
Copyright 2006 Stewart WeissCopyright 2009 Stewart Weiss

Using References to Create
Complex Structures

Using References to Create
Complex Structures

The array and hash composers

2 CSci 132 Practical UNIX with Perl

Anonymous array composer

You can create a hard reference to an anonymous array using
square brackets.

$array_ref = [2,4,6,8];

creates an unnamed array with the values 2,4,6,8, and creates
a reference to the array and assigns it to $array_ref.

The operator [] is called the anonymous array composer.

3 CSci 132 Practical UNIX with Perl

The picture below shows what gets created by the preceding
anonymous array composer.

 It shows that $array_ref contains a reference to an array,
represented by the circular object.

Reference to an anonymous array

$array_ref

 8 6 4 2

4 CSci 132 Practical UNIX with Perl

Anonymous arrays

In general, [] creates a reference to a list:
[list of scalars]

is a reference to an unnamed array consisting of the list of
values inside the brackets.

The values inside must be scalars, but since references
themselves are scalars, this is how you can build arbitrarily
complex structures – just make it a list of references to other
"thingies." (A "thingy" is the term Larry Wall uses for things
like variables and literals.)

5 CSci 132 Practical UNIX with Perl

Creating multi-dimensional arrays

You can create two-dimensional array for example:
$ref2by3array = [[1,4], [2,5], [3,6]];

This is a reference to an array of 3 references to 2-element
arrays. It is more clearly written:

 $ref2by3array = [
 [1, 4],
 [2, 5],
 [3, 6]
];

6 CSci 132 Practical UNIX with Perl

Anonymous arrays (cont'd.)

You can also create a 2D array by making anonymous 1D
arrays inside of a list literal:
@matrix = ([1,2], [3,4], [5,6]);

in which case @matrix is an array of 3 refs to anonymous
arrays of 2 elements each. This is because it is of the form

It is better style to write this as
@matrix = (

[1,2],
[3,4],
[5,6]

);

7 CSci 132 Practical UNIX with Perl

More on arrays

You can also create structures like
$studref = [

 $name,

 [$hwk1, $hwk2, $hwk3]

];

which can be thought of as an array with a name and a list of
grades associated with the name.

Soon you'll see how to fill them, use them, print them and so
on.

8 CSci 132 Practical UNIX with Perl

Some warnings

Do not confuse the square bracket array composer with the
subscript operator or the slice operator. These square
brackets appear where expressions are expected, such as on
the right hand side of an assignment operator. When they
appear after an identifier, they are the subscript operator.
Remember too that you are creating references, not actual
arrays, and that you must dereference them to use them.

9 CSci 132 Practical UNIX with Perl

Building and using lists of lists

Unlike most languages, Perl does not require that you specify
the size of an array. The rows don't have to have the same
number of elements either. If you reference an element that is
not in the list yet, Perl extends the list and inserts it. This
makes building complex structures very simple.

The next few slides illustrate how.

10 CSci 132 Practical UNIX with Perl

Building lists of lists

To grow a list of lists by reading each row from a line of a
file:
while (<>) {

@temp = split; # split $_ into list
now create a ref to the list and
append this ref to @ListOfLists
push @ListOfLists, [@temp];
}

11 CSci 132 Practical UNIX with Perl

Using lists of lists

You can print the preceding array, one row per line with
for ($i = 0; $i < @ListOfLists; $i++) {
 print "@{$ListOfLists[$i]} \n";
}

The expression {$ListOfLists[$i]} is actually a BLOCK
of code, since it is of the form {…}. It returns a value, namely the
last expression evaluated in the block. This expression is the value
of the array component $ListOfLists[$i], which is a
reference to a list at index $i in $ListOfLists. The argument
to print is therefore of the form @array_ref, which evaluates to
the list itself, which print prints.

12 CSci 132 Practical UNIX with Perl

Accessing the individual list elements

We can also access the elements individually. If we wanted to
print every other element in each row, starting with the first, we
could use
for ($i = 0; $i < @ListOfLists; $i++) {
 for ($j=0; $j < @{$ListOfLists[$i]}; $j+=2) {
 print "${$ListOfLists[$i]}[$j] ";
 }
 print "\n";
}

13 CSci 132 Practical UNIX with Perl

The -> operator

The -> operator is the member dereferencing operator (like
the one in C, but it is more general.) It can be used to access
members of referenced arrays:

 $ref2by3 = [[1,4], [2,5], [3,6]];

 print $ref2by3->[0]->[1]; #prints 4

 print ${$ref2by3->[0]}[1]; #prints 4

 print $$ref2by3[0][1]; #prints 4

 print $ref2by3->[0][1]; #prints 4

 print ${${$ref2by3}[0]}[1]; #prints 4

14 CSci 132 Practical UNIX with Perl

The Anonymous Hash Composer

You can create a hard reference to an anonymous hash using
the anonymous hash composer { }.

$pairs = {
'tea' => 'two',
'me' => 'you',
'you' => 'me'

};

creates an unnamed hash with the three key-value pairs and
assigns a reference to its thingy to $pairs.

15 CSci 132 Practical UNIX with Perl

The -> Operator in Hashes

Using the preceding definition of the $pairs reference:

$pairs->{tea} = 'Three';

is short for these, which are equivalent:

$$pairs{tea} = 'Three';

 ${$pairs}{tea} = 'Three';

The way to read this is, $pairs is a reference to an
anonymous hash, which either already has the key 'tea'
and is getting a new value 'Three', or the hash did not have
the key 'tea' and a new pair is added to it.

16 CSci 132 Practical UNIX with Perl

Hashes and Arrays

The anonymous array composer allows us to create hashes whose values
are not just simple scalars, but are references to lists, as in the following
example of a hash named %Cities:

 %Cities = (

 'Italy' =>
 ['Firenze', 'Padua', 'Milano'],

 'Japan' =>
 ['Nagano', 'Tokyo', 'Kyoto'],

 'Canada' =>

 ['Victoria', 'Banff', 'Toronto']

);

17 CSci 132 Practical UNIX with Perl

More about multidimensional arrays

Given the list of references to lists
@zoo = (

["mongoose","capybara"],
["tiger","lion", "ocelot"],
["boa","cobra"]

);
print $zoo[1][2]; # prints ocelot.

is a shorthand for
print $zoo[1]->[2]; #same thing

which is really a shorthand for
print ${$zoo[1]}[2]; # same thing

18 CSci 132 Practical UNIX with Perl

Lists of lists

If we changed the preceding example to use [] instead of ():

$zoo_ref = [
["mongoose","capybara"],

["tiger","lion", "ocelot"],
["boa","cobra"]

];

we'd have to print using:
 print $zoo_ref->[1][2]; # prints ocelot.

or print ${${$zoo_ref}[1]}[2];

or print $zoo_ref->[1]->[2];

19 CSci 132 Practical UNIX with Perl

Hashes containing arrays

There are some obvious applications of hashes of array
references

 %CSci132_grades = (
 Obdoli => [78, 65, 94],
 Palermo => [84, 90, 74],
 Sanchez => [70, 76, 88]
);

would be a way to store grades for students with names given
as keys.

20 CSci 132 Practical UNIX with Perl

Hashes containing arrays (cont'd.)

To access a grade, I could use
print $CSci132_grades{Sanchez}[1];

which prints the 2nd grade of Sanchez. More generally,
 print $CSci132_grades{$name}[$exam];

prints the grade of the person whose name and exam number
are given.

Note that the hash is searched by name, making this a very
elegant method of accessing records. You would otherwise
have to write a search routine, if it were an ordinary array.

21 CSci 132 Practical UNIX with Perl

Hashes as records or structures

Hashes are a very convenient way to implement records (and
objects), because the field names can be keys and the field
values, their values. And hashes can be arbitrarily complex.
Some fields can be arrays, some constants, some methods.

Also, you do not need to enclose strings in quote marks when
they are used as hash keys.

The next slide illustrates.

22 CSci 132 Practical UNIX with Perl

Hashes as records (2)

($n, $elmt, $res) = split(" ",<STDIN>);

%atom = (

NUM => $n,

ELEMENT => $elmt,

RESIDUE => $res

);

The keys serve as names of "fields"; the above code could be
used in a loop, in which a table of atom records is filled.

23 CSci 132 Practical UNIX with Perl

Hashes as records (3)

$atom_ref = {

NUM => $n,

ELEMENT => $elmt,

RESIDUE => $res

};

Instead of creating a hash, we can create a reference to a hash,
and this can be assigned to an array:

 push((@atoms, $atom_ref)

24 CSci 132 Practical UNIX with Perl

Hash of complex types

$obj_ref = {

NAME => $namestring,

SCORES => [@list_of_numbers],

PERSONAL_DATA => {%list_of_keys_values},

SAVE_METHOD => \&save_function,

RESTORE_METHOD => \&restore_function

};

 is an object that has references to string, list, a hash, and some
functions for saving and retrieving the saved data. This is
conceptual – you have to replace the values with actual data.

25 CSci 132 Practical UNIX with Perl

Hash of complex type (cont'd.)

To access the various components of this object, you would use
statements such as
print $obj_ref->{NAME};

print "Age: $obj_ref->{PERSONAL_DATA}->{AGE} \n";

for $i (@{$obj_ref->{SCORES}}) {

print " Score $n : $i \n";

$n++;

}

&{$obj_ref->{SAVE_METHOD}} ($filename);

26 CSci 132 Practical UNIX with Perl

Creating complex structures

The preceding structure can be read piece by piece from a file
with code such as
$obj_ref = {}; # empty hash

chop($name = <>); # get name from input
$obj_ref{NAME} = $name; # assign to hash NAME

read pairs of the form key value from input

and add to PERSONAL_DATA hash
while (<>) {

($key, $value) = split /[\s]+/;

$obj_ref{PERSONAL_DATA}{$key} = $value;

}

27 CSci 132 Practical UNIX with Perl

Subroutine references
References to subroutines are useful for creating dispatch tables.
Suppose show, help, and quit are subs. Given:

 my %dispatch_table = (

 show => \&show,

 help => \&help,

 quit => \&quit

);

If $key contains a user supplied name matching a key then

 $dispatch_table{$key}->()

invokes the matching function.

28 CSci 132 Practical UNIX with Perl

Anonymous subroutine composer

You can also create references to anonymous subroutines by
using the sub operator without a name after it:
$coderef = sub { print "Stop!\n" };

creates a reference to a piece of code that prints "Stop!".

The ";" after the sub body is necessary because of the assignment
statement's syntax. Ordinarily a sub declaration has no terminating
semicolon.

Anonymous subroutines are called closures in Perl. Closures have
the ability to carry their lexical environments around with them. See
the code example.

	Using References to Create Complex Structures
	Anonymous Array Composer
	The picture below shows what gets created by the preceding anonymous array composer. It shows that $array_ref contains a reference to an array, represented by the circular object.
	Anonymous Arrays
	Creating Multi-Dimensional Arrays
	Anonymous Arrays (cont'd.)
	More on Arrays
	Some Warnings
	Building and Using Lists of Lists
	Building Lists of Lists
	Using Lists of Lists
	Accessing the Individual List Elements
	The -> Operator
	The Anonymous Hash Composer
	The -> Operator in Hashes
	Hashes and Arrays
	More Multidimensional Arrays
	Lists of Lists
	Hashes Containing Arrays
	Hashes Containing Arrays (cont'd.)
	Hashes as Records
	Hashes as Records (2)
	Hashes as Records (3)
	Hash of Complex Types
	Hash of Complex Type (cont'd.)
	Creating Complex Structures
	Subroutine References
	Anonymous Subroutine Composer

