
CSci 235 Software Design and Analysis II

Chapter 1: Key Concepts of Programming and Software Engineering

Prof. Stewart Weiss

Chapter 1: Key Concepts of Programming and Software

Engineering

Software Engineering

• Coding without a solution design increases debugging time - known fact!

• A team of programmers for a large software development project requires

� An overall plan

� Organization

� Communication

• Software engineering provides techniques to facilitate the development of computer programs. It
is the use of technologies and practices from computer science, project management, and other �elds
in order to specify, design, develop, and maintain software applications. There is no single best way
to build software, no unifying theory about how to do this, but software engineers do share certain
common ideas about software development.

• Software engineering is not just for large projects. There are principles of software engineering that
are applicable to small-scale program development as well. They include methods of design, testing,
documentation, and development.

Object-Oriented Problem Solving

• Object-oriented analysis and design (OOA & D) is one particular method of problem solving. In
OOA & D,

� A problem solution is a program consisting of a system of interacting classes of objects.

� Each object has characteristics and behaviors related to the solution.

� A class is a set of objects having the same type.

• A solution is a C++ program consisting of modules, each of which contains one or more of

� A single, stand-alone function

� A class

� Several functions or classes working closely together

� Other blocks of code

Abstraction and Information Hiding

Abstraction

• Abstraction separates the purpose of an object from its implementation

• Speci�cations for each object or module are written before implementation

This work is licensed under the Creative Commons Att ribution-ShareAlike 4.0 International License. 1

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Chapter 1: Key Concepts of Programming and Software Engineering

Prof. Stewart Weiss

Functional Abstraction

Function abstraction is the separation of what a program unit does from how it does it. The idea is to
write descriptions of what functions do without actually writing the functions, and separate the what from
the how. The client software, i.e., the software calling the function, only needs to know the parameters to
pass to it, the return value, and what the function does; it should not know how it actually works. In this
sense, functions become like black boxes that perform tasks.

Data abstraction

Data abstraction separates what can be done to data from how it is actually done. It focuses on the
operations of data, not on the implementation of the operations. For example, in data abstraction, you
might specify that a set of numbers provides functions to �nd the largest or smallest values, or the average
value, but never to display all of the data in the set. It might also provide a function that answers yes or
no to queries such as, "is this number present in the set?" In data abstraction, data and the operations that
act on it form an entity, an object, inseparable from each other, and the implementation of these operations
is hidden from the client.

Abstract data type (ADT)

• An abstract data type is a representation of an object. It is a collection of data and a set of
operations that act on the data.

• An ADT's operations can be used without knowing their implementations or how data is stored, as
long as the interface to the ADT is precisely speci�ed.

• A data structure is a data storage container that can be de�ned by a programmer in a programming
language. It may be part of an object or even implement an object. It is not an ADT!

Information Hiding

• Information hiding takes data abstraction one step further. Not only are the implementations of
the operations hidden within the module, but the data itself can be hidden. The client software does
not know the form of the data inside the black box, so clients cannot tamper with the hidden data.

• There are two views of a module: its public view, called its interface, and its private view, called
its implementation. The parts of a class (object) that are in its public view are said to be exposed
by the class.

Principles of Object-Oriented Programming (OOP)

• Object-oriented languages enable programmers to build classes of objects

• A class combines

� Attributes (characteristics) of objects of a single type, typically data, called data members

� Behaviors (operations), typically operate on the data, called methods or member functions

• The principles of object-oriented programming are

� Encapsulation

∗ Objects combine data and operations

This work is licensed under the Creative Commons Att ribution-ShareAlike 4.0 International License. 2

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Chapter 1: Key Concepts of Programming and Software Engineering

Prof. Stewart Weiss

� Information hiding

∗ Objects hide inner details

� Inheritance

∗ Classes can inherit properties from other classes. Existing classes can be reused

� Polymorphism

∗ Objects can determine appropriate operations at execution time

Object-Oriented Analysis and Design

• Analysis is the process of breaking down the problem in order to understand it more clearly. It
often uses domain knowledge and theory to cast the problem into a perspective that makes it easier to
understand.

• The goal is to express what the solution must do, not how it must do it.

• Object-oriented analysis tries to cast the problem into a collection of interacting objects. It ex-
presses an understanding of the problem and the requirements of a solution in terms of objects within
the problem domain. It does not express a solution � just its requirements.

• Object-oriented design, in contrast, is the act of using the results of an object-oriented analysis to
describe a solution as a set of objects and how they interact. The interactions between a pair of objects
are called collaborations. One object sends a message to another as a means of asking the latter to
perform some service or task on its behalf.

Uniform Modeling Language (UML) (Optional)

• UML is a modeling langauge used to express an object-oriented design. Unlike programming languages
and spoken languages, its elements include many pictures, or diagrams, that depict the solution. It is
therefore easier for most people to understand than descriptions consistsing entirely of words.

• Object-oriented analysis can be made easier using use cases, which in turn lead to the creation of
UML sequence diagrams.

• A use case consists of one or more scenarios, which are plain text descriptions of what the solution to
the problem should do in response to actions by its user. Some scenarios describe �good� behaviors (the
user enters two numbers, and the system displays their sum), whereas some represent �error� behaviors
(the user enters one number, and the system displays an error message.)

• Scenarios represent what the system must do, i.e., its responsibilities, not how it should do it.

• Scenarios are converted to sequence diagrams during object-oriented design. There are speci�c rules
for drawing sequence diagrams, such as that all objects are represented in a single row as rectangles,
and that solid lines mean one thing and dashed lines another. This set of notes does not elaborate on
this topic.

• The sequence diagrams are annotated with text that eventually gets converted to class methods and
data, as well as ordinary variables and parameters.

• The sequence diagrams lead to the design of actual classes, in a language independent way.

• UML class diagrams represent the classes derived from the object-oriented design and sequence
diagrams. A class diagram is a rectnagle with the name of the class and possibly its methods and data,
in a very speci�c syntax. It does not show how the class is implemented, but only its interface.

This work is licensed under the Creative Commons Att ribution-ShareAlike 4.0 International License. 3

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Chapter 1: Key Concepts of Programming and Software Engineering

Prof. Stewart Weiss

• Class diagrams can consist of multiple classes connected by various kinds of lines indicating the rela-
tionships among the classes. A relationship might be containment (this class is a part of the other) or
associations, which are less constrained and just indicate that one class might require the services of
the other. Yet another relationship is called generalization, which means that one class inherits from
the other.

• UML is just one approach to object-oriented analysis and design.

The Software Life Cycle

Software follows a pattern of development known as the software life cycle, which is the sequence of events
that take place from the moment software is conceived until it is removed from service. There are many
ways to view this life cycle. This is one traditional view of the cycle:

1. User Requirements document

(a) Speci�es informally the user's understanding of the problem

(b) Example: I want a program that displays a text �le on the screen.

2. Requirements Analysis -> problem speci�cation document

(a) Speci�es in unambiguous, complete, and consistent logical sentences, how the program is supposed
to respond to inputs and other external events that happen while it is running.

(b) Example: should the program wrap long lines, or try to justify lines on the screen; should it
display tabs as tabs or replace them as sequences of blanks; what if the �le does not exist, or if it
is not a text �le, or what if the user does not have permission to access that �le?

3. Design Analysis -> program design document

(a) Speci�es how the program is to be constructed. What are the di�erent classes? How do they
interact with each other? What are their interrelationships? How is the development e�ort to be
divided up, i.e., which logical elements will be in the same physical �les or even within the same
classes? What are the dependencies? What is the data? How will error conditions be handled?
These are the types of questions answered during design analysis.

(b) Example: The main program will prompt the user for the name of the input �le and check that
the user has permissions. The module that reads from the input �le stream will have "switches"
to control how it behaves. For example, it will have a parameter that tells it whether to convert
tabs to spaces and if so, how many, and it will have a parameter that tells it whether to wrap
lines, and another on whether to justify lines.

4. Implementation -> program source code and documentation

(a) The program source code is the human readable executable code that gets compiled, linked, and
loaded for execution. It is the result of tedious logical design and understanding.

5. Test Design -> Test plan document

(a) Before you test your code, you should plan out the entire set of tests. The plan includes expected
outputs, parts of the speci�cation that the test covers, and so on. This document is required by
many government agencies if you are building software for controlled applications like medical,
pharmaceutical, military, or �nancial products.

6. Testing and Validation -> test cases documentation

This work is licensed under the Creative Commons Att ribution-ShareAlike 4.0 International License. 4

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Chapter 1: Key Concepts of Programming and Software Engineering

Prof. Stewart Weiss

(a) This contains the actual test results, i.e., what really happened and what was done to �x errors
if errors were found.

(b) Example: When the program was given a �le whose last character was a tab, and tab translation
was turned on, it did not convert the last tab to a sequence of blanks. The error was traced to a
loop condition that had the wrong comparison operator.

(c) If tests fail, return to whichever step must be repeated. (E.g., sometimes it is a design �aw or a
speci�cation �aw)

7. Production -> released software

(a) The software is placed into production, so it is now in use by the user, and exposed to potential
risks and losses.

8. Maintenance -> changes in software

(a) The users discover bugs or weaknesses such as confusing interfaces or hard to understand forms
and these are reported and eventually �xed.

Software Quality

• The "goodness" of software is its quality. The factors that contribute to the worth or value of software
from a user's perspective include:

� Cost, including cost of acquisition, e�ciency, resource consumption

� Correctness or reliability

� Safety and security

� Ease of use

• From the developer's perspective, the factors are:

� Cost of development

� Correctness or reliability

� Security

� Modularity

� Modi�ability

� Readability and style

� Quality of documentation

� Robustness

Software Correctness and Reliability

• Programs must be correct. They often are not. When they are not, we can measure their relative
correctness by their software reliability, which is a statistical assessment of the probability that they
will be correct in an arbitrary run. Measuring reliability is a complicated matter, subject to much
error.

• In general, software must undergo a rigorous development process, including testing, debugging, and
veri�cation when possible. Veri�cation is hard; testing is something anyone can and should do.

This work is licensed under the Creative Commons Att ribution-ShareAlike 4.0 International License. 5

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Chapter 1: Key Concepts of Programming and Software Engineering

Prof. Stewart Weiss

• Veri�cation is a mathematical proof that software is correct. In general, it is impossible to prove that
software is correct, for the same reason that it is impossible to prove that a program is guaranteed
never to enter an in�nite loop. It is theoretically impossible. In spite of this, many program fragments
and pieces of code can be proved to do what they are intended to do. This is through the use of
pre-conditions, post-conditions, and loop invariants. All of these are logical statements involving the
relationships of program variables to each other or to �xed constants. The following is a trivial example:

int x,y;

y = 0;

x = 2;

// y == 0 && x == 2 is an assertion that is true here

• Here is a slightly more interesting example:

x = 0;

cin >�> n;

if (n < 0)

n = -n;

// n >= 0 an assertion about n

while (x < n)

x = x + 1;

// x == n an assertion about x and n

• After a loop it is always true that the loop entry condition is false, so its negation is always true!

• Loop invariants are special assertions that are true at speci�c points in the execution of the program.
Speci�cally, a loop invariant is true

1. Immediately preceding the evaluation of the loop entry condition before the loop is ever entered,
and

2. Immediately preceding the evaluation of the loop entry condition after each execution of the loop
body.

• In other words, just at the point that the loop entry condition is to be evaluated, no matter when that
happens, the loop invariant must be true, regardless of how many times the body has been executed.
If an assertion is true at this point, it is a loop invariant.

• Some invariants are useful and others are useless. Here are examples:

int sum = 0;

int j = 0;

while (j < n) // j >= 0 true but not very useful

{

j++;

sum = sum + j;

}

• It is true that j >= 0 but it does not help us in understanding what the loop does. This is better:

int sum = 0;

int j = 0;

while (j < n) // sum >= j better but still not very useful

{

j++;

sum = sum + j;

}

This work is licensed under the Creative Commons Att ribution-ShareAlike 4.0 International License. 6

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Chapter 1: Key Concepts of Programming and Software Engineering

Prof. Stewart Weiss

• This is a little more interesting but still not useful enough. It is a little harder to prove that this is
true. First, it is true before the loop is ever entered because sum and j are each 0. Second, if it is
true when the loop is entered, it is true the next time the condition is evaluated because sum is always
increased by the value of j, so it has to be at least j. This is what we really need:

int sum = 0;

int j = 0;

while (j < n) // sum == 0 + 1 + 2 + ... + j

{

j++;

sum = sum + j;

}

• This one is strong enough to prove that the loop computes the arithmetic sum of the numbers from 1
to n. First we prove that the loop invariant is true by using mathematical induction on the number of
times the loop body is entered.

Proof. If the loop is never entered, then

sum = j = 0

so it is true. Assume that it is true before the loop is entered the kth time. Then j has the value k-1
and by assumption,

sum = 1 + 2 + ... + (k-1).

After incrementing j, j has the value k. After the assignment to sum,

sum = 1 + 2 + 3 + ... + k

so

sum = 1 + 2 + ... + j

remains true. By induction on k it follows that it is true for all values of j. Since the loop invariant is
true when the loop ends and since j == n when the loop ends, it follows that sum = 1 + 2 + ... + n.

The Interface as a Contract

• The pre-condition of a function is a logical condition that must be satis�ed just prior to execution
of the function.

• The post-condition of a function is a logical condition that must be true when the function terminates.

• Pre- and post-conditions together form a contract that states that if the pre-conditions are true, then
after the function executes, the post-conditions will be true.

• The signature of a function is what some people call the prototype. It includes

� return value type and quali�ers (e.g., const)

� function name

� argument list with types and quali�ers

• The interface to a class or a module is also a contract, if every function has been given pre-and
post-conditions in the interface.

This work is licensed under the Creative Commons Att ribution-ShareAlike 4.0 International License. 7

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Chapter 1: Key Concepts of Programming and Software Engineering

Prof. Stewart Weiss

Example

First attempt at writing a contract for a sorting function:

sort(int anArray[], int num);

// Sorts an array.

// Precondition: anArray is an array of num integers; num > 0.

// Postcondition: The integers in anArray are sorted.

Second re�nement at writing a contract for sorting function:

void sort(/*inout*/ int anArray[], /*in */ const int num);

// Sorts anArray into ascending order.

// Precondition: anArray is an initialized array of num integers;

// 1 <= num <= MAX_ARRAY, where

// MAX_ARRAY is a global constant that specifies

// the maximum size of anArray.

// Postcondition: anArray[0] <= anArray[1] <= ...

// <= anArray[num-1], num is unchanged.

Modularity

• The modularity of software is measured by its cohesion, coupling, and completeness.

• The cohesion of a module is the degree to which the parts of the module are related.

� A highly cohesive module performs one well-de�ned task

� High cohesion implies that it contains only methods and data that are related to its narrow
purpose.

• The coupling of a set of modules is the degree to which the modules depend on each other.

� Modules with low coupling are almost independent of one another

� Low coupled modules are

∗ Easier to change: A change to one module won't a�ect another

∗ Easier to understand

� Coupling cannot be and should not be eliminated entirely

• Classes should be easy to understand, and have as few methods as possible (idea of minimality). but
should be complete � providing all methods that are necessary.

Documentation

• Documentation is critical for all programs, because

� Other people have to read your program and understand it, including your supervisor or teacher
or colleagues, or even a client.

� You may have to revise a program you did a year ago and without good documentation you will
not remember what it does or how it works.

� Government and other agencies will require certain software to be properly documented. Software
in various products requiring certi�cations needs proper documentation.

• What is proper documentation? It must include, at a minimum:

This work is licensed under the Creative Commons Att ribution-ShareAlike 4.0 International License. 8

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Chapter 1: Key Concepts of Programming and Software Engineering

Prof. Stewart Weiss

1. a preamble for every �le, as described in the Programming Rules document.

2. pre-and post-conditions for all function prototypes, including descriptions of each parameter

3. descriptions of how error conditions are handled,

4. a revision history for every �le (list of dates of modi�cations, who made them, and what they
�xed or changed),

5. data dictionary (descriptions of most variables)

6. detailed descriptions of all complex algorithms.

• This is an example of a suitable preamble:

/**

Title : draw_stars.c

Author : Stewart Weiss

Created on : April 2, 2010

Description : Draws stars of any size in a window, by dragging the mouse to

define the bounding rectangle of the star

Purpose : Reinforces drawing with the backing-pixmap method, in which the

application maintains a separate, hidden pixmap that gets drawn

to the drawable only in the expose-event handler. Introduces the

rubberbanding technique.

Usage : draw_stars

Press the left mouse button and drag to draw a 5-pointed star

Build with : gcc -o drawing_demo_03 draw_stars.c \

`pkg-config --cflags --libs gtk+-2.0`

Modifications :

**/

Readability and Style

• Programs should be readable. Factors contributing to readability include:

• The systematic use of white space (blank lines, space characters, tabs) to separate program sections
and keep related code close together.

• A systematic identi�er naming convention for program entities such as variables, classes, functions,
and constants.

• Using lines of asterisks or other punctuation to group related code and separate code sections from
each other.

• Indentation to indicate structural elements.

Other Stylistic Tips

• Use global constants for all program parameters and numeric and string constants, such as

int WINWIDTH = 420 // width of our window

int WINHEIGHT = 400 // height of our window

• Use define macros for constants and functions also:

#define EPSILON 1.0e-15

#define ALMOSTZERO(x) (((-EPSILON)<(x))&&((x)<(EPSILON)))

• Try to design general solutions, not speci�c ones, to make functions very general.

This work is licensed under the Creative Commons Att ribution-ShareAlike 4.0 International License. 9

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Chapter 1: Key Concepts of Programming and Software Engineering

Prof. Stewart Weiss

Modi�ability

• The modi�ability of a program is the ease with which it can be modi�ed. If a modi�cation requires
making changes to many parts of a program, it is not easy and can introduce errors when something
is overlooked. A good program is one in which a simple modi�cation requires only a change to one or
two places in the program.

• Examples of things that make a program more modi�able include

� Using named constants and macros instead of numeric and string literals.

� Using typedef statements to de�ne frequently used structured types.

� Creating functions for common tasks.

� Making modules very cohesive.

� Keeping coupling low.

Ease of Use

• In an interactive program, the program should prompt the user for input in a clear manner.

• A program should always echo its input.

• The output should be well labeled and easy to read.

Robustness

• Robust (fail-safe) programs will perform reasonably no matter how anyone uses them. They do not
crash. They do not produce nonsense, even when the user misuses them. Examples of things to do to
make programs robust:

� Test if input data, including program command line arguments, is invalid before trying to use it.

� Prevent the user from entering invalid data when possible.

� Check that all function parameters meet preconditions before using them.

� Handle all error conditions that can arise, such as missing �les, bad inputs, wrong values of
variables, and so on, and exit gracefully when the program cannot continue.

This work is licensed under the Creative Commons Att ribution-ShareAlike 4.0 International License. 10

http://creativecommons.org/licenses/by-sa/4.0/

