
CSci 335 Software Design and Analysis III
Assignment 3

Prof. Stewart Weiss

Assignment 3

Overview

This assignment combines several di�erent data abstractions and algorithms that we have covered in class,
including priority queues, online disjoint set operations, hashing, and sorting. The problem is a simpli�cation
of the problem of inferring relationships from social networking data.

In this assignment, you are to write a program that processes communication data. The input is obtained
from a �le named on the command line. The �le consists of lines of text of various types. A data line consists
of the word data followed by two distinct telephone numbers followed by a positive integer. Each telephone
number is in the form xxx-xxx-xxxx, where each 'x ' is a decimal digit. The positive integer represents an
amount of money transferred from the �rst number to the second number, in whole dollar amounts. For
example, the line

data 807-444-2100 201-222-1200 15400

represents the fact that $15,400 was transferred from the owner of 807-444-2100 to the owner of 201-222-
1200. The number more generally represents the strength of the relationship between the two numbers. A
telephone number x is linked to a telephone number y if either x and y are the same number or a transfer
of money was made between them. Two numbers x and y are connected if x and y are linked or if there
is a number z such that x and z are linked and z is connected to y. A cohort is the largest set of telephone
numbers such that every number in the set is connected to every other number in the set. This implies that
if a telephone number is not in the cohort, then no transfer was ever made between that number and any
number in the cohort. It also implies that every pair of cohorts is disjoint, and that no cohort is empty.

From these de�nitions, we can conclude that the connected relation is symmetric, re�exive, and transitive,
and hence, an equivalence relation, and that the set of all cohorts forms a partition of the set of all telephone
numbers.

The size of a cohort is the cardinality of the set (the number of telephone numbers in it.) The volume of
a cohort is the total amount of money transferred between members of the cohort. From the de�nition of
connectivity, cohorts of size 1 have volume 0. The activity of a cohort is the volume divided by the total
number of unordered pairs of distinct numbers in the cohort, which is N(N −1)/2 where N is the size of the
cohort; it measures the average amount of money that has been transferred between any pair of members of
the cohort.

When a data line is read, the program must update all cohorts to re�ect possible new relations. The update
must include any changes in the size, volume, and activity of all cohorts. Every cohort must be identi�ed
by a positive integer ID , called its cohort-id .

The other types of lines that may appear in the input �le are as follows. For each command, your program
must take the action indicated in the right hand column. In the table, boldface indicates command keywords
and italics represent placeholders for data. Fixed font indicates actual data.

Command Argument Type Description

find phone-number The program should display the ID of the cohort to
which the phone-number belongs, in the form

phone-number : ID

If there is no such number, it should display

phone-number : no cohort

1

CSci 335 Software Design and Analysis III
Assignment 3

Prof. Stewart Weiss

Command Argument Type Description

members cohort-id The program should display a list of all telephone
numbers in the given cohort, one per line. If there is no
such cohort, it should display a line indicating there is no
such cohort.

max one of the following
strings:
activity

size

The program should display the cohort-id, activity, size,
and volume of the cohort having the maximum value of
the given property. If two or more cohorts have the same
maximum value, then all that are maximal should be
displayed. If there are no cohorts, it should display a line
indicating there are no cohorts.

cohort-ids The program should display a list of all cohort ids in
order of increasing id.

info cohort-id | 0 The program should display

1. the cohort-id,

2. the activity,

3. the size, and

4. the volume

of the cohort whose cohort-id is given. If no such id
exists, it should display an error message. If the argument
is 0, then the program should display this information for
all of the cohorts, sorted by increasing cohort-id.
These metrics should be listed on a single line, in the
above order, separated by tab characters.

Further Details About Input And Output

The program must get the name of the input �le from its only command line argument. Speci�cally, the
program must parse the command line and extract the input �le name from the �rst command line argument.
If there is no command line argument, it must report this as an error and exit. If the �le name is supplied
but cannot be opened for any reason, it must report this error and exit. The program is to put all output
on the standard output stream, not in any �le; to repeat this, it is not to place its output into a �le.

Telephone numbers will have no space in them, and will have hyphens as indicated above. Tokens in the
input line may be preceded or followed by any number of white space characters. The number of distinct
telephone numbers will not exceed 5000. From the preceding information, you can see that there are a total
of six di�erent words that can start a line in the �le. The program should catch any line that does not start
with one of these words and display an error message on the standard error stream for each such line
that it �nds. It can assume that the remainders of all lines are in the proper form. It should continue to the
next line of the �le after �agging the bad commands.

Implementation Requirements

1. Telephone numbers are strings, not integers. The union-�nd algorithm description is based on sets
whose names are array index values. How are strings associated with these index values? When a
telephone number is given to the program, the program needs to store it and access it easily. Although
you could use a vector and some type of O(log n) look-up structure for it, the proper solution is
to devise a hash table and hashing scheme that will allow nearly O(1) look-ups. For the union-�nd
algorithm, each new set should occupy the next free position in an array, which suggests that some

2

CSci 335 Software Design and Analysis III
Assignment 3

Prof. Stewart Weiss

type of object must keep track of that position and associate it with each new telephone number, which
is a set of size 1. The idea is therefore that, given a telephone number, you associate a new set id with
it and store it in such a way that you can retrieve the set id from the telephone number in O(1) time.
But you also need to �nd all of the telephone numbers in a given set easily, which suggests that the
array used for the union-�nd algorithm does not store just simple integer values.

2. You must use the union-�nd algorithm, with path compression and union-by-size, to solve this problem.
All set manipulation must be carried out in a suitably de�ned class.

3. You must use a priority queue for �nding the maximum cohort when the max command is issued. Since
the maximum may be with respect to one of two di�erent properties, this suggests using some type of
indirection in the queue nodes. When sets are updated as a result of reading new data, the priority
queue may become invalid because one set may become larger or smaller with respect to one or more
properties than before, and because a new set may be created, or an existing one removed. Although
you could update the priority queues after each data operation, you could use the on-demand approach
of leaving them in their old states, and only when the max command is issued, heapifying and �nd the
maximum element. For the sake of e�ciency, you might consider keeping a 'dirty' �ag to test if it is
necessary to re-heapify. This is your choice; you can either update your queue after every operation
that changes the properties of the sets, or only �on-demand.�

4. You must use heapsort to sort cohorts for display.

5. All interaction with the �le system and the terminal must be performed by the main program. Classes
are free to create strings to pass to the main program, or to write onto ostream objects that are passed
as parameters.

6. Activity must be computed with �oating point division and reported to two decimal places of precision.
Size and volume are whole numbers.

Programming Constraints

• You are not permitted to use any features of C++-11; the program must compile with the GNU C++
compiler in the lab, version 4.7.2 without the need to specify C++-11.

• Your program must conform to the programming rules described in the Programming Rules document
on the course website. It is to be your own work alone.

Testing Your Program

You should design your own input �les and test your program using your own input. You should carefully
check that the output of your program is correct for the inputs you gave to it. Include �les with bad lines,
�les with no lines, �les that cannot be opened, �les with all kinds of spacing, and so on. Include data that
creates several cohorts of equal size, volume, and activity.

Grading

The program will be graded based on the following rubric.

• If the program does not compile on a cslab machine, it receives only 25%.

• For programs that compile:

� Correctness 40%

� Conformance to Implementation Requirements 30%

� Design (modularity and organization) 10%

� Documentation: 10%

� Style and proper naming: 10%

3

CSci 335 Software Design and Analysis III
Assignment 3

Prof. Stewart Weiss

Submitting the Assignment

This assignment is due by the end of the day (i.e. 11:59PM, EST) on May 12, 2014. Create a directory
named named username _hwk3. Put all project-related source-code �les into that directory. Do not place

any executable �les or object �les into this directory. You will lose 1% for each �le that does not
belong there, and you will lose 2% if you do not name the directory correctly. With all �les in your directory,
run the command

zip -r username_hwk3.zip ./username_hwk3

This will compress all of your �les into the �le named username_hwk3.zip.

Before you submit the assignment, make sure that it compiles and runs correctly on one of the cslab

machines. Do not enhance your program beyond this speci�cation. Do not make it do anything except what
is written above.

You are to put your zip �le into the directory

/data/biocs/b/student.accounts/cs335_sw/projects/project3

Give it permission 600 so that only you have access to it. To do this, cd to the above directory and run the
command

chmod 600 username_hwk3.zip

where username_hwk3.zip is the name of your zip �le.

If you put a �le there and then decide to change it before the deadline, just replace it by the new version.
Once the deadline has passed, you cannot do this. I will grade whatever version is there at the end of the
day on the due date. You cannot resubmit the program after the due date.

4

