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Trees

1 Introduction

Trees are an abstraction that can be used to represent hierarchical relationships, such as genealogies, evolu-
tionary trees, corporate structures, and �le systems.

Previous data types have been linear in nature. Trees are a way to represent a speci�c kind of non-linear
abstraction in which there is a parent/child type of relationship. For the moment, ignore the fact that most
animals require two parents to create children. Instead assume asexual reproduction, or agamogenesis. Then
every parent can have multiple children, but each child has but a single parent. Let us think about such a
species for now.

Consider the set of all individuals in such a specie's population. De�ne a binary relationship e on this set
as follows: for any two members of this set x and y, e(x,y) is true if and only if x is the parent of y. We can
represent x and y as little circles on a paper. We call such circles nodes. If e(x,y) is true, we can connect
x and y with an arrow leading from x to y. We call these arrows directed edges. A directed edge from x
to y indicates that x is the parent of y, or that y is the child of x. We can also write a directed edge as an
ordered pair (x,y).
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Figure 1: Ordered pairs in a set.

In Figure 1, the directed edges are (x, y), (x, z), (x,w), and (p, q) and nothing else. Thus, x is the parent of
w, y, and z, and p is the parent of q. If p and x are both children of a node a, then the population would be
represented as in Figure 2.

You can imagine that we could arrange the nodes on a very large piece of paper in such a way that they
look like an upside-down tree.

2 Trees

There is a lot of terminology to learn, and many de�nitions are about to follow. There are two basic types
of trees, general trees and n-ary trees. We begin with general trees.
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Figure 2: Ordered pairs with common ancestor.

2.1 General Trees

De�nition 1. A general tree T consists of a possible empty set of nodes. If it is not empty, it consists of
a unique node r called the root of T and zero or more non-empty trees T1, T2, . . . , Tk such that there is a
directed edge from r to each of the roots of T1, T2, . . . , Tk. A subtree of a tree T is any tree whose root is
a node of T.

In Figure 2, a is the root of the tree. It has two subtrees, whose roots are x and p. Notice that in a general
tree, the subtrees are non-empty � it has to have at least one node � but that there may be zero subtrees,
meaning that a general tree can have exactly one node with no subtrees at all. In Figure 2, the nodes w, y,
z, and q are the roots of trees with no subtrees, and p is the root of a tree with a single subtree whose root
is q.

De�nition 2. A forest is a collection of non-empty general trees.

Remark. You can always create a tree from a forest by creating a new root node and making it the parent of
the roots of all of the trees in the forest. Conversely, if you lop o� the root of a tree, what is left is a forest.

2.1.1 Applications of General Trees

In a �le system, a node represents each �le, and if the �le is a directory, then it is an internal node whose
children are the �les contained in the directory. Some �le systems do not restrict the number of �les per
folder, implying that the number of children per node is varying and unbounded.

In computational linguistics, as sentences are parsed, the parser creates a representation of the sentence as a
tree whose nodes represent grammatical elements such as predicates, subjects, prepositional phrases, and so
on. Some elements such as subject elements are always internal nodes because they are made up of simpler
elements such as nouns and articles. Others are always leaf nodes, such as nouns. The number of children
of the internal nodes is unbounded and varying.

In genealogical software, the tree of descendants of a given person is a general tree because the number of
children of a given person is not �xed.

A tree need not be drawn in a way that looks like a hierarchy and yet it still is a tree. Figure 3 contains
a fragment of the evolutionary tree, with its root at the center of a circle and the subtrees radiating away
from the center.
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Figure 3: Evolutionary tree: Diagrammatic representation of the divergence of modern taxonomic groups
from their common ancestor (from Wikipedia http://en.wikipedia.org/wiki/Phylogenetic_tree.)

2.2 Tree Terminology

The remainder of this terminology applies to all kinds of trees, not just general trees.

De�nition 3. A node in a tree is called a leaf node or an external node if it has no children.

In Figure 2, the leaf nodes are w, y, z, and q.

De�nition 4. A node is called an internal node if it is not a leaf node.

An internal node has at least one child. In Figure 2, the internal nodes are a, x, and p.

Just as it makes sense to talk about siblings, grandparents, grandchildren, ancestors, and descendants with
respect to people, so it is with nodes in a tree.

De�nition 5. Two nodes are siblings if they have the same parent.

De�nition 6. The grandparent of a node is the parent of the parent of the node, if it exists. A grandchild

of a node is a child of a child of that node if it exists. More generally, a node p is an ancestor of a node t
if either p is the parent of t, or there exists a node q such that q is a parent of t and p is an ancestor of q.
If p is an ancestor of t, then t is a descendant of p.

In Figure 2, a has 4 grandchildren.

Notice that the de�nition of an ancestor is recursive. Many de�nitions of properties or relationships having
to do with trees are recursive because a tree is essentially a recursively de�ned structure.

De�nition 7. The degree of a node is the number of children of that node. The degree of a tree is the
maximum degree of all of the nodes in the tree.

Notice that a tree can have many nodes with small degree, but if one node in it has large degree, then the
tree itself has that degree. The degree of a tree is just one of many quantitative properties of a tree.

De�nition 8. A path from a node n1 to node nk is a sequence of nodes n1, n2, . . ., nk such that ni is the
parent of ni+1 for 1 ≤ i < k. The length of a path is the number of edges in the path, not the number of
nodes!

Note 9. Some books will de�ne the length of a path as the number of nodes in the path, not the number
of edges. This will have an e�ect on the remaining de�nitions and the details of many theorems and proofs
of these theorems. It is important to know which de�nition is being used. In these notes, it is always the
number of edges in the path.

If we start at the root and travel down the paths from the root, we can de�ne a notion of the levels of a
tree. The root is at the �rst level, sometimes labeled 0 and sometimes 1. We will label the level of the root
1. The children of the root are at level 2. More generally, the level of a node n in the tree is the level of its
parent plus 1. All nodes at a given level are reachable from the root in the same number of steps.

The height of a tree is another concept that is not universally agreed upon. However, the standard de�nition
(which di�ers from the one used in the textbook), is as follows.

De�nition 10. The height of a node is the length of the longest path from the node to any of its children.
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Figure 4: A general tree.

This implies that all leaf nodes have height = 0. The height of the node z in Figure 2 is 0. The height of the
node labeled p is 1, and the root has height 2. Again, many books will state that the height of leaf nodes is
1, not 0.

Exercise. Height can be de�ned recursively. Write its de�nition.

De�nition 11. The height of a tree is the height of the root node of the tree. Another way to put it is
that it is the length of the longest path in the tree.

The height of the tree in Figure 2 is 2 since the longest paths are of length 2.

De�nition 12. The depth of a node is the length of the path from the root to the node. The root has
depth 0.

Exercise. Depth can also be de�ned recursively. Write that de�nition.

3 Tree Implementations

Because one does not know the maximum degree that a tree may have, and because it is ine�cient to create
a structure with a very large �xed number of child entries, the most extensible implementation of a general
tree uses a linked list to store the children of a node. It is not exactly what you might imagine immediately;
it is a bit more subtle. A tree node contains an element and two pointers: one to the leftmost-child of the
node and another to the sibling that is to the immediate right of a node:

struct TreeNode

{

Object element;

TreeNode * firstChild;

TreeNode * nextSibling;

};

Figure 5 illustrates how this structure is used to represent the tree in Figure 5. The advantage of this
representation is that this same node can be used to represent all nodes in the tree.
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Figure 5: Implementation of tree from Figure 4.

3.1 General Tree Traversal

There are a few di�erent ways to traverse a tree, some more e�cient than others depending on the tree
implementation. If a tree represents a directory hierarchy, then a pre-order traversal could be used to
print the �les and folders in the hierarchy in a natural way, much the way one sees them listed in a �le
browser window. The following pseudo-code description of such a function does this. It is written as if it
were a member function of some class that represents a �le (which also includes directories, which are really
�les.) Assume that printname(int depth) is a function that prints the name of the current �le indented
in proportion to its integer parameter, depth.

1 void file:: listAll( int depth = 0) const

2 {

3 printname(depth );

4 if (isDirectory () )

5 foreach child c in this directory

6 c.listAll(depth + 1);

7 }

The algorithm is a pre-order traversal because it visits the root of every subtree (which is a directory) prior
to visiting any of the children. The pseudo-code of the algorithm does not specify the order that the foreach
loop uses to visit all of the children in a directory, but for the sake of precision, let us assume that they
are visited in a �left-to-right� order. Bear in mind that a general tree has no notion of left and right. The
easiest implementation will just descend the firstChild pointer of the directory node and then travel along
the nextSibling pointers until it reaches a node that has no nextSibling (i.e., its nextSibling pointer is
null.) If printname() prints a word with depth many tab characters preceding it, then this will print an
indented listing of the directory tree, with �les at depth d having d tabs to their left. For the tree in Figure
4, the output of this algorithm would be

A

B

C

D

H

J

M

S

V

P

R

T

U

E

F
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Notice that the children are listed in dictionary order, because the children of each node were stored that
way in the tree structure implementation.

There is no single notion of in-order traversal because of the fact that the number of subtrees varies from
one node to the next and the root may be visited in many positions relative to its children. However, one
can de�ne post-order traversals of general trees. One use of post-order is in computing disk block usage
for each directory. For example, the UNIX du command will display the amount of disk space used by every
�le, and cumulatively, for every directory in its command-line argument. In order to do this, it must obtain
the usage of the child nodes before the parent node. The general algorithm would be of the form

1 int file:: disk_usage () const

2 {

3
4 int size = usage (); // some function that counts disk blocks of the current file

5
6 if (isDirectory () )

7 foreach child c in this directory

8 size = size + c.disk_usage ();

9 return size;

10 }

The usage() function is a member function that returns the number of disk blocks used by the current �le.
Line 8 contains a recursive call of the disk_usage() function on child c. There will be no in�nite recursion
if the directory structure has no links back to ancestors.

4 Binary Trees

4.1 N-ary Trees

An n-ary tree is not the same thing as a general tree. The distinction is that, in an n-ary tree the degree
of any node is bounded by n, i.e., it can never be greater than n. The formal de�nition is

De�nition 13. An n-ary tree is a set S of nodes that is either empty, or has a distinguished node called
the root and n, possibly empty n-ary subtrees of the root.

A general tree cannot be empty. It always has at least one node, but it might not have any subtrees. In
contrast, an n-ary tree may be empty, but it always has all of its subtrees, which might be empty. So a
general tree with one subtree has one subtree, but a 3-ary tree with one non-empty subtree technically has
3 subtrees, two of which are empty.

We will be interested in just the special case of n = 2. When n = 2 the tree is called a binary tree.

4.2 Binary Trees

A binary tree is not a special kind of tree. General trees do not distinguish among their children, but binary
trees do. To be precise,

De�nition 14. A binary tree is either empty, or it has a distinguished node called the root and a left

and right binary sub-tree.
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Notice that in a binary tree, the subtrees are ordered; there is a left subtree and a right subtree. Since
binary trees can be empty, either or both of these may be empty. In a general tree there is no ordering of
the sub-trees. The root of the left subtree, if it not empty, is called the left child of the root of the tree,
and the root of the right subtree, if it is not empty, is called the right child .

The most important applications of binary trees are in compiler design and in search structures. One use, for
example, in compilers is as a representation of algebraic expressions, regardless of whether they are written
in pre�x, post�x, or in�x. In such a tree, the operator is the root and its left operand is its left subtree and
its right operand is its right subtree. This applies recursively to the subtrees. The leaf nodes of the tree are
simple operands.

+

*
/

E+

C8

6 S

Figure 6: An expression tree representing 6 ∗ S + (8 + C)/E

The binary tree in Figure 6 is an example of such a tree. It is an unambiguous representation of an algebraic
expression. The compiler can use it to construct machine code for the expression.

The other important application of binary trees is as search trees. Informally, a search tree is a tree that is
designed to make �nding items in the tree �fast�. By �fast� we mean better than O(n) on average. Later we
will see how this is done.

4.2.1 Binary Tree Properties

There are a few interesting questions that we can ask about binary trees, mostly related to the number of
nodes they can contain at various heights, and what heights they might be if we know how many nodes they
have.

To start, we give a name to a particular shape of binary tree, the one that has as many nodes as it possibly
can have for its height.

De�nition 15. A full binary tree is a tree that, for its height, has the maximum possible number of
nodes.

This means that every node that is not a leaf node has two children, and that all leaf nodes are on the same
level in the tree. If there were an internal node with just one child, we could add another child without
making the tree taller and this would be a tree with more nodes than the maximum, which is impossible. If
not all leaf nodes were at the same level, then there would be one either higher or lower than the remaining
leaf nodes. If it were lower, we could add children to it without increasing the height, making a tree with
more nodes, again impossible. If it were at a higher level, then we could pick any leaf node at a lower level
and add a child to it without increasing the height of the tree and this tree would have more nodes, again
impossible. Figure 7 depicts a full binary tree of height 3.
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Figure 7: Full binary tree

How many nodes are at depth d in a full binary tree of height h, for d ≤ h? Let f(d) denote the number of
nodes at depth d in a full binary tree. We claim that f(d) = 2d.

Proof. Assume h ≥ 0. Let d = 0. There is a single root node, so f(0) = 1 = 20. Assume h > 0, and that for
d < h, the hypothesis is true. Then at depth d, there are 2d nodes. Since each of these nodes has exactly
2 children, there are 2 · 2d = 2d+1 nodes at depth d + 1. If d = h then there are no nodes at depth d + 1.
Thus, for all d ≤ h, f(d) = 2d.

It follows from this that the number of leaf nodes in a full binary tree of height h is 2h.

A full binary tree is a good thing. Why? Because all algorithms that do things to binary trees start
at the root and have to visit the other nodes by traveling paths from the root. If the tree is packed
densely, it means the average path length is smaller than if the same number of nodes were not in a full
tree. How many nodes are in a full binary tree of height h? Since each level d has 2d nodes, there are
1 + 21 + 22 + 23 + · · · + 2h = (2h+1 − 1)/(2 − 1) = 2h+1 − 1 nodes in a full binary tree. This is important
enough to state as a theorem:

Theorem 16. A full binary tree of height h has 2h+1 − 1 nodes.

Thus, the number of nodes in full binary trees of ever increasing heights are 1, 3, 7, 15, 31, 63, and so on,
corresponding to trees of heights 0, 1, 2, 3, 4, and 5 respectively.

Certain types of binary trees that are �nearly� full are also given a name. One such type of binary tree is
called a complete binary tree .

De�nition 17. A binary tree of height h is complete if the subtree of height h − 1 rooted at the root of
the tree is a full binary tree, and if a node at depth h− 1 has any children, then all nodes to the left of that
node have two children, and if it has only one child, that child is a left child.

Figure 8 depicts a complete binary tree of height 3. Notice that it is like a full tree with part of its bottom
level removed, from the right towards the left. This is how a complete tree must appear. Complete binary
trees can be used to implement an abstract data type called a priority queue .

De�nition 18. A degenerate binary tree is a binary tree all of whose nodes except the leaf node has
exactly one child.

The tree in Figure 9 is a degenerate tree of height 3. Notice that if we �straightened out� the edges, it would
look just like a list. This is what characterizes degenerate trees � they are essentially lists. A degenerate
tree has exactly one edge for every node except the single leaf node, so a degenerate tree with n nodes has
heightn− 1.
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Figure 8: Complete binary tree of height 3.
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Figure 9: Degenerate binary tree of height 3.

Now we can answer some questions about binary trees.

What is the maximum height of a binary tree with n nodes?

The tallest binary tree with n nodes must be degenerate. If this were false, it would mean there is at least
one node with two children. We could remove a child and attach it to a node in the bottom level of the tree,
making the tree taller, which contradicts the assumption that this was the tallest tree possible with n nodes.
The height of a degenerate tree with n nodes is n− 1, so we have proved:

Theorem 19. The maximum height of a binary tree with n nodes is n-1.

What is the minimum height of a binary tree with n nodes?

Before we derive the answer mathematically, �rst consider an example. Suppose n=24. The tallest full
binary tree with less than or equal to 24 nodes is the one that has 15 nodes and is of height 3. Because
we cannot add another node to this tree without making it taller, it is clear that the minimum height of a
binary tree with 24 nodes must be greater than 3. Now consider the shortest full binary tree that has at
least 24 nodes. The tree with 31 nodes is that tree, and its height is 4. Can a binary tree with 24 nodes
have height 4? It certainly can. We just have to remove 7 nodes from the full tree of height 4 to create such
a tree. We can use this argument more generally.

Let h be the smallest integer such that n ≤ 2h+1 − 1. This implies that n > 2h − 1, because if it were
false, then n ≤ 2h − 1 would be true and therefore h − 1 would be an integer smaller than h for which
n ≤ 2h− 1 = 2(h−1)+1− 1. This h is therefore the unique integer for which 2h− 1 < n ≤ 2h+1− 1. Stated in
terms of binary trees, h is the height of the smallest full binary tree that has at least n nodes, and h− 1 is
the height of the tallest full binary tree that has strictly less than n nodes. This implies that a tree with n
nodes must be strictly taller than h− 1, but may be of height h, because a binary tree of height h can have
up to 2h+1 − 1 nodes.
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It follows from the preceding argument that the minimum height of a binary tree with n nodes is the smallest
integer h for which n ≤ 2h+1 − 1. We can determine h as a function of n as follows:

2h − 1 < n ≤ 2h+1 − 1

⇐⇒ 2h < n+ 1 ≤ 2h+1

⇐⇒ h < log2(n+ 1) ≤ h+ 1

If log2(n + 1) = h + 1 then h + 1 = dlog2(n+ 1)e, and h = dlog2(n+ 1)e − 1. If log2(n + 1) < h + 1, then
h = dlog2(n+ 1)e − 1. This proves

Theorem 20. The minimum height of a binary tree with n nodes is dlog2(n+ 1)e − 1.

Note. It is also true that dlog2(n+ 1)e − 1 = blog2 nc.

5 The Binary Tree ADT

There are several operations that a binary tree class should support. There are the usual suspects, such as
creating empty trees, destroying trees, and perhaps getting properties such as their height or the number of
nodes they contain. In addition, we need methods of inserting new data, removing data, and searching to
see if a particular data item is in the tree. These are the same types of methods that lists supported, and
we will include them in our interface.

Unlike the abstract data types based on lists, binary trees also need to provide traversals � methods of
visiting every node in the tree, perhaps to print out their contents, to replicate a tree, or to modify the data
in all nodes. In general, a binary tree should allow the client to supply a processing function to a traversal
so that as the traversal visits each node it can apply that function to the node. Languages like C and C++
allow function parameters, so this is possible, and we will see how to do this later.

For now we start by exploring the di�erent ways to traverse a binary tree, and only after that do we �esh
out the interface for a binary tree abstract data type.

5.1 Binary Tree Traversals

There have to be systematic, i.e., algorithmic, methods of processing each node in a binary tree. The type of
processing is irrelevant to the algorithm that traverses the tree. It might be retrieving a value or modifying
a value in some speci�c way. We can assume that there is some speci�c function, named visit(), that is
applied to each node as it is visited by the traversal algorithm.

There are three important algorithms for traversing a binary tree: in-order , pre-order , and post-order .
They are easy to describe recursively because binary trees are essentially recursively de�ned structures.

All traversals of a binary tree must visit the root and all nodes in its left and right subtrees. If these traversals
are described recursively, then there are three di�erent steps that can take place:

1. visit the root

2. visit the left subtree (in the same order as the tree rooted at the root is visited)

3. visit the right subtree (in the same order as the tree rooted at the root is visited)

Because these three actions are independent, there are six di�erent permutations of them:
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1, 2, 3

1, 3, 2

2, 1, 3

2, 3, 1

3, 1, 2

3, 2, 1

In three of these the right subtree is visited before the left subtree, and the traversals is otherwise analogous
to the three in which the left subtree is visited before the right subtree. Because visiting the left subtree
before the right subtree is usually more useful, the three orderings in which the right is visited before the
left are not usually discussed. The remaining ones, with left preceding right, are the ones customarily used.
They are:

1, 2, 3

2, 1, 3

2, 3, 1

and these three permutations correspond to the following:

5.1.1 Pre-Order:

• visit the root

• visit the left subtree

• visit the right subtree

5.1.2 In-Order:

• visit the left subtree

• visit the root

• visit the right subtree

5.1.3 Post-Order:

• visit the left subtree

• visit the right subtree

• visit the root

In each of these it is implicit that the visits to the subtrees are carried out recursively using the same
permutation of actions as at the top level. For example, an in-order traversal of the tree in Figure 6 would
�rst go left from the root to the node labeled �*�. It does not apply the visit() function to this node yet,
but would instead apply recursively and go left again to the node labeled �6�. Since this node has no left
child, the attempt to go left returns back to the 6, visits 6, attempts to visit the right child of 6, which is
empty, and therefore backs up to the parent of 6, which is *. It now visits * and then goes to the right child
of *, which is S. After processing S, it backs up to * and then backs up to the root node +, which it now
visits. The same logic happens on the right hand side of the tree. We will work through some complete
examples shortly.

If we assume for the moment that a tree node has the representation
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struct tree_node

{

item_type item;

tree_node *left;

tree_node *right;

};

and that a visit() function is de�ned using the following typedef statement1

typedef void (*visit_function)(item_type data);

then the three traversals can be de�ned precisely by the following functions

void in_order ( binary_tree *t, visit_function visit )

{

if ( t != NULL ) {

in_order( t->left, visit);

visit(t->item);

in_order( t->right, visit);

}

}

void pre_order ( binary_tree *t, visit_function visit )

{

if ( t != NULL ) {

visit(t->item);

pre_order( t->left, visit);

pre_order( t->right, visit);

}

}

void post_order ( binary_tree *t, visit_function visit )

{

if ( t != NULL ) {

post_order( t->left, visit);

post_order( t->right, visit);

visit(t->item);

}

}

5.1.4 Examples

Given the binary tree in Figure 10, the pre-order, in-order, and post-order traversals are as follows. Work
through them carefully to understand how they are applied.

Pre-order: 50, 25, 15, 40, 30, 80, 75, 90, 85

In-order: 15, 25, 30, 40, 50, 75, 80, 85, 90

Post-order: 15, 30, 40, 25, 75, 85, 90, 80, 50

1If this typedef is new to you, the way to read it is that the name of the function is what is being de�ned. The typedef

tells the compiler that the symbol �visit_function� is the name of a function type, and that this function type has a signature

consisting of a void return type and a single parameter of type item_type. Any place where an object is declared to be of type

visit_function, the compiler will expect that object to be used as a function with this signature.
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Figure 10: A binary tree

Observations

• Notice that among them, the in-order traversal visits the nodes in such a way that they are in sorted
order. This is not a coincidence; it it because the tree in Figure 10 is a binary search tree . In Section
7, we will see that an in-order traversal of a binary search tree always visits the nodes in ascending
order.

• Also note that each of these traversals visits each node exactly once and that therefore, they are O(n)
algorithms, where n is the number of nodes in the tree.

• The function that is called to process each node, the visit() function, must use only the exposed
operations of the binary tree. If the traversals are member functions of a binary tree class, then they
provide a means for client code to traverse the tree, but not the means to access private data.

5.2 The Binary Tree ADT Interface

We can now return to designing an interface. The following is a list of operations that ought to be exposed.

1. Create a new, empty binary tree.

2. Create a one-node binary tree. This is a convenient function to give to clients.

3. Destroy a binary tree, i.e., deallocate all of its resources.

4. Insert data into the root of the tree.

5. Get data from the root of the tree.

6. Append an existing binary tree as the left (or right) subtree of the root.

7. Get the left (or right) subtree of the root.

8. Detach the left (or right) subtree and save as a new binary tree.

9. Copy one binary tree to another.

10. Return the height of the tree.
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11. Return the number of nodes in the tree.

12. Traverse the tree in-order.

13. Traverse the tree pre-order.

14. Traverse the tree post-order.

There may be other useful methods, but they can be derived from these. For example, it may be useful to
provide a method that constructs a binary tree from the data for a root and two existing binary trees, one
left and one right. That can be derived using methods 2, 4, and 6 above. The above list does not contain a
method to attach a single node as the left or right child of the root. That operation can be carried out by
creating a one node binary tree and using method 6. A formal ADT for a binary tree is speci�ed as follows.

create_binarytree([in] item_type) throw tree_exception

// Create a one-node tree whose root contains the specified item.

// Throw an exception if this fails.

// This is a constructor.

create_binarytree([in] item_type new_item,

[inout] binary_tree left_subtree,

[inout] binary_tree right_subtree) throw tree_exception

// Create a binary tree whose root contains the new_item and whose

// left and right subtrees are left_subtree and right_subtree respectively.

// Throw an exception if this fails.

// On return it releases the references to the left and right subtrees.

// This is a constructor.

destroy_binarytree()

// Destroy a binary tree.

// This is a destructor. It deallocates all memory belonging to the tree.

int height() const

// This returns the height of the tree.

int size() const

// This returns the number of nodes in the tree.

void get_root_item([out] item_type root_item) const throw tree_exception

// Returns the item stored in the root of the tree.

// Throws an exception if the tree is empty.

void set_root-item([in] item_type new_item ) throw tree_exception

// Stores new_item into the root of the tree, replacing any value if it exists.

// Throws an exception if the tree is empty.

void attach_left_subtree( [inout] binary_tree left_tree ) throw tree_exception

// If the tree is not empty and the root does not have a left child,

// the left_tree is attached as the left subtree of the root, and the

// reference to it is removed.

// Otherwise an exception is thrown.

void attach_right_subtree( [inout] binary_tree right_tree ) throw tree_exception

// If the tree is not empty and the root does not have a right child,

// the right_tree is attached as the right subtree of the root, and the

// reference to it is removed.
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// Otherwise an exception is thrown.

void detach_left_subtree( [out] binary_tree left_tree ) throw tree_exception

// If the tree is not empty, the left subtree is detached from the root

// and a reference to it is returned in the left_tree parameter. If the

// left subtree is empty a NULL reference is returned.

// Otherwise an exception is thrown.

void detach_right_subtree( [out] binary_tree right_tree ) throw tree_exception

// If the tree is not empty, the right subtree is detached from the root

// and a reference to it is returned in the right_tree parameter. If the

// right subtree is empty a NULL reference is returned.

// Otherwise an exception is thrown.

binary_tree get_left_subtree() const throw tree_exception

// If the tree is not empty, a copy of the left subtree is returned.

// Otherwise an exception is thrown.

binary_tree get_right_subtree() const throw tree_exception

// If the tree is not empty, a copy of the right subtree is returned.

// Otherwise an exception is thrown.

binary_tree copy() const

// Return a copy of the tree.

void pre_order_tree ([in] visit_function visit);

// Traverse the tree using the pre-order algorithm, applying the function

// visit() to each node as it is visited.

void in_order_tree ([in] visit_function visit);

// Traverse the tree using the in-order algorithm, applying the function

// visit() to each node as it is visited.

void post_order_tree([in] visit_function visit);

// Traverse the tree using the post-order algorithm, applying the function

// visit() to each node as it is visited.

6 Implementation of a Binary Tree

Although it is possible to implement a binary tree with an array, we will focus on a pointer-based implemen-
tation. We begin with the basic building block: the tree node.

Modifying the preceding de�nition of a tree node that was based on a C struct, adding a private constructor
(which will be justi�ed shortly), and declaring the binary tree class to be a friend class:

class tree_node

{

private:

tree_node () {};

// Non-default constructor:

tree_node (const item_type & node_item,

tree_node *left_tree = NULL,

tree_node *right_tree = NULL):

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 15

http://creativecommons.org/licenses/by-sa/4.0/ 


CSci 235 Software Design and Analysis II
Trees

Prof. Stewart Weiss

item(node_item),

left (left_tree),

right (right_tree) {}

item_type item;

tree_node *left;

tree_node *right;

friend class binary_tree;

};

The tree_node class is not exposed to any client software. It has no public members, not even a constructor.
Without a public constructor, no code can create an instance of it, unless that code belongs to a friend of
this class. By making the binary_tree class a friend of the tree_node class, we allow the binary_tree

class to create instances of tree nodes, which is how the tree can grow.

6.1 Binary Tree Class Interface

The binary_tree class interface is given below. The protected methods are not declared as private, so that
a class that is publicly derived from derived from this class can access those methods. In addition, the pre-
and post-conditions for each method are omitted to save space, because it is essentially a re�nement of the
ADT described earlier.

// this declares a function type that can be applied to the item stored in a tree node

typedef void (*visit_function)(item_type& );

class binary_tree

{

public:

// constructors:

binary_tree (); // default

binary_tree ( const item_type & root_item); // param-1 constructor given item

binary_tree ( const item_type & root_item,

binary_tree & left_tree,

binary_tree & right_tree); // param-3 constructor

binary_tree ( const binary_tree & tree); // copy constructor

// destructor:

~binary_tree();

// binary tree operations:

int size() const;

int height() const;

item_type get_root() const throw(tree_exception);

void set_root(const item_type & new_item) throw(tree_exception);

void attach_left_subtree (binary_tree & left_tree) throw(tree_exception);

void attach_right_subtree(binary_tree & right_tree) throw(tree_exception);

void detach_left_subtree(binary_tree & left_tree) throw(tree_exception);

void detach_right_subtree(binary_tree & right_tree) throw(tree_exception);

binary_tree get_left_subtree () const;
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binary_tree get_right_subtree() const;

// traversals: (just wrappers)

void pre_order (visit_function visit);

void in_order (visit_function visit);

void post_order (visit_function visit);

protected:

binary_tree (tree_node *nodePtr); // private constructor

// A function to copy the tree to a new tree

void copy_tree (tree_node *tree_ptr,

tree_node *& new_ptr) const;

// private function called by public destructor

void destroy (tree_node *& tree_ptr);

// returns pointer to root

tree_node *get_root_ptr() const;

// set root pointer to given value

void set_root_ptr (tree_node *new_root);

// Given a pointer to a node, retrieve pointers to its children

void get_children (tree_node *node_ptr,

tree_node *& left_child,

tree_node *& right_child) const;

// Given a pointer to a node, set pointers to its children

void set_children (tree_node *nodePtr,

tree_node *left_child,

tree_node *right_child);

// Helpers for size and height

int get_height( tree_node *tree) const;

int get_size( tree_node *tree) const;

// The three private traversal functions. These are recursive

// whereas the public ones are just wrappers that call these.

// These need access to pointers whereas public cannot have it.

void pre_order (tree_node *treePtr,

visit_function visit);

void in_order (tree_node *treePtr,

visit_function visit);

void post_order (tree_node *treePtr,

visit_function visit);

private:

// pointer to root of tree

tree_node *root;

};
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6.2 Implementation of Methods

The textbook contains the implementations of all of these functions. In general, they are all very simple.
They all are either recursive, or perform a simple task such as getting or setting the private members of
the object. What makes them a bit more than trivial is that they all handle the various error conditions
that can arise by throwing exceptions. The error handling code is the majority of the code. Another bit of
complexity has to do with holding and releasing references, which is explained below.

Most tree algorithms are expressed easily using recursion. On the other hand, to do so requires that the
parameter of the algorithm is a pointer to the root of the current node, but this is a problem, because one
does not want to expose the node pointers to the object's clients . Nodes should be hidden from the object's
clients. Put another way, the clients should not know and not care how the data is structured inside the
tree; in fact, they should not even know that it is a tree! The binary tree should be a black box with hooks
to the methods it makes available to its clients, and no more. Therefore, the sensible solution is to create
a �wrapper� method that the client calls that wraps a call to a recursive function. This is exactly how the
traversals, the copy function, the destructor, and the functions that get subtrees work. Although I omit the
implementations of most of these functions, you should not skip them; you have to make sure you understand
how this class implementation works!

What follows demonstrates a typical method that wraps a private (or protected) recursive method; in
particular we implement the destructor. First we de�ne a recursive, protected destroy() function that uses
a post-order traversal to delete all of the nodes of the tree. It has to be post-order because it �rst has to
delete the nodes of the subtrees, and only then can it remove the root of the tree. If we deleted the root
�rst, we could not get to the subtrees, unless we saved the pointers to them. This is ine�cient.

binary_tree::destroy (tree_node *& tree_ptr)

{

// postorder traversal

if (tree_ptr != NULL) {

destroy (tree_ptr->left); //

destroy (tree_ptr->right);

delete tree_ptr;

tree_ptr = NULL;

}

}

Having de�ned this hidden, recursive function, the destructor is simply

binary_tree::~binary_tree()

{

destroy(root);

}

As a second example, we implement the copy constructor. First we de�ne the recursive, hidden function
that copies a tree:

void binary_tree::copy_tree(tree_node *tree_ptr,

tree_node *& new_ptr) const

{

// preorder traversal

if (tree_ptr != NULL) {

// copy node

new_ptr = new tree_node(tree_ptr->item, NULL, NULL);

copy_tree ( tree_ptr->left, new_ptr->left);
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copy_tree ( tree_ptr->right, new_ptr->right);

}

else

new_ptr = NULL; // copy empty tree

}

Unlike the destroy() function, this uses a pre-order traversal, because it �rst has to create the root node
of the new tree and only then can it create its subtrees. Having de�ned this function, the public copy
constructor is trivial:

binary_tree::binary_tree( const binary_tree & tree); // copy constructor

{

copy_tree(tree.root, root);

}

Before we look at some more challenging functions, we dispense with the problem of getting the tree's height.
Again we wrap the recursive helper function by the public method. The recursive height-computing function
is

int binary_tree::get_height( tree_node *tree) const

{

if ( NULL == tree )

return 0;

else

return 1 + max (get_height(tree->left), get_height( tree->right));

}

In other words, the height of a binary tree is de�ned recursively; it is one more than the heights of the larger
of its two subtrees. The public method is just

int binary_tree::height( const binary_tree & tree) const

{

return get_height(root);

}

Exercise 21. The size of a tree is also de�ned recursively. How?

The harder methods are those that attach and detach subtrees. An implementation of a method to attach a
left subtree to a root node checks �rst for whether the root is a NULL pointer. If so it throws an exception.
If not, it checks whether there exists a left subtree already. If so, it throws a di�erent exception. If not, it
sets the left child pointer of the root to point to the root of the argument tree, and then it sets the argument
tree pointer to NULL, to prevent the client code from being able to manipulate the subtree internally after it
has been attached to the tree:

void binary_tree::attach_left_subtree (binary_tree & left_tree) throw(tree_exception);

{

if (0 == size() )

throw tree_exception("Tree Exception: Empty tree");

else if (root->left != NULL)

throw tree_exception ("TreeException: Cannot overwrite left subtree");

else {

root->left = left_tree.root; // the pointer, not the node

left_tree.root = NULL; // prevent client from accessing tree

}

}
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To be clear, the argument is passed by reference. The left_tree parameter is not a copy of the tree to be
attached but the actual tree. The assignment

root->left = left_tree.root

makes the left pointer in the binary tree on which this is called get a copy of the root pointer of the
left_tree passed to the function. Now root->left points to the tree's root node. After the call we want
to make sure that the client code cannot access this tree anymore. Setting left_tree.root to NULL ensures
that this tree's nodes can no longer be accessed because left_tree was passed by reference.

Detaching the left subtree and providing it as a standalone tree to the caller requires �rst checking that the
tree is not empty, and if not, using the private binary tree constructor (the one that is given a pointer to a
root and constructs a tree from it) and assigning the newly created tree to the argument, after which the
left child pointer is set to NULL, to detach it from the tree:

void binary_tree::detach_left_subtree (binary_tree & left_tree) throw(tree_exception)

{

if (is_empty())

throw tree_exception("TreeException: Empty tree");

else {

left_tree = binary_tree(root->left);

root->left = NULL;

}

}

In both of these functions, what happened was that a reference (i.e., a pointer) to a subtree was transferred
either from client to tree or vice versa. The total number of references remained one: either the client lost
it and the tree gained it or vice versa. The idea of making sure that no more than a single code entity holds
a reference to an object is a way to reduce errors in code.

Providing a copy of a left or right subtree is a di�erent story. In this case, there is no need to remove a
reference because the data structure is being replicated. The code for this follows. Notice that the copy
function is the private copy function and that its arguments are pointers to tree nodes. The function has to
use a constructor to convert the root pointer to a tree in the �nal return statement.

binary_tree binary_tree::get_left_subtree() const

{

tree_node *subtree;

if (is_empty())

return binary_tree();

else {

copy_tree(root->left, subtree);

return binary_tree(subtree);

}

}

Lastly, this is a small piece of code to demonstrate how to return pointers in the private code. Notice that
in order to pass the value of a pointer back to the caller, the pointer itself must be passed by reference (in
C++, or as a double pointer in C).

void get_children (tree_node *node_ptr,

tree_node *& left_child,
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tree_node *& right_child) const

{

left_child = nodePtr->left;

right_child = nodePtr->right;

}

7 Binary Search Trees

Let S be a set of values upon which a total ordering relation, <, is de�ned. For example, S can be a set of
numbers or strings. A binary search tree (BST ) T for the ordered set (S,<) is a binary tree with the
following properties:

• Each node of T has a value called its label. If p and q are nodes, then we write p < q to mean that the
label of p is less than the label of q.

• For each node n ∈ T , if p is a node in the left subtree of n, then p < n.

• For each node n ∈ T , if p is a node in the right subtree of n, then n < p.

• For each element s ∈ S there exists a node n ∈ T such that s = n.

Binary search trees are binary trees that store elements in such a way that insertions, deletions, and search
operations never require more than O(h) operations, where h is the height of the tree. Minimally, a binary
search tree class should support insertion, deletion, search, a test for emptiness, and a �nd-minimum opera-
tion. A �nd-minimum is useful because very often one needs to know the smallest value in a set. It would
also be useful to support a list-all operation that lists all elements in sorted order. Since a binary search
tree is a container, it also needs to provide methods for creating an empty instance, for making a copy of an
existing tree, and for destroying instances of trees.

Observe from the de�nition of a BST that every node in the tree is the root of a BST, and that the left and
right subtrees of a node are also BSTs. This implies that many algorithms for processing BSTs can be stated
recursively and intuitively.

7.1 Examples

There can be many di�erent binary search trees for the same data set. The topology depends upon the
insertion algorithm, the deletion algorithm, and the order in which the keys are inserted and deleted. The
three trees shown in Figure 11 each represent the set S = {15, 20, 25, 30, 40, 50, 75, 80}. The tree in Figure
11(a) is of height 3, that in Figure 11(b) has height 4, and the one in Figure 11(c) has height 2. You will
notice that there cannot be a binary search tree of height less than 2 for this set because it has 7 elements,
and a full tree of height 1 has 3 elements, so the shortest tree that can contain 7 elements is the full tree of
height 2. Of course, there could be an even worse tree than the ones shown, of height 6. There can be many
of these, actually. (How many?)

Exercise 22. How many di�erent binary search trees are there for a set of n unique elements? Could it be
related to the number of permutations of the set? In other words, does each distinct permutation of the set
correspond to a unique binary search tree? Could there be more or fewer trees for a given permutation? Try
it with n = 3 and n = 4 to start.

7.2 Algorithms

The algorithms we need to consider are the �nd operation (searching), insertion, deletion, and �nd_minimum.
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Figure 11: Three di�erent binary search trees for the same data set.

Searching

Consider �rst of all how to search for an item in a binary search tree. A recursive algorithm is of the form

search( current_node, item)

{

if ( the current node is empty )

return an indication that the item is not in the tree;

else {

if ( item < current node's item )

search ( left subtree, item);

else if ( item > current node's item )

search ( right subtree, item);

else

the item is in the current node;

}

}

The test for emptiness must be done �rst of course. If the node is empty, it means that the search has
descended the tree to the place where the item should be found if it were in the tree, but that it is not there.
For example, if we searched the tree in Figure 10 for the key 77, we would compare 77 to 50 and descend
the right subtree, comparing 77 to 80 next. Because 77 < 80, we descend the left subtree and compare it to
75. Because 77 > 75, we descend the right subtree of 75, which is empty. At this point we discover that 77
is not in the tree.

This search algorithm descends a level each time it compares the key to a node in the tree. Therefore, in
the worst case, it will compare the key to h values (up to 2h comparisons), where h is the height of the tree.
Since the height of the tree can be proportional to the number of elements in the worst case, this search will
take O(n) steps in the worst case.

Insertion

To insert an element in a tree, we should search for it, and if we do not �nd it, then the place at which we
should have found it is the place at which we want to insert it. The tricky part is that, once we have found it
is not there, we have lost a pointer to the node whose child it should be. Careful programming can prevent
this. The following pseudo-code includes some actual C++ code so that you can see how this is handled.
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void insert(tree_node * & current, item_type new_item )

{

if ( current is empty )

current = new node containing new_item ;

else if ( new_item < current->item )

insert( current->left, new_item );

else if ( new_item > current->item )

insert( current->right, new_item );

else // do nothing because it is already in tree

;

}

The insert function is passed by reference a pointer to the root of a tree in which to search for the item. If
that pointer is NULL, then a new node is allocated and the address is stored in that call-by-reference pointer.
Because it is passed by reference, in the recursive calls, the pointers current->left and current->right

will contain a pointer to the newly allocated node when the call returns, assuming they were NULL before
the call. This is how the new node is attached to the tree in the correct place.

The insert function is the means by which trees can be created. Start with an empty tree and call insert on
it to �ll it with the data from the input source. Since the data is always added at the end of an unsuccessful
search, as new leaf nodes, the insertions ultimately grow new levels in the tree. In other words, the �rst item
is placed at the root, the second is either the left or right child of the root, the third might be a grandchild
or the child that the previous item did not become. Each successive insertion either �lls out an existing level
or starts a new one.

Deletion

Deleting an item is more complex than insertion, because of the possibility that the item to be deleted is not
a leaf node. In other words, when the item to be deleted is a leaf node, it is pretty simple � just delete that
node. If the item has a single child, there is also a relatively simple task to be performed: delete the node
and make the only child the child of the node's parent (i.e., let the parent of the deleted node adopt that
node's child). If the item, however, has two children, then it is more complex: �nd the smallest node in the
node's right subtree and copy it into the node, e�ectively deleting that element. Then delete the node that
it came from. That node cannot possibly have two children because if it did, one would have to be smaller
than the node, contradicting the assumption that it was the smallest node in the right subtree.

A pseudo-code version of the deletion algorithm is

void delete(tree_node * & current, item_type item_to_delete )

{

if ( current is empty )

return; // the item was not found

else if ( item_to_delete < current->item )

delete( current->left, item_to_delete );

else if ( item_to_delete > current->item )

delete( current->right, item_to_delete );

else {

// item is equal to the item in the node; it is found
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// Check how many children it has

if ( current->left != NULL && current->right != NULL ) {

// It has two children. We need to replace it by the

// smallest item in the right subtree. Assume there

// is a function, find_min() that returns a pointer

// to the smallest item in a tree.

// get the pointer to the smallest item in right subtree

temp_ptr = findMin( current->right );

// Copy the item into the current node

current->item = temp_ptr->item;

// Recursively call delete to delete the item that was just

// copied. It is in the right subtree.

delete( current->right, current->item );

}

else {

// The current node has at most one child. Copy the value of

// current temporarily

old_node = current;

// If the left child is not empty, then make the left child the

// child of the parent of current. By assigning to current this

// achieves that.

// If the left child is empty, then either the right is empty or it is not

// In either case we can set current to point to its right child.

if ( current->left != NULL )

current = current->left;

else

current = current->right;

// Delete the node that current used to point to

delete old_node;

}

}

}

The above deletion algorithm depends on a �nd_min function. Finding the minimum in a tree is a relatively
easy task, since it is always the leftmost node in the tree. By �leftmost�, we mean that it is reached by
traveling down the left-child edges until the left-child edge is NULL. The node whose left-child pointer is NULL
is the minimum in the tree. This can be expressed recursively as follows:

find_min( tree_node *current )

{

if ( current == NULL )

return NULL;

if ( current->left == NULL )

return current;

return find_min( current->left );

}
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This could be done iteratively as well, because it is a simple example of tail recursion , i.e., recursion at
the end of the function.

I pointed out in an earlier example that the in-order traversal of a binary search tree always results in visiting
the nodes in sorted, ascending order. We can formalize this:

Theorem. An in-order traversal of a binary search tree visits the nodes in ascending sorted order.

Proof. This can be proved by induction on the height of the tree. It is trivially true for a tree of height 0.
Suppose it is true of all binary search trees of height at most h. Let T be a BST of height h+1. Then T
consists of a root, a left subtree, and a right subtree. Since the left and right subtrees are each at most height
h, an in-order traversal of them visits their nodes in sorted order. Since the in-order visits the left subtree
�rst, then the root, and then the right subtree, and since the nodes in the left subtree are all smaller than
the root, which is smaller than all nodes in the right subtree, the sequence of nodes visited is in ascending
order.
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