
CSci 335 Software Design and Analysis III

Assignment 1: Polynomial Multiplication

Prof. Stewart Weiss

Assignment 1: Polynomial Multiplication

Overview

The purpose of this project is to give you practice in designing and implementing classes, and using existing
templates classes. You will design and implement a class to represent polynomials and perform polynomial
multiplication. You will also write a main program that is a client of the class. The main program will read a
sequence of polynomial de�nitions and operations from a �le, create polynomials, and perform the speci�ed
operations. If you need to brush up on polynomial arithmetic, refer to any elementary algebra textbook.

Polynomial Arithmetic

A polynomial (in one variable) is a function of the form

p(x) = cnxn + cn−1x
n−1 + · · ·+ c1x + c0

where n is a non-negative integer, cn 6= 0 , and the other coe�cients ck may or may not be zero. The
degree of p(x) is n. No exponent in a polynomial is allowed to be negative. In this assignment, all coe�cients
are assumed to be integers. (In this case it is called a polynomial in an integer domain.) Note that if the
degree of the polynomial is 0, then the polynomial is just a constant. For the remainder of this speci�cation,
I write p as a shorthand for p(x).

Given two polynomials p and q, the following binary operation is de�ned:

p * q is defined to be the product of polynomials p and q

Example

If p(x) = 2x + 3 and q(x) = −x + 1 then

p ∗ q = (2x + 3) ∗ (−x + 1) = −2x2�x + 3

Project Details

The Class Interface

You are to design the interface to a Polynomial class. The class must contain the following member
functions.

Name Description

eval(double x) Evaluate the polynomial using argument x and return the value. This should be
implemented as an overloaded function call operator().

operator* Given polynomials p and q, return p*q.

operator<�< Given an output stream out and polynomial p, display p in symbolic form on out.

In addition, the class needs

• a default constructor that creates a zero polynomial,

• a constructor that takes a coe�cient c and an exponent e and constructs a polynomial with the single
term cxe, e.g., Polynomial p(c,e);

• a copy constructor that takes a polynomial q and makes a new polynomial that is a copy of q, e.g.
Polynomial p(q);

• an operator= for the class that will (copy) assign a polynomial to an existing polynomial;

• a destructor, which deletes the polynomial.

Note that this description makes no mention of the private part of the class. That is up to you. You will
probably �nd it necessary to implement other private members of the Polynomial class.

1



CSci 335 Software Design and Analysis III

Assignment 1: Polynomial Multiplication

Prof. Stewart Weiss

Design and Implementation Requirements

A polynomial must be implemented using a list. The C++ language includes a list template class, and you
must use this template class instead of writing your own list class. That is my intention in giving you this
assignment.

The list provides all of the functions that you will need. I suggest that your list nodes be terms. Each
term is completely de�ned by its coe�cient and exponent. No two terms can have the same exponent; i.e.,
every node must have a unique exponent. It is a good idea to keep the nodes sorted by exponent value.
When two polynomials are added, some terms may cancel. For instance, if p = 2x + 1 and q = −2x + 2, and
we letr = p+ q, then r = 3 because the terms 2x and −2x canceled. We can end up with a result with fewer
(and possibly no) terms. This implies that you need to check when a coe�cient of the result is zero, and
delete the node. There are other issues that need to be resolved regarding how to perform the arithmetic.

The main program, class implementation, and interface must each be in its own �le. For this project
there is no need to have more than three source code �les.

Input and Output

The main program will create a vector or array of at most 100 polynomials. I will name it Poly here. You
can name it whatever you like. The main program will then read input from a text �le whose name is
speci�ed on the command line. If no �le is speci�ed or if the �le that is speci�ed does not exist or cannot
be opened for one reason or another, the main program must display an error message and then exit. Each
line of the �le will be in one of the following four formats:

1. k : c1 e1 c2 e2 . . . cn en

2. n = m * k

3. eval n(6)

4. show n

The �rst format is the de�nition of a new polynomial. The number before the colon, k, is the place in the
vector (array) where the polynomial should be stored. There will be whitespace separating all tokens on the
line, including the colon and the coe�cients and exponents. The line will be well-formed, so you do not have
to do input validation in this assignment. I.e., there will be a set of pairs of numbers after the colon, each
representing a term of the form ckxk. The terms are not sorted by increasing or decreasing exponents. The
array index will always be a number in the range [0, 99]. These are both legal de�nitions:

3 : 6 5 -4 3 -2 1 2 0

4 : 1 2 3 4 -9 1

which de�ne Poly[3] as 6x5 − 4x3 − 2x + 2 and Poly[4] as 3x4 + x2 − 9x.
The second format is an instruction to compute a product. It states that Poly[n] should contain the

product of Poly[m] and Poly[k], deleting anything that might have been in Poly[n] previously. You can
assume all indices will be valid at the time the line is reached (both operand polynomials exist.)

The eval instruction speci�es that the polynomial Poly[n] is to be evaluated with argument 6 and its
value displayed in the standard output stream. The argument can be any �oating-point number, such as
3.2. The output should be something like

Poly[n](6) = whatever the value is

The last format is an output instruction. The speci�ed polynomial, Poly[n], must be displayed in the
output stream in the format below. It does not need to be wrapped onto a new line if it seems long. The
stream will do whatever wrapping needs to be done.

Poly[n] = a1 x^e1 + a2 x^e2 + ... + am x^em

where the terms should be displayed in decreasing order of exponent.
For example, the input could look like

2



CSci 335 Software Design and Analysis III

Assignment 1: Polynomial Multiplication

Prof. Stewart Weiss

0 : 1 2 2 1 1 0

1 : 1 1 1 0

2 = 0 * 1

show 2

0 = 1 * 2

1 = 0 * 2

show 1

Testing Your Program

You should design your own input �les and test your program using your own input. You should carefully
check that the output of your program is correct for the inputs you gave to it. Try it on the simplest of
polynomials to be sure. Try it on constants, on polynomials that cancel terms when multiplied, and so on.

Programming Rules

Your program must conform to the programming rules described in the Programming Rules document on
the course website. It is to be your own work alone.

Grading

The program will be graded based on the following rubric.

• If the program does not compile on a cslab machine, it receives only 25%.

• For programs that compile:

� Correctness and implementation 60%

� Design (modularity and organization) 20%

� Documentation: 10%

� Style and proper naming: 10%

Submitting the Assignment

This assignment is due by the end of the day (i.e. 11:59PM, EST) on February 24, 2014. Create a directory
named named username _hwk1. Put all project-related source-code �les into that directory. Do not place

any executable �les or object �les into this directory. You will lose 1% for each �le that does not
belong there, and you will lose 2% if you do not name the directory correctly. With all �les in your directory,
run the command

zip -r username_hwk1.zip ./username_hwk1

This will compress all of your �les into the �le named username_hwk1.zip.
Before you submit the assignment, make sure that it compiles and runs correctly on one of the cslab

machines. Do not enhance your program beyond this speci�cation. Do not make it do anything except what
is written above.

You are to put your zip �le into the directory

/data/biocs/b/student.accounts/cs335_sw/projects/project1

Give it permission 600 so that only you have access to it. To do this, cd to the above directory and run the
command

chmod 600 username_hwk1.zip

where username_hwk1.zip is the name of your zip �le.
If you put a �le there and then decide to change it before the deadline, just replace it by the new version.

Once the deadline has passed, you cannot do this. I will grade whatever version is there at the end of the
day on the due date. You cannot resubmit the program after the due date.

3


