@row, @col) = @_;
 foreach my $r (@row) {
 foreach my $c (@col) {
 print $r*$c, "\t";
 }
 print "\n";
 }
}
makeTable(@x, @y);

The array @row would contain all of @x and @col would be
empty. Passing lengths of each would work, but it is messy.

36 CSci 132 Practical UNIX with Perl

References solve the problem

The easiest solution is to pass references to the arrays instead
of the arrays themselves, and within the function, to
dereference the argument list, as is now shown.
In the main program, if the row size and column size are
typed on the command line, then this would be how to call the
function:
my @rows = (1..$ARGV[0]);
my @columns = (1..$ARGV[1]);
makeTable(\@rows, \@columns);

Notice that makeTable is passed references to the arrays,
not the arrays themselves.

37 CSci 132 Practical UNIX with Perl

Using references (2)

The makeTable() function is thus:
sub makeTable {
 my ($rowref, $colref) = @_;
 foreach my $r (@$rowref) {
 foreach my $c (@$colref) {
 print $r*$c, "\t";
 }
 print "\n";
 }
}

Notice that the function expects to receive references, and
therefore it provides $rowref and $colref as references
and dereferences them in the loops.

38 CSci 132 Practical UNIX with Perl

It could have been simpler, but…

In its simplest form, we could have just passed in the row size
and column size and let makeTable() write the table
without even using arrays. We didn't really need the function
for that.
However, what we just wrote lets us form the pairwise
products of arbitrary arrays such as
@x = (3, 5, 11, 2);
@y = (4, 9, 12, 15, 23);
makeTable(\@x, \@y);

which computes the pairwise products of the two vectors
shown in the next slide.

39 CSci 132 Practical UNIX with Perl

An all-pairs products table

The all-pairs products of the two vectors (3, 5, 11, 2) and (4,
9, 12, 15, 23):

* 4 9 12 15 23

3 12 27 36 45 69

5 20 45 60 75 115

11 44 99 132 165 253

2 8 18 24 30 46

40 CSci 132 Practical UNIX with Perl

Function libraries

Once you have written a collection of functions that you think
you might reuse in other programs, you may wonder where
you should keep them so that you can use them later.
In effect, what you would need is like a library, but instead of
its being filled with books, it is filled with functions.
Soon you will see how to create modules, which are files
containing functions and data that can be imported into your
programs,

41 CSci 132 Practical UNIX with Perl

Reasons to use functions

When the same or similar code repeats many times in a
program, converting it into a function makes the program
smaller and easier to modify and debug. (If you have to make
the same change in 5 places, it is easy to make a mistake.)
Even if the code does not repeat, when a chunk of a program
is performing some single task, it is better to make it a
function to consolidate its logic and give it a name. By giving
it a name, you add to the set of clues about what it does.
By making chunks of code functions, the main program gets
smaller and starts to read like a list of small tasks, making it
easier to understand and less intimidating to read.

	Functions and Scope
	On Being Efficient
	Example
	Subprograms
	Not Such a Far-Fetched Idea
	Return Values
	Functions
	Pre-Defined Functions
	Function Control Flow
	Data Passed to A Function
	User Defined Functions
	Function Example 1
	Function Example 2
	Naming Functions
	Naming Functions (2)
	Where Do Function Definitions Belong?
	An Example Program
	Calling Functions
	Functions With Arguments
	A Function With One Argument
	More About Arguments
	Function Parameters
	Example of Aliasing Effect
	Preventing the Aliasing Effect
	Preventing the Aliasing Effect: Example
	Function Return Values
	Returning a Value Without return()
	Using return() to Exit the Function
	Return Value Context
	Determining Context
	Wantarray() Example
	Passing Multiple List Arguments
	Passing Multiple List Arguments (2)
	A Times Table
	An Incorrect Solution
	References Solve the Problem
	Using References, Continued
	It Could Have Been Simpler, But…
	Function Libraries
	Slide 41

