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Effective Calculability and Unsolvability

No matter where it is or when it is, at some point soon after we begin learning about computer 
science, someone introduces the concept of an algorithm to us and defines it in some manner that 
we accept and come to take for granted.  When we begin to write programs and take classes in 
programming, the word  becomes ever more important and obvious. Nonetheless, if one is asked 
to write down a rigorous definition of an algorithm, could it be done?    

Let us say that an algorithm to solve a class of problems is a precise set of instructions that can 
be carried out by mechanical means, without creative thought, that provides a solution to any 
problem in that class in a finite amount of time. This definition is still pretty ambiguous, but we 
know what we mean by it. Suppose that we could write down a truly rigorous definition of an 
algorithm. Furthermore, suppose that, not only could we define precisely what an algorithm is, 
but that if we were reading a description of some alleged algorithm, we could, by using equally 
precise means, determine whether or not the thing being defined actually is an algorithm.  In 
other words,  let us assume the truth of two statements. 

The first is that there exists some precise and universal notion of an algorithm. 

The  second is  that  there  is  an  algorithm  that  we  can  use  to  determine  whether  something 
purported to be an algorithm is actually an algorithm.

At this point, I will reproduce an argument made by Martin Davis in the introduction to his book, 
Computability and Unsolvability [Davis1]. 

Consider all possible functions  f(x) defined on the positive integers whose values are positive 
integers. Functions such as x2, x3, x!,  and  ax, fall into this category.  There are clearly infinitely 
many such functions.  Let us say a function f(x) is effectively calculable if there is an algorithm 
that, given a value for x, lets us compute the value of f(x) by carrying it out step by step.

Such an algorithm can be described using the English language. Think of the description of the 
algorithm in the English language as a string of letters, punctuation marks, and spaces.  We can 
order all possible algorithms like this, first by the length of the description, and then, for all 
descriptions of the same length,  by their dictionary order. In other words,  all descriptions of 
length one come first, then of length two, then of length three, and so on. Within any one length, 
the  descriptions  would be  in  dictionary  order.  We can  make rules  as  to  whether  uppercase 
precedes lowercase and so on, but this is not important.

Because the algorithms can be written in a precise sequence, we can number them, say by A1, A2, 
A3, and so on. In general, Ak is the algorithm whose description is kth in the list, and the function 
that Ak computes is then called fk(x).  We now have a sequence of functions fk(x), for k = 1, 2, 3,  
4, ... that are all effectively calculable.

Define the function g(x) by

g(x) = fx(x) + 1. (1)
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The function g(x) is also a function that has a positive integer argument with a positive integer 
value.  To find its value for a given x, we find the xth algorithm in the list of algorithms A1, A2, A3, 
..., apply the algorithm to x and add 1 to the result. However, 

Theorem 1. There is no value k such that g(x) = fk(x).

Proof. 

Suppose, to the contrary, that such a k exists. Then for all x, fk(x) = g(x).  Since g(x) = fx(x) + 1 
by definition, 

 fk(x) = g(x) = fx(x) + 1

for all values of x. In particular, it must be true when we choose x = k:

fk(k)  = fk(k) + 1

This, of course, is impossible, so we have reached a contradiction, implying that no such value k 
exists. ■

But if there is no value  k for which  g(x) = fk(x), then  g(x) is not a function computed by any 
algorithm, which implies that

Theorem 2.  g(x) is not effectively calculable.

Even though g(x) is not effectively calculable,   the description of how to compute g(x) above 
seems very algorithmic. To make it more precise, we could do the following:

1. Given a number x, start generating the descriptions A1, A2, A3,  ..., until the xth description 
is obtained. 

2. Apply the description Ax to x.

3. Add 1 to the result.

Since Theorem 2  is true, there must be a flaw in the above description. How can we generate the 
list A1, A2, A3,  ...?  It is certainly possible to generate all possible strings of length 1, then 2, then 
3, and so on. Each time that we generate a string, we check whether that string represents an 
algorithm that computes a function on the positive integers with a positive integer result. If that 
string does represent such an algorithm, we increment our counter, and we do this until we have 
counted off x such algorithms. 

It  seems perfectly reasonable then to generate the list of such algorithms. Or does it? In the 
procedure described above, we are making the assumption that it is possible to mechanically 
determine whether a piece of English text  describes an algorithm for a function of a single, 
positive  integer  argument  with  a  positive  integer  value.    Everything  else  is  provably  true. 
Therefore, if Theorem 2 is true, it implies that this is not possible. In other words:

Theorem 3. There is no algorithm that can be used to determine whether a purported algorithm  
to  compute  the  values  of  a  function  over  the  positive  integers  whose  range  is  the  positive 
integers,  is actually such an algorithm.
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Another way to look at this is to replace the English text by syntactically correct programs in a 
fixed language such as C. The statement can be interpreted to mean that there is no algorithm to 
determine whether a given program computes a total function from positive integers to positive 
integers. 

This is an example of an unsolvable  problem.  We reached the result  by fuzzy means only 
because we did not have a precise definition of an algorithm. If our definition were precise, we 
could reach the result with mathematical precision.
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