
CSci 335 Software Design and Analysis III

Assignment 2: Extended AVL Trees

Prof. Stewart Weiss

Assignment 2: Extended AVL Trees

Overview

In this assignment, you will implement an enhanced AVL (EAVL) tree. The EAVL tree di�ers from an
AVL tree in that it has member variables that store

• its current height,

• the number of nodes in the tree (called its size), and

• the internal path length of the tree.

It also provides a method for reporting the values of each of these metrics, as well as the number of nodes
visited by �nd operations. Lastly, it has a method to provide the average number of nodes visited in all �nd
operations so far.

Your main program will read a text �le that contains commands, one per line, and will process those
commands one after the other. The �le includes commands to insert, remove, and �nd a speci�c word, to
print the tree's contents in sorted order, and to report on the tree's statistical properties. The syntax and
semantics of the commands are described in the detailed requirements below. Only the main program is
permitted to read from an input �le or write to an output �le. The EAVL tree is permitted to write to an
output stream that is passed to it, but not to any �les.

Detailed Requirements

Input and Output

The program must get the name of the input �le from its only command line argument. Speci�cally, the
program must parse the command line and extract the input �le name from the �rst command line argument.
If there is no command line argument, it must report this as an error and exit. If the �le name is supplied
but cannot be opened for any reason, it must report this error and exit. The program is to put all output
on the standard output stream, not in any �le; to repeat this, it is not to place its output into a �le.

Input File Syntax, Semantics, and Error Handling

The input �le will consist of an unlimited sequence of lines, each of which starts with a command. The
allowable commands are listed in the table below. The lines are free form, which means that any number
of white space characters may precede or separate the tokens in the line. The lines are case-sensitive, i.e.,
"insert" and "Insert" are considered to be two di�erent words. More importantly, the data is case-sensitive;
the words "apple" and "Apple" are two di�erent words and would have to be stored separately if they were
each inserted.

The table below de�nes the semantics of each command. For each command, your program must take the
action indicated in the right hand column. In this assignment, a word is any sequence of one or more
non-blank, non-control characters, including letters, digits, and punctuation marks. Words may be up to 32
characters long. In the table, boldface indicates command keywords and italics represent placeholders for
data.

Command Description

insert word If word is not already in the tree, create a new entry for it with
frequency 1; otherwise increment its frequency in the tree and
output the new frequency in the form:

word <tab> frequency

1



CSci 335 Software Design and Analysis III

Assignment 2: Extended AVL Trees

Prof. Stewart Weiss

Command Description

remove word If word is in the tree, decrement the frequency of word, and delete
it if the frequency is zero. Then display a line of output in the
form:

word <tab> frequency

If word is not in the tree, display

word <tab> not found

find word Search the tree for word. If it is found, display word and its
frequency on a line of output. If it is not found, display word

with a zero frequency. In either case, output the number of nodes
visited in the search.

display Display the contents of the tree in sorted order, including the
frequencies of the items in the tree. Use the default collating
sequence. This means that uppercase will precede lowercase. The
libraries use this ordering by default in C and C++.

report Produce a report for the tree consisting of:

1. the size of the tree

2. the height of the tree

3. the internal path length of the tree, and

4. the average number of nodes visited by the �nd command
so far.

The report should list each of these metrics, on a single line, in
the above order, with a label that indicates what it is, such as
size = 120, in the output stream.

quit Clean up resources and terminate the program.

The main program should catch any line that is not one of the forms listed in the table above and display
an error message on the standard error stream for each such line that it �nds. It should continue to the
next line of input after �agging the bad line.

Main Program and Project Structure

The main program should do all I/O and act like a client to the EAVL class. Speci�cally, it needs to
repeatedly read the next command from input �le, process the command, and write the appropriate output.
It must also clean up all memory used before exiting.

The EAVL Tree Class Interface

Your EAVL Tree class must contain the following public methods. You may add others if you choose. You
must implement the deletion algorithm by using replacement by the in-order successor, not the in-order
predecessor. The methods are described by how they would be called by a client in the left column.

Public Method Description

int n = insert(item ) If item is not in the tree, insert item into the tree, otherwise
increment item's frequency. In either case, return the frequency
of item after the insertion has been performed.

2



CSci 335 Software Design and Analysis III

Assignment 2: Extended AVL Trees

Prof. Stewart Weiss

Public Method Description

int n = remove(item ) If item is not in the tree, return -1. If item is in the tree,
decrement its frequency, and if the new frequency is zero, remove
item from the tree. In either case return the frequency of item
after the removal has been performed (so that a zero indicates the
item is removed completely).

int n = find(&item , &freq ) Find the node containing item and, if it is found, update the
frequency of item in the tree with the new frequency, freq. If item
is not in the tree, set freq to 0. In either case, return the number
of nodes visited.

int n = height() Return the current height of tree.

int n = int_pathlength() Return the current internal path length of the tree.

int n = size() Return the total number of nodes in tree.

float x = avge_nodevisits() Return the average number of nodes visited by all completed
find operations on the tree so far. The average is, by de�nition,
the total number of nodes visited divided by the total number of
completed find operations. A find operation is complete if it
returns a value of any kind.

display(ostream ) Write the items in the tree in sorted order, one per line, onto the
given output stream.

Testing Your Program

You should design your own input �les and test your program using your own input. You should carefully
check that the output of your program is correct for the inputs you gave to it. Include �les with bad lines,
�les with no lines, �les that cannot be opened, �les with all kinds of spacing, and so on.

Programming Constraints

• You are free to use either the code from my notes or the book, but you must cite this in the preamble
if you do.

• You are not permitted to use any features of C++-11; the program must compile with the GNU C++
compiler in the lab, version 4.7.2 without the need to specify C++-11.

• For full credit your solution must maintain the size, height, and internal pathlength information as
e�ciently as possible.

• Your program must conform to the programming rules described in the Programming Rules document
on the course website. It is to be your own work alone.

Grading

The program will be graded based on the following rubric.

• If the program does not compile on a cslab machine, it receives only 25%.

• For programs that compile:

� Correctness and implementation 50%

� Performance 10%

� Design (modularity and organization) 20%

� Documentation: 10%

� Style and proper naming: 10%

3



CSci 335 Software Design and Analysis III

Assignment 2: Extended AVL Trees

Prof. Stewart Weiss

Submitting the Assignment

This assignment is due by the end of the day (i.e. 11:59PM, EST) on April 7, 2014. Create a directory
named named username _hwk2. Put all project-related source-code �les into that directory. Do not place

any executable �les or object �les into this directory. You will lose 1% for each �le that does not
belong there, and you will lose 2% if you do not name the directory correctly. With all �les in your directory,
run the command

zip -r username_hwk2.zip ./username_hwk2

This will compress all of your �les into the �le named username_hwk2.zip.

Before you submit the assignment, make sure that it compiles and runs correctly on one of the cslab

machines. Do not enhance your program beyond this speci�cation. Do not make it do anything except what
is written above.

You are to put your zip �le into the directory

/data/biocs/b/student.accounts/cs335_sw/projects/project2

Give it permission 600 so that only you have access to it. To do this, cd to the above directory and run the
command

chmod 600 username_hwk2.zip

where username_hwk2.zip is the name of your zip �le.

If you put a �le there and then decide to change it before the deadline, just replace it by the new version.
Once the deadline has passed, you cannot do this. I will grade whatever version is there at the end of the
day on the due date. You cannot resubmit the program after the due date.

4


