
Software Design Lecture Notes

Iterators

Prof. Stewart Weiss

Iterators

1 Introduction

When you need to visit all of the elements of a vector vec from the �rst to the last, you could use a loop
such as

for (int i = 0; i < vec.size(); i++)

// do something with vec[i]

This works, and is a �ne solution. It will also work with C++ strings. But what if you needed to visit all
elements of a C++ list object? How could you do that? The short answer is that, without iterators, you
cannot. Iterators make it possible. These notes answer the question, �What is an iterator, and how do you
use it?�

Iterators are a generalization of pointers in C++. They allow a program to navigate through di�erent types
of containers in a uniform manner. Just as pointers can be used to traverse a linked list or a binary tree, and
subscripts can be used to traverse the elements of a vector, iterators can be used to sequence through the
elements of any standard C++ container class. Iterators are specialized to �know� how to sequence through
particular containers; an iterator that can sequence through a vector is a di�erent type than one that can
iterate through a list. An example follows.

Listing 1: A function to iterate through a list.

void add s u f f i x t o_ l i s t (s t r l i s t & names , char ∗ s t r)
{

// Dec lare an i t e r a t o r that can proce s s l i s t s o f s t r i n g s
s t r l i s t : : i t e r a t o r l_ i t e r ;

// i t e r a t e through the l i s t
f o r (l_ i t e r = names . begin () ; l_ i t e r != names . end () ; ++l_ i t e r)

l_ i t e r−>append (s t r) ;
}

This example demonstrates several concepts:

• An iterator is speci�c to a container. In Listing 1, l_iter is of type list<string>::iterator because
we can only use an iterator de�ned within the list template class to sequence through a list class
instance.

• An iterator is advanced through a container by applying the pre-increment operator to it. This is just
like the semantics of pointers. In this example, ++l_iter advances it through the list.

• An iterator is dereferenced by using the same dereference operator that is used with pointers. In this
example, l_iter->append() is the member function called on the string pointed to by the iterator
l_iter.

1

Software Design Lecture Notes

Iterators

Prof. Stewart Weiss

• All containers provide a set of iterator operations. In particular, the begin() method returns an
iterator that references the �rst element in the container, viewed as a sequence, and the end() method
returns a one-past-the-last-element iterator, which can be used to check if an iterator has reached the
end of the container.

You do not need to know how iterators work to use them. That is what makes them convenient.

2 More Details

2.1 Iterator Types

There are di�erent types of iterators, even for a single container class. There are constant iterators, of
C++ type const_iterator, which cannot be used to modify the objects to which they refer. There are
also reverse iterators, declared to be of type reverse_iterator, which are just what their name implies
� iterators that �go in reverse.� When a car is in reverse and you accelerate, it moves backwards. When
a reverse iterator is incremented, it goes backwards too. Soon you will see some examples. There are also
constant reverse iterators, which are what their name implies � reverse iterators that cannot be used to
modify the objects to which they refer. They are declared to be type const_reverse_iterator. Because
there are reverse iterators, ordinary iterators are called forward iterators for clarity.

Containers such as vectors and lists provide the begin() and end() functions as described above, but these
are not the only functions that return some type of iterator. The others include

rbegin() returns a reverse_iterator, i.e., one that starts at the last element and travels towards the
�rst element as it is advanced.

rend() returns a reverse_iterator pointing to the element one before the �rst element in the container.
This element does not exist, of course, but the iterator is used as a sentinel in the same way that
the one returned by end() is used.

cbegin() like begin(), but returns a const_iterator.

cend() like end(), but returns a const_iterator that points to one-past-the-last-element.

crbegin() like rbegin(), but returns a const_reverse_iterator that starts at the last element.

crend() like rend(), but returns a const_reverse_iterator pointing to the element one before the �rst
element in the container.

The following containers provide all of the above iterator-returning functions:

• array

• list

• map

• set

• string

• vector

The string class is not technically a container but is included because it does have these methods. There
are other containers such as stacks and queues that do not provide these methods, because as abstractions,
they are not supposed to provide method for traversing their contents.

2

Software Design Lecture Notes

Iterators

Prof. Stewart Weiss

2.2 Iterator Operations

Not all iterators support the same set of operations, but for the above set of classes, the following operations
are supported by valid iterators:

Dereference and read = *iter

Dereference and modify *iter =

Comparison iter1 == iter2

Advance ++iter

Dereference and access iter->

An iterator is valid if it points to an element. It might be invalid because it was never initialized, because
the element to which it pointed was removed, or the container into which it points was resized or destroyed,
or because it points past the end of the sequence.

3

	Introduction
	More Details
	Iterator Types
	Iterator Operations

