
CSci 136 Supervised Programming Lab
Lab 3 Tutorial: Pseudo-Random Numbers and Strings

Prof. Stewart Weiss

Lab 3: Pseudo-Random Numbers and Strings

Random number generation in C/C++

Random number generation is critical to many simulations and games. C (and therefore C++)
provides two different functions that can generate pseudo-random integers in the range from 0

to RAND_MAX inclusive. RAND_MAX is a large positive integer that is implementation dependent.
It really does not matter what its actual value is for most applications. There are many pseudo-
random number generators available and some are better than others. What is meant by the word
“better”? The quality of a pseudo-random number generator is measured by various statistical
measures, but intuitively, the better it is, the more its output will be like truly random numbers.
Pseudo-random number generators are called weak or strong depending on how good they are.

If you want a very strong pseudo-random generator, you may have to write it yourself. The func-
tions in the C/C++ library are pretty strong, but not suitable for all applications. The two functions
of choice in that library are rand() and random(). Because the textbook for the course describes
rand(), these notes will be limited to rand(). Almost everything to be said about rand() is true
of random() as well.

The rand() Function

The rand() function is part of the C Standard Library and therefore you need to include the header
<cstdlib> in your C++ program to use it. (In C, you would include <stdlib.h>.) The function
generates a pseudo-random integer in the range 0 to RAND_MAX. RAND_MAX is a constant defined in
<cstdlib>. Its default value may vary between implementations but it is granted to be at least
32767. On the cslab hosts in the lab this header file has the following line:

#define RAND_MAX 2147483647

which gives RAND_MAX the value 231− 1. (You can see this line by typing the command “grep
RAND_MAX /usr/include/stdlib.h”.)

What if you want to generate a random number between 1 and 100? How would you use this
function to do this? One simple way is to use the modulus operator % to narrow the range. This is
not the best way, but it works. To illustrate:

number = rand() % 50;

assigns to number a value between 0 and 49. If we add 1 to it we get a number from 1 to 50.

1



CSci 136 Supervised Programming Lab
Lab 3 Tutorial: Pseudo-Random Numbers and Strings

Prof. Stewart Weiss

number = ( rand() % 50 ) + 1;

More generally, suppose we want to generate pseudo-random numbers in the range [lower...upper]
inclusive, where lower and upper are any pair of integers such that lower < upper. There are
(upper - lower +1 ) numbers in this range. Let

rangesize = upper-lower+1;

The expression

rand() % rangesize

generates a number between 0 and rangesize-1, or equivalently, between 0 and upper-lower.
To get numbers that range between lower and upper, we just have to add lower to the result.
This way, the numbers lie between 0+lower and (upper-lower+lower), which is from lower to
upper:

number = ( rand() % rangeSize ) + lower;

Example: To generate numbers in the range from 100 to 400, let lower = 100 and upper=400 in
the above formula. Then the rangesize is (400−100+1) = 301. Using this, the assignment would
be

number = (rand() % 301) + 100;

Note. I mentioned above that this is not a very good method of narrowing the range of pseudo-
random numbers. This is because the % operator is throwing away many valuable bits of informa-
tion. For greater strength, it is usually better to use a different approach in which you use division
instead of modulus.

The srand() Function

The rand() function cannot be used reliably without first giving its internal generator a starting
value. The process of giving it a starting value is called seeding the generator. There is a function
whose sole purpose is to seed rand(). Its name is easy to remember: srand(). This function
seeds the pseudo-random number generator. The seed is passed as the argument to the function.
The prototype (or declaration) of srand() is

void srand( unsigned int)

Therefore you use it like this:

srand(1000000);

2



CSci 136 Supervised Programming Lab
Lab 3 Tutorial: Pseudo-Random Numbers and Strings

Prof. Stewart Weiss

In this case you gave it a seed of 1000000.

When it is given the same seed, rand() will always produce the same sequence. Therefore, if you
give srand() the same seed each time a program is run, the sequence of numbers generated by
rand() will be the same. This little program can be used to illustrate this:

# i n c l u d e < i o s t r e a m >
# i n c l u d e < c s t d l i b >
u s i n g namespace s t d ;

i n t main ( )
{

s r a n d ( 1 0 0 ) ;
f o r ( i n t i = 0 ; i < 10 ; i ++ )

c o u t << rand ( ) << e n d l ;

r e t u r n 0 ;
}

Compile it and run it repeatedly. You will see the same ten numbers each time.

To get a new sequence each time, the value given to srand() must be different in each run. The
most common way of doing this is to seed srand() with the current time. UNIX has a function
that returns the current time. The function time() (declared in the C header file <ctime>) returns
the current time as an integer. You give it a 0 as an argument:

current_time = time(0);

and it returns an integer value. To be more precise, time(0) returns the number of seconds that
have elapsed since since 00:00 hours, Jan 1, 1970 UTC. (This is due to historical reasons, since it
corresponds to a UNIX timestamp, but is widely implemented in C libraries across all platforms.)
The important fact is that the value returned by time(0) is guaranteed to be different almost every
time that the program runs, it is a perfect choice for the seed. Try running this program:

# i n c l u d e < i o s t r e a m >
# i n c l u d e < c s t d l i b >
# i n c l u d e <ct ime >
u s i n g namespace s t d ;

i n t main ( )
{

s r a n d ( t ime ( 0 ) ) ;
f o r ( i n t i = 0 ; i < 10 ; i ++ )

c o u t << rand ( ) << e n d l ;

r e t u r n 0 ;
}

and you will see the sequence vary from one run to another.

3



CSci 136 Supervised Programming Lab
Lab 3 Tutorial: Pseudo-Random Numbers and Strings

Prof. Stewart Weiss

A Bit About Strings

C++ allows you to declare variables of type string in your code. In order to declare and use
such variables, the program must include the <string> header file, which is placed into the std

namespace, so you need the lines

#include <string>

using namespace std;

in the beginning of your program. The type string is different from elementary types such as
int, float, and char. It is a class. C++ has libraries that define complex things called classes.
You should think of a class, for now, as a collection of data values together with operations and
functions that act on those values.

Declaring string objects

There are several ways to declare and initialize string objects. Two equivalent ones are

string filename = "input_file";

and

string filename("input_file");

Which one you use is a matter of taste.

Concatenating strings

The word concatenation means juxtaposing two strings one after the other. For example, the con-
catenation of “butter” and “flies” is “butterflies”. The operator used for adding numbers, +,
has a different meaning when it is placed between two string objects; it forms their concatenation1.

If username and hostname are two string variables, and username contains the string “stewart.weiss”
and hostname contains the string �hunter.cuny.edu”, then the statement

cout <�< username + �@� + hostname;

will output “stewart.weiss@hunter.cuny.edu”, and if email is a string variable

1The reuse of the + sign here is an example of an overloaded operator: it works on objects of the string class
differently than it does on numbers.

4



CSci 136 Supervised Programming Lab
Lab 3 Tutorial: Pseudo-Random Numbers and Strings

Prof. Stewart Weiss

email = username + �@� + hostname;

will assign “stewart.weiss@hunter.cuny.edu” to email. We could also have written the above
with the @ symbol as a character, not a string:

email = username + '@' + hostname;

The concatenation operator lets you concatenate characters and string variables, string literals and
string variables, and two string variables, but not string literals or characters with each other. As-
sume username and hostname are string variables that have values. The following illustrates what
you can and cannot do:

username + hostname // legal expression

username + '@' // legal expression

username + �@hunter.cuny.edu� // legal expression

�hunter� + �.cuny.edu� // illegal expression

�hunter� + '.' // illegal expression

Getting the size of a string object

Variables of the string class have a size() function that can return their size, which means the
number of characters in them. To use this function, you have to put “.size()” after the variable
name, just the way you use the open() function after an ifstream or ofstream variable. For
example:

string input_line;

cin >�> input_line;

cout <�< �You entered � <�< input_line.size() <�< � characters.\n�;

In the third line, the value of input_line.size() is the number of characters presently stored in
that string variable.

Accessing individual characters in a string object

There is a way to access each individual character in a string object using what is called the sub-
script operator. The subscript operator is a pair of square brackets [] placed after the name of the
string, with a number in between. The numbering starts at 0 and goes up to the size of the string
minus 1. The number in brackets is called the index value. Thus:

cout <�< �The first character you entered was � <�< input_line[0] <�< �.\n�;

5



CSci 136 Supervised Programming Lab
Lab 3 Tutorial: Pseudo-Random Numbers and Strings

Prof. Stewart Weiss

will display the character in the first position in the string input_line. Notice that the first position
is at index 0, not 1! It will be hard getting used to this idea and you will likely forget, but try, try
to remember that the positions in the string are numbered 0, 1, 2, 3, and so on up to size()-1:

int last_index = input_line.size() - 1;

cout <�< �The last character you entered was � <�< input_line[last_index] <�< �.\n�;

will output the character in the last position of the string. You can modify individual characters
using an assignment statement and the subscript operator:

input_line[0] = 'L';

will replace the first character in the string by the letter ’L’.

Warning: C++ compilers do not check if you are trying to access or modify a location outside of
bounds of your string object. But if you do, your program may work incorrectly or even crash!
Be careful!

6


