
CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

Stacks

1 Introduction

Stacks are probably the single most important data structure of computer science. They are used across
a broad range of applications and have been around for more than �fty years, having been invented by
Friedrich Bauer in 1957.

A stack is a list in which insertions and deletions are allowed only at the front of the list. The front in
this case is called the top, insertions are called push operations, and deletions are called pop operations.
Because the item at the top of the stack is always the one most recently inserted into the list, and is also
the �rst one to be removed by a pop operation, the stack is called a last-in-�rst-out list, or a LIFO list
for short, since the last item in is the �rst item out.

The restriction of insertions and deletions to the front of the list is not the only di�erence between stacks
and general lists. Stacks do not support searching or access to anywhere else in the list. In other words, the
only element that is accessible in a stack is the top element.

Figure 1: A stack

2 The Stack ADT

The fundamental methods that can be performed on a stack are

create() � Create an empty stack.

destroy() � Destroy a stack.

empty() � Return true if the stack is empty, otherwise return false.

push(new_item) - Add a new item to the top of the stack.

item pop() � Remove the top element from the stack and return it to the caller.

item top() � Return the top element of the stack without removing it.

The reason that the word �stack� is appropriate for this abstract data types is that it is exactly like a stack
of trays in a cafeteria, the kind that are spring-loaded. New trays (presumably washed) are put on top of
the stack. The next tray to be removed is the last put on. This is why the operations are called pop and
push, because it conjures up the image of the spring-loaded stack of trays. We literally push against the
spring, which wants to pop one o�.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

3 Re�ning the Stack ADT

The operations, written more formally using a slight modi�cation of UML, are:

+empty():boolean {query}

// returns true if the stack is empty, false if not

+push(in new_item:StackItemType): void throw stack_exception

// pushes new_item on top of the stack; throws a stack_exception if

// it fails

+pop(): void throw stack_exception

// removes the top element from the stack; if it fails

// it throws an exception (if the stack is empty for example)

+pop(out stack_top:StackItemType): void throw stack_exception

// same as pop() above but stores the item removed into stack_top,

// throwing an exception if it fails

+top(out stack_top:StackItemType): void {query} throw stack_exception

// stores into stack_top the item on top of the stack,

// throwing an exception if it fails.

Notes.

1. Notice that there are two versions of pop(), one that has no parameters and no return value, and one
that has an out parameter and no return value. In theory, when the stack is popped, we think of it as
a deletion operation, discarding whatever was on the top of the stack. In practice, we may sometimes
want to inspect the item that was deleted, and so the second version of pop() could be used to retrieve
that top element and look at it after we have removed it from the stack.

2. The top() method has an out parameter. It could instead return the top element as its return value,
but it is considered better coding style to pass it out through the parameter list, as otherwise it could
be used in an expression with side e�ects.

3. The pop() and top() methods declare that they may throw an exception of type stack_exception,
and that this is the only type of exception that they may throw. If a program tries to pop an empty
stack, or to retrieve the top element of an empty stack, this is considered to be an error condition.
Now that we have added C++ exception handling to our toolbox (in the preceding chapter), we can
use it as a means of notifying the client software that an error has occurred.

4. The push(), also may throw an exception. No computer has in�nite memory, and it is possible that
when the stack tries to allocate more memory to store this new item, it fails. The exception in this
case would indicate that the stack is �full.�

4 Applications of Stacks

Stacks are useful for any application requiring LIFO storage. There are many, many of these.

• parsing context-free languages

• evaluating arithmetic expressions

• function call management

• traversing trees and graphs (such as depth �rst traversals)

• recursion removal

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

Example: A Language Consisting of Balanced Brackets

A stack can be used to recognize strings from the language of balanced brackets. Brackets are either
parentheses, curly braces, square brackets, angle brackets, or any other pair of characters designated to be
left and right matches of each other, as well as characters that are not brackets of any kind. Brackets are
balanced when they are used in matching pairs. To be precise, the following grammar de�nes a language
of balanced brackets whose alphabet is the four di�erent types of brackets and the letter a. The word
�NULLSTRING� means the string with no characters in it.

word = identifier

| NULLSTRING

| word word

| (word) | <word> | [word] | {word}

identifier = a

The grammar generates the null string of course, as well as the word with the single letter 'a'. You can check
that the following two-character words are also in the language that this grammar generates:

() {} [] <>

because there are derivations such as

word => (word) => (NULLSTRING) => ()

and similar ones for the other brackets. In general, this grammar generates words such as

aa(aa)[a(aa<aaa>a)aaaaaa]aa{aa{aaa}{aa{aaa}}aa}

Intuitively, these are words that never have overlapping brackets such as [(]) or unmatched brackets
such as (aaa.

The simplest bracket language has just a single type of bracket. Suppose we allow all lowercase letters into
the alphabet but limit the brackets to curly braces. An example of a word with balanced braces is:

abc{defg{ijk}{l{mn}}op}qr

An example of a word with unbalanced braces is:

abc{def}}{ghij{kl}m

The following is an algorithm to recognize words in this language. Recognizing means identifying which
words are in the language and which are not. A recognition algorithm returns either true or false,
depending on whether the word is in the language.

initialize a new empty stack s whose entries hold a single character.

balanced = true;

while (the end of the string has not been reached) {

copy the next character of the string into ch;

if (ch == �{�)

s.push(ch);

else if (ch == �}�) {

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

if s.empty()

return !balanced;

else

s.pop();

}

}

if s.empty()

return balanced;

else

return !balanced;

Of course this is a simple problem that can be solved with just a counter; increment the counter on reading
a �{� and decrement on reading a �}�. If the counter is ever negative, it is not balanced. If it is not zero
when the end of the string is reached, it is not balanced. Otherwise it is balanced.

Exercise 1. Write and implement a recognition algorithm for the above language that just uses a counter
rather than a stack.

The stack is needed when there are di�erent types of matching parentheses. For example, suppose the string
can have square brackets, curly braces, and regular parentheses, as in:

(abc)[{d (ef) g{ijk}{l{mn}}op}] qr

Then a counter solution will not work but a stack will. The idea is that when a right bracket is found, the
stack is popped only if the bracket on top of the stack matches it. If it does not match, the string is not
balanced. If the stack is empty, it is not balanced. When the entire string has been read, if the stack is not
empty, it is not balanced. Assume that the function matches(ch1, ch2) returns true if ch1 and ch2 are
matching brackets of any kind.

initialize a new empty stack s whose entries hold a single character.

balanced = true;

while (the end of the string has not been reached) {

copy the next character of the string into ch;

if (ch == '[' || ch == '(' || ch == '{')

s.push(ch);

else

switch (ch) {

case ']' :

case ')' :

case '}' :

if s.empty()

return !balanced;

else {

s.top(bracket);

s.pop();

if (!matches(bracket, ch))

return !balanced;

}

break;

default: // a non-bracket -- ignore

}

}

if s.empty()

return balanced;

else

return !balanced;

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

5 Stack Implementations

We did not need to know how a stack was implemented to use the stack to solve this problem. This is the
power of data abstraction. But before we look at other applications, we will consider how one can implement
a stack in C++. To do this, we need to make the interface precise enough so that we can implement the
operations. In addition, because we will start to use exceptions to handle error conditions, we will create a
class of stack exceptions that can be thrown as needed. If you are not familiar with exceptions, refer to the
notes on exception handling.

The following exception class will be used by all stack implementations.

#include <stdexcept>

#include <string>

using namespace std;

class stack_exception: public logic_error

{

public:

stack_exception(const string & message="")

: logic_error(message.c_str()) {}

};

The logic_error exception is de�ned in <stdexcept>. Its constructor takes a string, which can be
printed using the what()method of the class. Our stack_exception class is derived from this logical_error
class and inherits the what()method. The constructor for our stack_exception can be given a string, which
will be passed to the logical_error constructor as its initializing string.

The next logical step could be to derive separate exception types such as stack_overflow, or stack_underflow,
as illustrated below.

class stack_overflow: public stack_exception

{

public:

stack_overflow(const string & message=""): stack_exception(message) {}

};

class stack_underflow: public stack_exception

{

public:

stack_underflow(const string & message=""): stack_exception(message) {}

};

but for simplicity we will not do this. The following is the speci�c interface we will implement:

typedef data_item StackItemType;

class Stack

{

public:

// constructors and destructor:

Stack(); // default constructor

Stack(const Stack &); // copy constructor

~Stack(); // destructor

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

// stack operations:

bool empty() const;

// Determines whether a stack is empty.

// Precondition: None.

// Postcondition: Returns true if the stack is empty;

// otherwise returns false.

void push(const StackItemType& new_item) throw(stack_exception);

// Adds an item to the top of a stack.

// Precondition: new_item is the item to be added.

// Postcondition: If the insertion is successful, new_item

// is on the top of the stack.

// Exception: Throws stack_exception if the item cannot

// be placed on the stack.

void pop() throw(stack_exception);

// Removes the top of a stack.

// Precondition: None.

// Postcondition: If the stack is not empty, the item

// that was added most recently is removed. However, if

// the stack is empty, deletion is impossible.

// Exception: Throws stack_exception if the stack is empty.

void pop(StackItemType& top_item) throw(stack_exception);

// Retrieves and removes the top of a stack.

// Precondition: None.

// Postcondition: If the stack is not empty, top_item

// contains the item that was added most recently and the

// item is removed. However, if the stack is empty,

// deletion is impossible and top_item is unchanged.

// Exception: Throws stack_exception if the stack is empty.

void top(StackItemType& top_item) const

throw(stack_exception);

// Retrieves the top of a stack.

// Precondition: None.

// Postcondition: If the stack is not empty, top_item

// contains the item that was added most recently.

// However, if the stack is empty, the operation fails

// and top_item is unchanged. The stack is unchanged.

// Exception: Throws stack_exception if the stack is empty.

private:

...

};

There are several di�erent ways to implement a stack, each having advantages and disadvantages.

Since a stack is just a special type of list, a stack can be implemented with a list. In this case, you can make
a list a private member of the class and implement the stack operations by calling the list methods on the
private list. In other words, we could do something like

class Stack

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

{

public:

// public methods here

private:

List items;

};

We could implement all of the member functions by using the List member functions of the hidden List

named items.

It is more e�cient to implement a stack directly, avoiding the unnecessary function calls that result from
�wrapping� a stack class around a list class. Direct methods include using an array, or using a linked
representation, such as a singly-linked list.

A stack implemented as an array is e�cient because the insertions and deletions do not require shifting any
data in the array. The only problem is that the array size might be exceeded. This can be handled by a
resizing operation when it happens.

A stack implemented as a linked list overcomes the problem of using a �xed size data structure. It is also
relatively fast, since the push and pop do not require many pointer manipulations. The storage is greater
because the links take up extra bytes for every stack item.

5.1 Array Implementation

In the array implementation, two private data members are needed by the class: the array of items and an
integer variable named top.

class Stack

{

public:

// same interface as above

private:

StackItemType items[MAX_STACK]; // array of MAX_STACK many items

int top_index; // indicates which index is the top

};

Remarks. The implementation is very straightforward:

• The variable top_index stores the array index of the current top of the stack. We cannot name it top
because there is a method named top. Because 0 is the �rst array index, we cannot use 0 to mean that
the stack is empty, because if top_index == 0, it means there is an item in items[0]. Therefore, -1 is
the value of top_index that denotes the empty stack. This implies that the constructor must initialize
top_index to -1, and the empty() function must check if it is -1 as well.

• The push() operation has to check if the maximum array size will be exceeded if it adds a new item.
If so, it has to throw an exception to indicate this. If not, it increments top and copies the new item
into items[top_index].

• The pop() operation must ensure that the stack is not empty before it decrements top_index. There
are two versions of pop(), the only di�erence being that one provides the top item before decrementing
top.

• The top() operation returns the top item, throwing a stack exception in the event that the stack is
empty.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

Stack::Stack(): top_index(-1) {}

bool Stack::empty() const

{

return top_index < 0;

}

void Stack::push(StackItemType new_item) throw(stack_exception)

{

// if stack has no more room for another item

if (top_index >= MAX_STACK-1)

throw stack_overflow("stack_exception: stack full on push");

else {

++top_index;

items[top_index] = new_item;

}

}

void Stack::pop() throw(stack_exception)

{

if (empty())

throw stack_exception("stack_exception: stack empty on pop");

else

--top_index;

}

void Stack::pop(StackItemType& top_item) throw(stack_exception)

{

if (empty())

throw stack_exception("stack_exception: stack empty on pop");

else { // stack is not empty;

top_item = items[top_index];

--top_index;

}

}

void Stack::top(StackItemType& top_item) const throw(stack_exception)

{

if (empty())

throw stack_exception("stack_exception: stack empty on top");

else // stack is not empty; retrieve top

top_item = items[top_index];

}

5.2 Linked Implementation

A linked list implementation of a stack does not pre-allocate storage for the stack; it allocates nodes as needed.
Each node will have a data item and a pointer to the next node. Because the linked list implementation
hides the fact that it is using linked nodes, the node structure is declared within the private part of the class.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 8

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

The only private data member of the Stack class is a pointer to the node at the top of the stack, which is
the node at the front of the list. If the list is empty, the pointer is NULL. The private part of the Stack class
would therefore be:

private:

struct StackNode

{

StackItemType item;

StackNode *next;

};

StackNode *top_ptr; // pointer to first node in the stack

};

Remarks.

• The constructor simply sets top_ptr to NULL, and the test for emptiness is whether or not top_ptr is
NULL.

• The copy constructor has to traverse the linked list of the stack passed to it. It copies each node from
the passed stack to the stack being constructed. It allocates a node, �lls it, and attaches it to the
preceding node

• The destructor repeatedly calls pop() to empty the list.

• The push() operation inserts a node at the front of the list.

• The two pop() operations remove the node at the front of the list, throwing an exception if the stack
is empty. One provides this item in the parameter.

• Similarly, top() simply returns the item at the front of the list, throwing an exception if the stack is
empty.

• In theory it is possible that the operating system will fail to provide additional memory to the object
when it calls new() in both the copy constructor and the push() method, and this failure should be
detected in a serious application.

// cons t ruc to r
Stack : : Stack () : top_ptr (NULL) { }

// copy cons t ruc to r
Stack : : Stack (const Stack& aStack) throw (stack_over f low)
{

i f (aStack . top_ptr == NULL)
top_ptr = NULL; // empty l i s t

e l s e {
// copy f i r s t node
top_ptr = new StackNode ;
i f (NULL == top_ptr)

throw stack_over f low (" copy cons t ruc to r could not a l l o c a t e node ") ;
top_ptr −>item = aStack . top_ptr−>item ;

// copy r e s t o f l i s t
StackNode ∗newPtr = top_ptr ; // new l i s t po in t e r
f o r (StackNode ∗ o r i gPt r = aStack . top_ptr −>next ; o r i gPt r != NULL;

o r i gPt r = or igPtr−>next) {
newPtr−>next = new StackNode ;
i f (NULL == newPtr)

throw stack_over f low (" copy cons t ruc to r could not a l l o c a t e node ") ;
newPtr = newPtr−>next ;
newPtr−>item = or igPtr−>item ;

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 9

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

}
newPtr−>next = NULL;

}
}

// des t ruc to r , which empties the l i s t by c a l l i n g pop () r epea t ed ly
Stack : : ~ Stack ()
{

// pop un t i l s tack i s empty
whi le (! empty ())

pop () ;
}

bool Stack : : empty () const
{

re turn top_ptr == NULL;
}

void Stack : : push (StackItemType newItem) throw (stack_except ion)
{

// c r e a t e a new node
StackNode ∗newPtr = new StackNode ;
i f (NULL == newPtr)

throw stack_over f low (" push could not a l l o c a t e node ") ;
// s e t data por t i on o f new node
newPtr−>item = newItem ;

// i n s e r t the new node
newPtr−>next = top_ptr ;
top_ptr = newPtr ;

}

void Stack : : pop () throw (stack_except ion)
{

i f (empty ())
throw stack_except ion (" stack_except ion : s tack empty on pop ") ;

e l s e { // stack i s not empty ;
StackNode ∗temp = top_ptr ;
top_ptr = top_ptr−>next ;
temp−>next = NULL;
d e l e t e temp ;

}
}

void Stack : : pop (StackItemType& stackTop) throw (stack_except ion)
{

i f (empty ())
throw stack_except ion (" stack_except ion : s tack empty on pop ") ;

e l s e { // stack i s not empty ; r e t r i e v e and d e l e t e top
stackTop = top_ptr−>item ;
StackNode ∗temp = top_ptr ;
top_ptr = top_ptr−>next ;

// re turn de l e t ed node to system
temp−>next = NULL; // sa f eguard
d e l e t e temp ;

}
}

void Stack : : top (StackItemType& stackTop) const throw (stack_except ion)
{

i f (empty ())
throw stack_except ion (" stack_except ion : s tack empty on top ") ;

e l s e // s tack i s not empty ; r e t r i e v e top
stackTop = top_ptr−>item ;

}

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 10

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

Performance Considerations A careful look at this implementation shows that the push(), pop(),
top(), and empty() operations take a constant amount of time, independent of the size of the stack. In
contrast, the destructor executes a number of instructions that is proportional to the number of items in the
stack, and the copy constructor's running time is proportional to the size of the stack being copied.

5.3 The Standard Template Library Class stack1

5.3.1 About the Standard Template Library

The Standard Template Library (STL) contains, among other things, a collection of C++ class templates
for the most commonly used abstract data types. The STL is part of all standard implementations of C++.
A C++ class template is not a class, but a template for a class. A simple class template interface has the
general form

template <typename T>

class Container

{

public:

Container();

Container(T initial_data);

void set(T new_data);

T get() const;

private:

T mydata;

};

The T after the keyword typename in angle brackets is a placeholder. It means that all occurrences of the T
in the interface will be replaced by the actual type that instantiates the template when it is used to de�ne
an object. In the code above, it is used in four di�erent places.

The implementations of the class template member functions have the form

template <typename T>

void Container<T>::set (T initial_data)

{

mydata = new_data;

}

template <typename T>

T Container<T>::get() const

{

return mydata);

}

5.3.2 The stack Template Class

To use the stack template class, you would write

#include <stack>

1The Standard Template Library was originally implemented as an independent library, but was eventually incorporated
into the C++ standard.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 11

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

at the top of the �le using the stack template. The stack template class has the following member functions2:

bool empty() const;

size_type size() const;

T & top();

void pop();

void push(const T & x);

To declare an instance of a stack template in a program you would write stack<actual type name> vari-

able_name, as in:

stack<int> int_stack; // stack contains ints

stack<string> string_stack; // stack contains strings

stack<char> char_stack; // stack contains chars.

Therefore, if you want to use the STL stack class instead of writing your own, you would declare a stack of
the needed type, and make ordinary calls upon the member functions of the class, as in

stack<int> mystack;

int number;

while (cin >�> number) {

mystack.push(number);

}

The syntax for the function calls is the same whether it is a class template instantiation or not. Once it is
instantiated, it looks like an ordinary class.

6 More Applications

6.1 Post�x Expressions

Remember that a post�x expression is either a simple operand, or two post�x expressions followed by a
binary operator. An operand can be an object or a function call. The object can be constant or variable.
Using letters of the alphabet as operands, an example of a post�x expression is

ab+cd-/e*f+

which is equivalent to the in�x expression

((a+b)/(c-d))*e +f

6.1.1 Evaluating Post�x Expressions

Post�x is often used in command line calculators. Given a well-formed3 post�x expression, how can we use
a stack to evaluate it without recursion? To start, let us assume that the only operators are left-associative,
binary operators such as +, -, *, and /. The idea is that the stack will store the operands as we read the
string from left to right. Each time we �nd an operator, we will apply it to the two topmost operands, and
push the result back onto the stack. The algorithm follows. The word �token� below means any symbol
found in the string, excluding whitespace characters (if they are present.)

2In C++98 this is the complete set of member functions. Two others were added in 2011
3A well-formed string is one that can be generated by the grammar, i.e. is in the correct form.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 12

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

create an empty stack that holds the type of values being computed

for each token tok in the string {

if tok is an operand

stack.push(tok);

else if tok is an operator {

let op denote the operation that tok provides

stack.pop(right_operand);

stack.pop(left_operand);

result = left_operand op right_operand;

stack.push(result);

}

}

We will turn the stack on its side with the top facing to the right to demonstrate the algorithm. We will let
the input string consists of single-digit operands and use blanks to separate the tokens for clarity. Suppose
the following is the input:

8 6 + 9 2 - / 5 * 7 +

Each row of the following table shows the result of reading a single token from the input string and applying
the body of the for-loop to it. Since the string has 11 tokens, it will take 11 iterations of the loop to compute
the value of the expression.

Stack (right end
is top)

Input Remaining Action to Take

(empty) 8 6 + 9 2 - / 5 * 7 + push 8 on stack
8 6 + 9 2 - / 5 * 7 + push 6 on stack

8 6 + 9 2 - / 5 * 7 + 8+6 = 14; push on stack
14 9 2 - / 5 * 7 + push 9 on stack

14 9 2 - / 5 * 7 + push 2 on stack
14 9 2 - / 5 * 7 + 9 - 2 = 7; push 7 on stack

14 7 / 5 * 7 + 14 / 7 = 2; push 2 on stack
2 5 * 7 + push 5 on stack

2 5 * 7 + 2*5 = 10; push 10 on stack
10 7 + push 7 on stack

10 7 + 10+7=17; push 17 on stack
17 end-of-input; answer = 17

It is not hard to re�ne this algorithm and convert it to C++. This is left as an exercise.

6.1.2 Converting In�x to Post�x

We can also use a stack to convert in�x expressions to post�x4. This time, though, the stack will store
the operators, not the operands. Let us assume that the input string is well-formed and can contain any
of the operators +, -, *, and / as well as parentheses, and that the operands are valid tokens, such as
numeric literals and variables. We will use the term simple operand to refer to things like numeric literals
and variables, and compound operand to refer to an operand made up of at least one operator or enclosed
in parentheses, such as (a).

4This is what most modern compilers do in order to create the machine instructions for these expressions

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 13

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

Some Observations

• The order of the operands is the same in post�x as it is in the in�x expression. In other words, if b
precedes c in the in�x expression then b precedes c in the post�x as well. The operators may move
relative to the operands, but not the operands with respect to each other. (This can be proved by
induction on the size of the in�x expression.)

• If, in an in�x expression, the operand b precedes the operator op, then in the post�x expression, b will
also precede op. Another way to say this is that the operators can only move to the right relative to
the operands, never to the left.

• While the in�x expression has parentheses, the post�x does not.

• For every '(' in the in�x expression, there is a matching ')'. The sub-expression within these parentheses
is a valid in�x expression consisting of a left operand, an operator, and a right operand. These operands
may be in�x expressions that are not tokens, but regardless of whether they are simple or compound,
the operands of all operators within the parentheses are contained within the parentheses also. This
implies that the in�x expression contained within a set of matching parentheses can be processed
independently of what is outside those parentheses.

Since the order of the operands remains the same in the post�x as it was in the in�x, the problem boils down
to deciding where to put the operators in the post�x. These observations lead to a set of rules for making
these decisions.

We initialize an empty output post�x expression before we begin. When we see a token that is a simple
operand, we append a copy of it immediately to the right end of the output post�x expression. When we see
an operator, we know that its right operand begins at the very next token, and so we scan across the in�x
string looking for the end of the right operand. When we �nd the end of the right operand, we append the
operand to the output post�x and we put the operator after it.

The problem is complicated by the fact that the operators have varying precedence. Therefore, the end of
the right operand will depend on the precedence of the operators that we �nd along the way. Thus, the
expression

a+b*c

has a post�x of the form abc*+ whereas the expression

a+b-c

has a post�x of the form ab+c-. In the �rst case, the right operand of the + is b*c, but in the second case,
it is just b. When we read the +, we push it onto the stack, copy the b to the output post�x, and then we
look at the next operator. If the precedence of the next operator is less than or equal to that of the +, we
know that the b is the end of the right operand of + and we can pop the + and put it after the b. But if the
operator has greater precedence, then the right operand is a compound operand whose end we have not yet
found. For example, when reading the in�x expression

a+b*c*d*e

after reading the b, we will �nd that every operator has greater precedence than +. The right operand of
the + is the entire expression b*c*d*e, and the end of the right operand will be the e.

It will be easier to design the algorithm if we begin by assuming that the in�x expressions do not have
parentheses. In this case they are of the form

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 14

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

a1o1a2o2a3o3 · · · on−1an

where the oj are operators and the aj are simple operands. Assume that each time we read an operand, we
append it to the right end of the output post�x string. Given a string like this, having just read an operator
oj from the string, how do we recognize the end of the right operand of oj? We have found the end of its
right operand if and only if

1. the token we have just read is an operator whose precedence is less than or equal to precedence(oj), or

2. we reached the end of the input string.

In either case, the last operand that was appended to the right end of the output post�x string is the end of
the right operand of oj . We use the stack as a holding pen for the operators while we search for their right
operands. To be precise, the invariant that will always be true is:

If the stack is not empty, then the operator on top of the stack will have the property that its left
operand is the most recently appended operand in the output post�x, but the end of the right
operand has yet to be found.

Therefore, when we �nd the end of the right operand of the operator on the top of the stack, we pop that
operator o� of the stack and append it to the output post�x after its right operand. (We can argue by
induction on the size of the stack that when we do this, the operator that is now at the top of the stack still
satis�es the invariant.) This leads to the following algorithm:

While there are tokens to read from the infix string {

Read a token from the infix string.

If the token is an operand,

append a copy to the postfix string.

Otherwise, {

if the token is an operator, then

check if the stack is empty or not.

If the stack is empty, {

push the token onto the stack.

// Notice that the invariant is now satisfied because this

// is an operator whose right operand is not yet found

// and its left operand was just appended to the postfix

}

Otherwise, {

While the stack is not empty and

precedence(token) ≤ precedence(top) {

pop the operator on top of the stack and

append it to the output postfix

// each operator that is popped has the property that we

// found the end of its right operand and its left operand

// is the most recently appended to the postfix

}

push the token onto the stack.

(Notice that the invariant is now satisfied.)

}

}

}

While the stack is not empty {

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 15

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

pop the operator on top of the stack and

append it to the output postfix

}

You can verify that the invariant will always be true at the end of each iteration of the outermost while-loop.
When that loop ends, by Rule 2, the end of the right operand of every operator in the stack has been found,
and these must be popped and appended to the post�x. It is because of the invariant that the topmost
belongs to the left of the operators beneath it, because each time we pop an operator and append it, it forms
a compound post�x expression that is the right operand of the operator now on top of the stack. (Think
this through carefully.)

The following table demonstrates the above algorithm at work on the input string a+b*c*d-e.

Output Post�x Stack Input In�x Expression

a+b*c*d-e

a +b*c*d-e

a + b*c*d-e

ab + *c*d-e

ab +* c*d-e

abc +* *d-e

abc* + *d-e

abc* +* d-e

abc*d +* -e

abcd** + -e

abcd**+ -e

abcd**+ - e

abcd**+e -
abcd**+e-

This algorithm will work �ne as long as there are no parentheses in the string. Adding parentheses is not
much more work. Suppose that a pair of parentheses encloses a part of the in�x expression, as in

a+b*(c+d-e*f)+g

Since the expression is assumed to be well-formed, the expression contained by the parentheses is also well-
formed. Thus, we can treat this substring as a separate string that starts after the left parenthesis and that
ends at the right parenthesis, and we can process it independently, treating the right parenthesis like the
end-of-input character. Rules 1 and 2 apply to it as well, so we know that when we see the right parenthesis,
we have found the end of the right operand of the operator on top of the stack.

We could, if we wanted, create a separate stack each time we found a left parenthesis, and process the in�x
contained within in that stack and then discard it. But this is ine�cient. Instead we can use the single
stack to process the parenthesized sub-expression, but putting a marker into the stack to denote the new
�bottom�. We can use the left parenthesis itself as a marker. Therefore, we put the left parenthesis into
the stack when we �nd it. Our algorithm above will be modi�ed so that the loop that compares the top of
stack to the current token stops if, when it pops the stack, it sees the left parenthesis, since that implies we
are within a parenthesized sub-expression. Additionally, when we see a right parenthesis, it will act like an
end-of-string character for the current sub-expression, and so we will pop each operator o� of the stack and
append it to the output post�x until we see the left parenthesis, which will terminate that loop.

All of these considerations lead to the following algorithm:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 16

http://creativecommons.org/licenses/by-sa/4.0/

CSci 235 Software Design and Analysis II

Stacks

Prof. Stewart Weiss

create an empty stack to hold operands

for each token tok in the input infix string {

switch (tok) {

case operand:

append tok to right end of postfix;

break;

case '(' :

stack.push(tok);

break;

case ')':

while (stack.top() != '(') {

append stack.top() to right end of postfix;

stack.pop();

}

break;

case operator:

while (!stack.empty() && stack.top() != '('

&& precedence(tok) <= precedence(stack.top())) {

append stack.top() to right end of postfix;

stack.pop();

}

stack.push(operator);

break;

}

}

while (!stack.empty()) {

append stack.top() to right end of postfix;

stack.pop();

}

Example

The following table shows how the in�x expression a-(b+c*d)/e would be processed by the above algorithm.

Output Post�x Stack Input In�x Expression

a-(b+c*d)/e

a -(b+c*d)/e

a - (b+c*d)/e

a -(b+c*d)/e

ab -(+c*d)/e

ab -(+ c*d)/e

abc -(+ *d)/e

abc -(+* d)/e

abcd -(+*)/e

abcd* -(+)/e

abcd*+ -()/e

abcd*+ - /e

abcd*+ -/ e

abcd*+e -/

abcd*+e/ -

abcd*+e/-

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 17

http://creativecommons.org/licenses/by-sa/4.0/

Index

balanced brackets, 3

last-in-�rst-out, 1
LIFO, 1

pop, 1
push, 1

recognition algorithm, 3
recognizing, 3

stack, 1
Standard Template Library, 11

top, 1

18

	1 Introduction
	2 The Stack ADT
	3 Refining the Stack ADT
	4 Applications of Stacks
	5 Stack Implementations
	5.1 Array Implementation
	5.2 Linked Implementation
	5.3 The Standard Template Library Class stackThe Standard Template Library was originally implemented as an independent library, but was eventually incorporated into the C++ standard.
	5.3.1 About the Standard Template Library
	5.3.2 The stack Template Class

	6 More Applications
	6.1 Postfix Expressions
	6.1.1 Evaluating Postfix Expressions
	6.1.2 Converting Infix to Postfix

