
Copyright 2006 Stewart WeissCopyright 2010 Stewart Weiss

The Scoop on ScopeThe Scoop on Scope

Binding names to things in Perl

2 CSci 132 Practical UNIX with Perl

Names and bindings

When you declare a variable in a program, as in
my $count;

you are telling Perl to associate the name $count to a
storage cell in memory. Henceforth, the name $count is
bound to the location where its data is stored.
You cannot write
my $count;
my $count;

because that would create two identical names for different
locations and Perl would not know which was which. Must
names be unique in programs?

3 CSci 132 Practical UNIX with Perl

Many moons

In this program, there are two variables named $user.
sub DisplayGreeting
{
 my $user = $_[0];
 print "$user, Welcome to the program.\n";
}
print "Enter your name:";
chomp(my $user = <STDIN>);
DisplayGreeting($name);

 There can be many moons ...

4 CSci 132 Practical UNIX with Perl

Separate places for each

The first occurrence of $user is inside the block of the
DisplayGreeting function. The second is outside of the
block, in the main program:
sub DisplayGreeting
{
 my $user = $_[0];
 print "$user, Welcome to the program.\n";
}
print "Enter your name:";
chomp(my $user = <STDIN>);
DisplayGreeting($name);

5 CSci 132 Practical UNIX with Perl

The idea

The same name can occur in different blocks of a program
because of the concept of scope.
Scopes are like enclosing walls around sets of names. We can
declare the same name within different scopes because as
soon as execution leaves the confines of one scope, it no
longer "knows" the names from that scope.
We can have scopes inside of scopes, like Russian
matryoshka dolls, each inside the next. Each scope can have a
variable named $here.

6 CSci 132 Practical UNIX with Perl

Lexical scope

Recall from Lesson 14 that a my() declaration creates a
variable that can be used from that point forward in the
innermost enclosing block.
The lexical scope of a variable is the portion of the program
in which that variable is accessible.
This implies that the lexical scope of a variable declared with
a my() declaration is the portion of the program from the
declaration until the end of the block in which the
declaration was made.

7 CSci 132 Practical UNIX with Perl

Lexical scope

In the block below, the lexical scope of $user extends from
its declaration until the curly brace ending the block.
{
 my $user = $_[0]; # scope starts here
 print "$user, Welcome to the program.\n";
} # end of block containing declaration
$user is out-of-scope here

If we referred to $user here, it would not be
the same variable.

8 CSci 132 Practical UNIX with Perl

Enclosing scopes

In the code below, the scope of the first $x is blue; the
second, pink, and the innermost, gold. Note that $z is visible
within the innermost block.

my ($x, $y, $z) = (1,2,3);
{

}
print $x, $y; #prints 1 2

 my $x = 4;
 {
 my $y = 5;
 $x = $x + $z; # $x = 4 + 3
 }
 print $x, $y; # prints 4 2

my $y = 6;
print $x,$y ; # prints 4 6

}

9 CSci 132 Practical UNIX with Perl

How lexical scopes work

Perl maintains a symbol table for each block. The symbol
table contains the names of all of the lexical variables
declared within that block.
The file containing the program is also a block, so Perl has a
symbol table of the lexical variables declared at "file scope"
too. The file's block is the outermost block.
At any given time during program execution, there is a
current block. This is the innermost block containing the
statement being executed. If execution enters a block
contained within the current block, it becomes the new
current block.

10 CSci 132 Practical UNIX with Perl

Lexical scopes continued

Each time a new block is entered, Perl pushes the symbol
table for the new block on top of the table for the old block,
like pushing a cafeteria tray on top of the stack of used trays.
When a block is exited, Perl "pops" the current symbol table
off of the stack of blocks that it has pushed down.
Suppose Block A contains Block B and Block B contains
Block C, and execution passed from A to B to C. Then C is
"on top of" B, which is "on top of" A.
When a lexical variable is used in a statement, Perl looks at
the symbol table for the current block.

11 CSci 132 Practical UNIX with Perl

Lexical scopes continued

When a lexical variable is used in a statement, Perl looks at
the table for the current block. If it finds the variable declared
in that table, it uses that variable's value. If not, it looks at the
table of the next outermost block, which is "under" the current
one in the stack. if it finds it there, it uses its value, otherwise
it looks outward again, which means "under" that block again.
It continues to do this until either it reaches a block whose
table has the declaration, or it reaches the outermost scope
and does not find it. In this case, it is a new, undeclared
variable without a value, so its value is undef.

12 CSci 132 Practical UNIX with Perl

The meaning of "lexical"

The scope created by a my() declaration is called a lexical
scope because which declaration a variable refers to is purely
determined by the program's text. The word "lexical" means
textual.
Because lexical scope rules are not determined by any
runtime behavior, lexical scope is also called static scope.

13 CSci 132 Practical UNIX with Perl

Global scope

The pre-defined variables, such as $_ and @ARGV, are
included in the main program's symbol table automatically.
All variables declared in that table are called global variables,
because they are visible in all parts of a program.
Variables declared using my() in file scope are not global;
they are lexical variables with file scope.
You cannot create lexical versions of Perl's pre-defined
variables. In other words, you cannot write my $_;
anywhere in your program.

14 CSci 132 Practical UNIX with Perl

The local() declaration

The local() declaration is used to hide the values of
global variables temporarily. For example,
@date = qw(5 15 2009);

 local $, = "-"
 print $date # this prints 5-15-2009

{
 local $, = "/";
 print $date; # this prints 5/15/2009
}

 print $date; # this prints 5-15-2009

The local() declaration saves the old value in the variable
and restores it when the block is exited.

15 CSci 132 Practical UNIX with Perl

local() declarations

The local() declaration cannot be used to localize a
lexical variable. For example,
my $name;
{
 local $name; # scope starts here
 # …. stuff here
} # end of block

is illegal and is a syntax error.
The local() declaration does not create a new copy of the
variable; Perl's predefined variables have all of the "magic"
they had before while they are localized.

16 CSci 132 Practical UNIX with Perl

local() declarations

There is much more to local() declarations than I have
said so far. Unlike lexical variables, which can only be used in
the block in which they are declared, local variables exist
outside of the containing block. More precisely,
A local() declaration modifies its listed variables to be
"local'' to the enclosing block, and to any subroutine called
from within that block.
This means that the localized variable is passed to called
subroutines, and they can access it even though it is not in
their lexical scope. The next slide illustrates.

17 CSci 132 Practical UNIX with Perl

Example

In the example below, foo() calls bar(), implicitly
handing it all localized variables, namely $x. bar() gets the
value 2 for $x, not 1, even though the definition of bar() is
not in the block of foo().

 use vars qw($x); # make $x global --
 $x = 1; # will explain soon

foo(); # bar() called from foo() uses $x=2
sub bar { print "In bar() \$x= $x\n"; }

sub foo {
 local $x= 2;
 bar();

 }

18 CSci 132 Practical UNIX with Perl

Warning

You should not use local() definitions other than to hide
the values of Perl's predefined special variables temporarily.
There is absolutely no good reason to use it otherwise!
I have showed you their behavior because you will not see it
in other languages you may pick up on the way. It is not a
common semantics.

19 CSci 132 Practical UNIX with Perl

User-defined global variables

You can declare global variables in a program in one of two
ways: by fully qualifying their names or by using the vars
pragma.
Fully qualifying a variable means preceding the variable
name with the name of the "package" in which it is defined,
followed by two colons, as in:

#!/usr/bin/perl -w
use strict;
$main::var = "Hello.\n";
print $main::var;

main is the name of the package of your program.

20 CSci 132 Practical UNIX with Perl

The vars pragma

Preceding the name of the global variable with the package
name everywhere you use it is tedious; an alternative is to
define it in the vars pragma, as follows:

#!/usr/bin/perl -w
use strict;

 use vars ('$var', '$global');
$var = "Hello.\n";

 $global = "Goodbye.\n";
print $var, $global;

The vars pragma expects a list of variable names in single
quotes.

21 CSci 132 Practical UNIX with Perl

Warning again

It is best to avoid the use of global variables in programs.
They lead to errors and difficult-to-diagnose bugs.
Eventually you will learn about a more controlled means of
limited sharing of variables among functions, via packages
and namespaces.

22 CSci 132 Practical UNIX with Perl

Function declarations

A function declaration is not the same thing as a function
definition. A function declaration, sometimes called a
prototype, is just the word "sub" followed by the name of the
function and a semicolon. The following is a function
declaration:

sub DisplayGreeting;

Notice that instead of { block } after the name, there is just a
semicolon.
Function declarations are usually placed in the beginning of
the program when the definitions are at the end of the file.

23 CSci 132 Practical UNIX with Perl

Example with function declaration

A program with a function declared in advance and defined
after:
#!/usr/bin/perl -w
use strict;
sub DisplayGreeting; # declaration
DisplayGreeting(); # function call
more code here
sub DisplayGreeting # function definition
{
 print "Welcome to the program.\n";
}

24 CSci 132 Practical UNIX with Perl

Recursion

Recursion is a technique for defining a function (or a set) by
referring to itself. The definition must have one or more base
cases that do not refer to the function.
Here are two examples of recursive definitions:
The natural numbers:
0 is a natural number. If n is a natural number, so is n+1.
Now, let s(x) be the integer that comes after x.

 Addition: Let A(x,y) be called the sum of x and y, defined by
A(x,0) = x.
A(x,y+1) = s(A(x,y)).

25 CSci 132 Practical UNIX with Perl

Recursive functions

The last example showed that addition of two whole numbers
can be defined by defining what it means to add 0 to a number
and then showing that adding anything else to a number is the
same as adding the predecessor to it and adding 1. So addition
is defined as long as adding 1 is defined.
All arithmetical functions can be defined recursively. This
was proved by Kurt Godel in 1931.
Here is an obvious one:
factorial(0) = 1
factorial(n+1) = (n+1)* factorial(n)

26 CSci 132 Practical UNIX with Perl

Recursive Perl functions

You can use this same idea to write functions in Perl that call
themselves, provided they have an "escape clause" -- a way to
stop the recursion. For example:
sub factorial {
 my $x = $_[0];
 if (0 >= $x) {
 return 1;
 } else {
 return $x * factorial($x-1);
 }
}

You can see that factorial(2) = 2*factorial(1) =
2*(1*factorial(0)) = 2*(1*(1)) = 2.

27 CSci 132 Practical UNIX with Perl

Recursion is not efficient

It is not efficient to use recursion to compute the factorial
function. The following loop does the same thing:

sub factorial {
 my $x = $_[0];
 my $fact = 1;
 while ($x > 0) {
 $fact = $fact*$x--;
 }
 return $fact;
}

Recursion is a slow means of computing, because each
function call is a slow operation. Why bother then?

28 CSci 132 Practical UNIX with Perl

Why use recursion?

Sometimes it is easier to express a solution to a problem using
recursion than by any other means. When this is the case,
recursion is the best choice.
For example, many algorithms that operate on inherently
recursive data structures such as directory hierarchies, are
more easily expressed using recursion.
Sometimes it is easier to see the solution to a problem using
recursion.
Sometimes recursion is used for an initial version and it is
replaced by a more efficient technique later.

29 CSci 132 Practical UNIX with Perl

Rules for creating recursive functions

A recursive function must have the following parts.
 An argument that is used for "recursing" downwards to

zero.
 A condition to test whether the argument is zero or

whatever is the lowest possible value for it. This is called
the base case.

 A return value for this base case that does not use the
function itself.

 A recursive call to the function with a value that is smaller
than the current value.

30 CSci 132 Practical UNIX with Perl

Example 1

The following function reverses a string, one character at a
time.

sub reversestr {
 my $string = $_[0];
 if (1 == length($string)) {
 return $string;
 } else {
 my $last = chop($string);
 return $last . reversestr ($string);
 }
}

31 CSci 132 Practical UNIX with Perl

Example 2

The following function computes the greatest common divisor
of x and y. It could be done with iteration also.

sub gcd {
 my ($x, $y) = @_;
 ($x, $y) = ($y, $x) if ($x > $y);

 return $y if (0 == $x); # gcd(0,y) is y

 return $x if (0 == $y); # gcd(x,0) is x
 return gcd($x, $y % $x);
 # this algorithm was discovered by Euclid
}

This has all of the required properties. See if you can identify
them.

32 CSci 132 Practical UNIX with Perl

Summary

Names in general in a program are bound to the things that they
name, such as memory locations and functions.
The same name can appear in multiple scopes.
Variables declared with my() are lexical variables, which are only
visible until the nearest enclosing right curly brace.
Variables declared with local() have dynamic scope, and can be
accessed from any subroutine called directly or indirectly from the
block in which they are declared.
Global variables are visible in all parts of the program in which
they are declared.
Recursive functions are functions that call themselves.

	Functions and Scope
	Names and Bindings
	Many Moons
	Separate Places for Each
	The Idea
	Lexical Scope
	Lexical Scope (2)
	Enclosing Scopes
	How Lexical Scopes Work
	Lexical Scopes Continued
	Lexical Scopes Continued
	The Meaning of "Lexical"
	Perl's Pre-Defined Variables
	The local() Declaration
	local() Declarations
	local() Declarations
	Example
	Warning
	User-Defined Global Variables
	The vars Pragma
	Warning Again
	Function Declarations
	Example with Function Declaration
	Recursion
	Recursive Functions
	Recursive Perl Functions
	Recursion is Not Efficient
	Why Use Recursion?
	Rules For Creating Recursive Functions
	Example 1
	Example 2
	Slide 32

