
CSci 135 Software Analysis and Design I
Lab 5

Stewart Weiss

Lab 5: Simulations

Overview

In a software development company, programmers are often asked to write the implementation of a func-
tion, given its prototype and a precise description of what it is supposed to do. To make it easier for them,
they are also given a driver program. A driver program is one that calls their function, so that they can test
it and make sure it works.
In this lab assignment you are given a few function prototypes and precise descriptions of what these
functions must do. These prototypes and descriptions are in a header file. A header file is simply a file
containing function prototypes, possibly constant and type definitions, and sufficiently detailed comments
so that a programmer can make calls to those functions in his or her own program. Your job will be to create
a file called an implementation file, which contains the actual definitions of the functions in the header file.
The names of the header file and the implementation file are usually coordinated so that they differ only
in the file extension. If the header file is named duel.h, then its implementation file is named duel.cpp

in C++ (or duel.c in C). Header files are always given the extension “.h”, whether in C, C++, or another
programming language.
Once you have written the function definitions in the file duel.cpp, you will be able to compile the file into
an object file using the command

g++ -c duel.cpp

This will create the file duel.o.
You will not be given the source code to the driver program. You don’t need it. But you will have its object
file, which will be named lab05_main.o. With your duel.o file and lab05_main.o, can create the executable
program with the command

g++ -o lab05 lab05_main.o duel.o

If your code has no syntax errors, the file lab05 will be created in your working directory. If it has errors
you will have to look at the messages and correct them. It is better to use the command

g++ -Wall -g -o lab05 lab05_main.o duel.o

turning on all warning messages and compiling code that can be run under the GDB debugger. For a more
detailed explanation, see my tutorial, http:///∼stewart/resources/separateCompilation.pdf.

Exercises

You will be writing functions that are used in a game. This exercise will also give you practice with random
number generation. The game simulates three people with different shooting skill levels trying to duel each
other. In the imaginary land of Moronia, Aaron, Bob, and Charlie had an argument over which one of them
was the greatest logician of all time. To end the argument once and for all, they agreed on a duel to the
death, which seemed quite logical to all of them.
The facts surrounding the duel and their skill levels are that

• Aaron is a poor shooter and only hits his target with a probability of 1/3.

1

http:///~stewart/resources/separateCompilation.pdf


CSci 135 Software Analysis and Design I
Lab 5

Stewart Weiss

• Bob is a bit better and hits his target with a probability of 1/2.

• Charlie is an expert marksman and never misses.

A hit means a kill and the person hit drops out of the duel. A duel is carried out in a specific order. To
compensate for the inequities in their marksmanship skills, they decided that they would take turns firing,
starting with Aaron, then Bob, and then Charlie. Since each is a smart person, they each adopt the strategy
to shoot at the most accurate shooter still alive, on the grounds that this shooter is the deadliest and has the
best chance of hitting back. The duel is carried out until only one of them is left alive. It is not possible for
all to die because only one person shoots at a time and either kills or does not kill the intended target.
There is a header file named duel.h and an object file named lab05_main.o in the directory

/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab05

You are to copy these files into your working directory and create a file there named duel.cpp. The header
file contains the prototypes of four functions that you must implement in duel.cpp. After you have success-
fully written duel.cpp and compiled without error, create the executable program using the instructions
that I wrote above. Run the executable, lab05. It will display a prompt to enter the number of duels to run.
Enter a number and look at the output. Aaron should win about 36 to 37% of the time, Bob, about 41 to
42%, and Charlie, about 21 to 22%. If you make the number of duels large enough, this is what you should
see. If not, your implementation is flawed.
Advice: To simplify writing the .cpp file, and avoid typing mistakes, copy duel.h into duel.cpp and
replace the semicolons by curly braces.
Hint: How can you make a program simulate an event that happens with probability p, where 0 ≤ p ≤ 1.0?
Suppose you generate a random number between 0 and 1. If it is less than or equal to p, then the event
happened. If it is greater than p, then it did not.

What to Submit

Submit your implementation file, however complete it is, by the end of today’s lab, i.e., before the end of
the class at 2:00 P.M. The instructions are just like the previous lab’s:

1. Create a directory in
/data/biocs/b/student.accounts/cs135_sw/cs136labs/lab05/submissions

whose name is your username.
2. Copy your file, renaming it to username _duel.cpp. You will lose 5% of the grade if you misname the

file!
3. Change the permission on the directory that you created so that no one else can read it. You do this

with the commands
$ cd /data/biocs/b/student.accounts/cs135_sw/cs136labs/lab05/submissions

$ chmod 700 username

Do not submit executable files. Remember to document your code (both preamble and comments in the
code) and make it easy to read. Your work will be graded based on the rubric outlined in the Programming
Rules document.
There are absolutely no extensions to the deadline. You can submit a revised version of the program by
10:00 P.M. on Thursday, Sept. 27 for partial credit. If you do, you must name it with a different name than
what you first posted, e.g., username _duel_v2.cpp. and put it in the same directory as the original. It must
be a revision of the original file, with only fixes to things that were not working before. I will adjust the
grade based on how well the first version worked and how many changes you made.

2


