
CSci 335 Software Design and Analysis III
Project 2: Processing New York City Street Tree Data (revised)fe

Prof. Stewart Weiss

Programming Project 2: Processing 2015 New York City Street

Tree Census Data

1 Overview

This project extends what you did in Project 1 and is a much larger project. In Project 1, you wrote a
program that read the NYC open data set, TreesCount!, the 2015 Street Tree Census, conducted by volunteers
and sta� organized by the NYC Department of Parks & Recreation as well as partner organizations. The
data includes information about more than 680,000 trees on the streets of New York City. In this project,
you will again read the data from that data set, but this time around, you will do some processing with that
data. You will write a program that will allow a user to summarize certain aspects of the data, such as how
many trees of a given species are growing, borough by borough, or which trees are within a given distance of
a given GPS location. The user will be able to specify a fragment of a species common name, such as �oak�
and the program will display the frequency of occurrence of all types of oak trees throughout the city, such
as pin oaks, sawtooth oaks, scarlet oaks, and white oaks.

The data set is part of the NYC OpenData website and can be found here:

https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/uvpi-gqnh

You may �nd it interesting to take a look at an online visualization project based on an older New York
City tree census data set at http://www.cloudred.com/labprojects/nyctrees/.

Your project will be storing the tree data in a searchable container class, speci�cally an AVL tree. In other
words, it will be an abstract tree containing real tree data! As with the �rst project, you will be given
portions of the code, which I have written, to reduce your programming e�ort.

2 Objectives

This project is designed with a few objectives in mind:

• to give you exposure to and experience with large, open data sets. Open data sets are to data what
open source software is to software. No one has proprietary rights to the data. You can download it
and analyze it for free. Wikipedia has a good description of open data: �Open data is the idea that
some data should be freely available to everyone to use and republish as they wish, without restrictions
from copyright, patents or other mechanisms of control.�

• to give you experience writing an AVL tree class, some of the methods of which are slightly modi�ed,
as will be explained below.

• to get you to write implementations for two class interfaces that are provided to you and cannot be
modi�ed, as well as a main program that is a client of those classes. This gives you experience writing
code that has been speci�ed by someone else.

• to give you practice writing code that uses a class whose implementation is hidden.

3 About The Data Set

It is the same data set that was the basis of Project 1. The data set is part of the NYC OpenData website
and can be found here:

https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/uvpi-gqnh

You may �nd it interesting to take a look at an online visualization project based on an older New York
City tree census data set at http://www.cloudred.com/labprojects/nyctrees/.

The NYC OpenData website for this tree census data gives you the means to download the data in various
formats. Your program has to work with the csv format of the data. A �le in csv format, in case you are

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
1

https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/uvpi-gqnh
http://www. cloudred.com/labprojects/nyctrees/
https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/uvpi-gqnh
http://www. cloudred.com/labprojects/nyctrees/

CSci 335 Software Design and Analysis III
Project 2: Processing New York City Street Tree Data (revised)fe

Prof. Stewart Weiss

not familiar with it, is a comma-separated-values �le. A comma-separated-values �le is a plain text �le
in which each line represents a single record, and within the line, commas separate the individual �elds of
the record. (Fields can also contain commas if they are within quoted strings, e.g., �Brooklyn, New York� is
a single �eld.) Spreadsheet applications let you import csv �les to view their contents by rows and columns.
The tree data �le that can be downloaded contains records for over 680,000 trees. Each row represents a
single tree (or tree stump) and has 41 columns, which means that there are 41 di�erent pieces of information
for each tree. The data set that is downloaded will have as its �rst row, the labels of its columns. For this
assignment, you should delete that row, so that the program can assume all rows are actual data rows. (The
version of the data set that I provide on the server has that �rst row deleted.)

A detailed description of the meaning and form of every column1 in that dataset can be found in the data
dictionary described here:

https://data.cityofnewyork.us/api/views/uvpi-gqnh/files/8705bfd6-993c-40c5-8620-0c81191c7e25?

download=true&filename=StreetTreeCensus2015TreesDataDictionary20161102.pdf

This data dictionary is also available on our server in the resources subdirectory of the cs335_sw directory.
Each valid line in the dataset contains 41 columns. Some of these columns may be empty. An empty column
is represented by two commas with no intervening characters. The columns are determined by the commas
separating each entry. This means that a valid line has to contain at least 40 commas separating the entries
(even if the entries are empty), and maybe more, if the �elds contain embedded commas. While there should
not be invalid lines in the �le, if any are found, the program should handle them by ignoring them.

4 Program Invocation, Usage, and Behavior

The program is invoked from the command line and expects two command line arguments, which specify
respectively (1) the csv �le to be opened for reading and (2) the sequence of user commands to be processed.
If two �les are not speci�ed, it is a usage error and the program must write an appropriate and meaningful
error message onto the standard error stream , after which it must exit. If a �le that is speci�ed does not
exist or cannot be opened for some reason, the program must write an appropriate and meaningful error
message onto the standard error stream and then exit.

Assuming that both �les are opened successfully, the program must read the entire csv �le, line by line,
parsing the lines and storing certain information contained in them in a TreeCollection object. If the
�le has invalid lines, they should be skipped over. The TreeCollection object is responsible for storing
the data contained in the input �le and for computing various properties of that data. The main program
will call on the methods of the TreeCollection class to do most of its work. The speci�cation of the
TreeCollection class and its public methods and required implementation details is contained in Section
5.3. The TreeCollection is essentially a container that stores Tree objects in an AVL tree, and also stores
other information contained in the �le. Each Tree object is uniquely identi�ed in the data set by a numeric
tree_id �eld, but because tree ids are not a user-friendly way to �nd trees, the species common name
�eld, denoted spc_common, and tree_id �eld, as a pair, will be used as the primary and secondary keys of
the ordering relation maintained internally by the TreeCollection object. The user does not need to know
this level of detail, but you as a programmer, do.

Once the entire csv �le has been read and stored into TreeCollection object, the program will process the
commands from the command �le. These commands are described and explained in Section 4.2 below.

4.1 Processing the Input File

It is the task of the main program to read the input �le, parse its lines, construct a Tree object for each
line and make the calls to the TreeCollection class to insert that object into the collection. As each line of
data is read, its 41 �elds must be separated, and the proper subset of ten of them must be used to construct
the Tree object2. The TreeCollection will use the (spc_common, tree_id) pair as the unique key for
inserting the Tree objects into its encapsulated AVL tree. The TreeCollection will also keep track of the
common names of all species that it stored, and in which boroughs the trees are located. I provide a class

1This description is missing the description of the column with index 14 that appears between the user_type and root_stone

columns in the dataset.
2If you did Project 1 successfully, you already have the various code modules that can do this task

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
2

https://data.cityofnewyork.us/api/views/uvpi-gqnh/files/8705bfd6-993c-40c5-8620-0c81191c7e25?download=true&filename=StreetTreeCensus2015TreesDataDictionary20161102.pdf
https://data.cityofnewyork.us/api/views/uvpi-gqnh/files/8705bfd6-993c-40c5-8620-0c81191c7e25?download=true&filename=StreetTreeCensus2015TreesDataDictionary20161102.pdf

CSci 335 Software Design and Analysis III
Project 2: Processing New York City Street Tree Data (revised)fe

Prof. Stewart Weiss

named TreeSpecies that encapsulates the set of all species common names found in the data set, and which
provides various methods for interacting with this set of names. Again, the details are below.

4.2 Command Processing

After all input has been processed, the program enters a command processing loop, in which it reads com-
mands from the second �le speci�ed on the command line. The syntax of the possible commands from that
�le is as follows. The bold text is the command and the italicized text is its parameter list.

Command Description
tree_info tree_to_find where tree_to_find is a string that might contain white space.

This command lists certain information about the trees whose
common name matches tree_to_find . Details about output and
the de�nition of �matches� are below.

listall_names Lists all tree common names found in the TreeCollection.
listall_inzip zipcode where zipcode is an int type. Lists the common names of all

trees found in the given zipcode, together with their frequencies.
For example, if three red oaks and two spruce are in the given
zipcode it lists
red oak: 3

spruce: 2

list_near latitude

longitude dist

Lists the common names and frequencies of all trees within dist

kilometers of the given point (latitude,longitude).

4.2.1 Details About the Commands

The tree_info Command The argument to the tree_info command is a string consisting of a single
word or one or more words with intervening whitespace or hyphens. The sequence can be the full name
of a species, such as �southern white oak�, or one or more whole words that are a substring of that name,
such as �oak�, �white�, �southern�, �southern white�, or �white oak�. The program must determine which
tree species names that were stored when the input �le was read match the argument string. Fortunately
for you, I have implemented the matching algorithm and functions needed to use it, and made all of those
functions part of the TreeSpecies class. This class will be provided to you in two �les, tree_species.h
and tree_species.o (a binary). The interface will be an appendix to this document as well. Even though
I provide it, you need to know how matching is de�ned.

Let us call the argument string, tree_to_find, and let us call the complete species name against which
it is compared, tree_type. For the purpose of matching, a hyphen character is treated like a whitespace
character - it separates two distinct words. Thus, for example, �Douglas-�r� consists of two words, �Douglas�
and ��r�. Then tree_to_find matches tree_type if any of the following conditions are true:

• tree_to_find is exactly the same string as tree_type, ignoring case.

• If tree_to_find has no whitespace or hyphen characters (it is one word) then if tree_type contains
white space characters or hyphens and consists of the words w1, w2, ..., wk, then tree_to_find is
exactly one of the words w1, w2, ..., wk. For example if tree_to_�nd is Japanese, and tree_type is
Japanese tree lilac, then tree_to_�nd matches tree_type.

• if tree_to_find has whitespace or hyphen characters, then then if tree_type contains white space
characters or hyphens and consists of the words w1, w2, ..., wk, then tree_to_find is some subsequence
wiwi+1...wj of the sequence of words w1, w2, ..., wk. So tree lilac matches Japanese tree lilac, but tree
lilac does not match lilac.

Otherwise tree_to_find does not match tree_type. Examples both positive and negative:

oak matches �white oak�

birch matches �paper birch�

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
3

CSci 335 Software Design and Analysis III
Project 2: Processing New York City Street Tree Data (revised)fe

Prof. Stewart Weiss

fir matches �Douglas-fir�

�two-winged� matches �two-winged silverbell�

Japanesematches each of �Japanese hornbeam�, �Japanese maple�, and �Japanese tree lilac�

�bur oak� matches �bur oak�

range does not match �Osage-orange�

�Japanese horn� does not match �Japanese hornbeam�

chest does not match �chestnut�

locust does not match �honeylocust�

With matching so de�ned, we can state what the program does when the tree_info command is processed.
The program uses the given words to try to match one or more species common names. The set of all such
matching common names is constructed. Then, all occurrences of any of the matched tree types are searched
for in the stored data, the program determines which borough each is in, and displays the number of those
types of trees in the city in total, and in each borough, as well as the percentage of total trees that this
represents, in the city as a whole, and in each borough. For example, the output for the command

tree_info linden

should look like this:

linden

All matching species:

american linden

silver linden

littleleaf linden

Frequency by borough:

Total in NYC: 51,267 (683,788) 7.50%

Manhattan: 5,457 (65,423) 8.34%

Bronx: 6,719 (85,203) 7.89%

Brooklyn: 15,299 (177,293) 8.63%

Queens: 20,817 (250,551) 8.31%

Staten Island: 2,975 (105,318) 2.82%

In the above display, for NYC and for each borough:

• the �rst value is the total number of the di�erent types of linden trees in that borough;

• the number in parenthesis is the total number of trees in that borough;

• the last number is the percentage calculated as the total number of lindens divided by the total number
of trees times 100. The program has to produce the output formatted in aligned columns, with commas
grouping the tree digits in larger numbers and with two digits after the decimal point in the last column.
To be clear, although there may be multiple, distinct species, when multiple species match the user's
input tree name, the counts for all species that match are summed and the totals are used in the output
display.

The listall_names Command This command lists all tree common names for all trees found in the
TreeCollection object (i.e., all those stored in the TreeSpecies object.)

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
4

CSci 335 Software Design and Analysis III
Project 2: Processing New York City Street Tree Data (revised)fe

Prof. Stewart Weiss

The listall_inzip Command This command lists the common names for all trees in the given zipcode
together with their number of occurrences in that zipcode, such as

white oak: 12

red oak: 15

sycamore: 32

Note that the TreeSpecies object does not store locations, so it is of no use in implementing this command.

The list_near Command This command lists the common names and the frequencies of all trees whose
distance from the given point (latitude,longitude) is at most dist kilometers. In order to compute this,
you need to compute the distance between two points given by decimal values of latitude and longitude
(i.e., GPS coordinates). If the distance between the given point and a tree is at most dist, then that tree is
counted in the result of this command. The distance between two such points can be computed using the
Haversine formula, which follows.

4.2.2 Distance Between Two Points on Sphere (The Haversine Formula)

The Haversine formula (see https: //en.wikipedia.org/wiki/Haversine_formula) can be used to compute
the approximate distance between two points when they are each de�ned by their latitude and longitude
in degrees. The distance is approximate because (1) the earth is not really a sphere, and (2) numerical
round-o� errors occur. Nonetheless, for points that are no more than ten kilometers apart, the formula is
accurate enough. Given the following notation

d : the distance between the two points (along a great circle of the sphere,

r : the radius of the sphere,

ϕ1, ϕ2: latitude of point 1 and latitude of point 2, in radians

λ1, λ2: longitude of point 1 and longitude of point 2, in radians

the formula is

2r · arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos (ϕ1) cos (ϕ2) sin2

(
λ2 − λ1

2

))
A C++ function to compute this formula in a numerically e�cient way is given in Listing 1.

Listing 1: Haversine Function (corrected version)

#inc lude <cmath>
To bui ld , l i n k to the math l i b r a r y us ing −lm

const double R = 6372.8 // rad iu s o f earth in km
const double TO_RAD= M_PI / 180 . 0 ; // conver s i on o f degree s to rads

double have r s ine (double lat1 , double lon1 , double lat2 , double lon2)
{

l a t 1 = TO_RAD ∗ l a t 1 ;
l a t 2 = TO_RAD ∗ l a t 2 ;
lon1 = TO_RAD ∗ lon1 ;
lon2 = TO_RAD ∗ lon2 ;
double dLat = (l a t 2 − l a t 1) / 2 ;
double dLon = (lon2 − lon1) / 2 ;
double a = s i n (dLat) ;
double b = s i n (dLon) ;

r e turn 2 ∗ R ∗ as in (sq r t (a∗a + cos (l a t 1)∗ cos (l a t 2)∗b∗b)) ;
}

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
5

http://https: //en.wikipedia.org/wiki/Haversine_formula

CSci 335 Software Design and Analysis III
Project 2: Processing New York City Street Tree Data (revised)fe

Prof. Stewart Weiss

5 Program Organization and Files

You need to provide an implementation of several classes that store the data and compute the results when
the program is executed. In particular, your program must implement and/or use the classes listed in this
section. You may implement additional classes as well, if you wish. As you are working on your classes, keep
in mind that they should be (and may be) tested separately from the rest of your program.

5.1 The Tree Class

As stated above, the csv �le has 41 �elds, but your Tree object will store a subset of them. The Tree class
represents a single tree on some street in New York City. The header �le for the Tree class should be stored
in a �le named tree.h. The Tree class must encapsulate the following �elds of the data set:

• string spc_common; the common name of the tree, such as �white oak� or a possibly empty string

• int tree_id; a non-negative integer that uniquely identi�es the tree

• integer tree_dbh; a non-negative integer specifying tree diameter

• string status; a string, valid values: �Alive�, �Dead�, �Stump�, or the empty string

• string health; a string, valid values: �Good�, �Fair�, �Poor�, or the empty string

• string address: nearest estimated address to tree

• string boroname; valid values: �Manhattan�, �Bronx�, �Brooklyn�, �Queens�, �Staten Island�

• int zipcode; a positive �ve digit integer (This means that any number from 0 to 99999 is acceptable.
The values that are shorter should be treated as if they had leading zeroes, i.e., 8608 represents zipcode
08608, 98 represents zip code 00098, etc.)

• double latitude; speci�es GPS latitude of the tree point, in decimal degrees

• double longitude; speci�es GPS longitude of the tree point, in decimal degrees

These must be private data members of the Tree class. All of the string data �elds should store the data in
the exact case (upper or lower) as it is in the original input �le. The spatial coordinates are GPS coordinates
that can be used to locate the trees on a map.

The Tree class must provide at least the following public methods. You may add other methods if you
think they are necessary. In any case, the Tree class implementation �le must be in a �le named tree.cpp

implementation �le. All methods must be case insensitive when comparing string data. Your program should
not modify these methods in any way.

Method Syntax Description

Tree(const string & treedata); A constructor for the class that takes a string
from a csv �le.

Tree (int id, int diam, string status,

string health, string spc, int zip,

string addr, string boro, double

latitude, double longitude);

A constructor for the class.

friend bool operator==(const Tree & t1,

const Tree & t2);

Given two Tree objects, it returns true if and
only if they have the same species common name
(spc_common) and tree_id, (case insensitive).

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
6

CSci 335 Software Design and Analysis III
Project 2: Processing New York City Street Tree Data (revised)fe

Prof. Stewart Weiss

friend bool operator<(const Tree & t1,

const Tree & t2);

This compares the two trees using spc_common as
the primary key and tree_id as the secondary
key and returns true if t1 is less than t2 in this
ordering and false otherwise. (case insensitive)

friend ostream& operator<�< (ostream & os,

const Tree & t);

This prints a Tree object onto the given
ostream. Each of the members of the Tree
object should be printed, in the exact same order
as they are described in the table above, e.g.,
with the tree spc_common name �rst, then the
tree_id. Fields should be separated by commas
in the output stream.

friend bool samename(const Tree & t1,

const Tree & t2);

This returns true if and only if the two trees
passed to it have identical spc_common members.
This di�ers from operator== because it ignores
the tree_id. (case insensitive)

friend bool islessname(const Tree & t1,

const Tree & t2);

This returns true if and only the spc_common
member of the �rst Tree object is smaller than
that of the second as strings. This di�ers from
operator< because it ignores the tree_id. (case
insensitive)
For example,
mytree.follows(�mimosa�) is true if
mytree.spc_common == �pine�

string common_name() const; This returns the spc_common name of the Tree.

string borough_name() const; This returns the name of the borough in which
the Tree is located.

string nearest_address() const; This returns the street address nearest to which
the Tree is located.

int diameter() const; This returns the value of the tree_dbh member.

int zip() const; This returns the value of the zipcode member of
the tree.

void get_position(double & latitude,

double & longitude) const;

This stores into its two paremeters the latitude
and longitude of the Tree.

5.2 The TreeSpecies Class (Provided to You)

The TreeSpecies class encapsulates the set of all common names of trees found in the input data set. For
example, if the data set has trees with common names pin oak, red oak, red pine, and spruce, then the
TreeSpecies class would contain each of these names exactly once, regardless of how many individual trees
of each type exist. This class also provides the functionality to test if a word matches a particular tree
common name, and to list all common names that are matched by a word. The class interface is de�ned as
follows.

Method Syntax Description

TreeSpecies(); A default constructor for the class that creates
an empty TreeSpecies container.

~TreeSpecies(); A destructor for the class.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
7

CSci 335 Software Design and Analysis III
Project 2: Processing New York City Street Tree Data (revised)fe

Prof. Stewart Weiss

Method Syntax Description

void print_all_species(ostream & out)

const;

This writes the set of all common names found in
the data set to the output stream out, one per
line. There is no particular order in which they
are written.

int number_of_species() const; This returns the total number of distinct species
common names found in the data set.

int add_species(const string & species); This adds the species to the TreeSpecies
container. It returns a 0 if the species was
already in the TreeSpecies container and a 1 if
it was not.

list<string> get_matching_species(const

string & partial_name) const;

This returns a list<string> object containing a
list of all of the actual tree species that match a
given parameter string partial_name. This
method should be case insensitive. The list
returned by this function should not contain any
duplicate names and may be empty.

5.3 The TreeCollection Class

The TreeCollection class provides the functionality to the main program for storing and accessing tree
data and its properties. It must encapsulate three containers:

• an AVL tree that stores the tree objects that were found in the input data set,

• a TreeSpecies container that stores the set of all spc_common tree species names that were found in
the input data set, and

• a container that stores the names of each New York City borough and how many trees from the data
set are in each borough.

These containers must be private or protected members of the TreeCollection class. The TreeCollection
object has two tasks to perform when it is given a Tree object to insert into its AVL tree:

1. It must determine within which borough the tree is located and update the count of the total number
of Tree objects located in that borough, even if the tree is dead or just a stump. If an object is inserted
into the AVL tree, then it is part of the �census.�

2. For each Tree object, if the spc_common member is not an empty string, it should be inserted
into the TreeSpecies object, so that, when the entire �le has been read and its trees stored, the
TreeCollection will have a list of all of the species names of trees that have been stored into the
AVL tree. For example, if the input �le has ten lines consisting of three magnolia trees, two mimosas,
one white oak, and four mulberry trees, then the TreeSpecies container would contain just these
four names: magnolia, mimosa, mulberry, white oak. It does not contain duplicates of these
names. The TreeSpecies container provided to you ensures that this is the case; you do not need to
do anything other than call its add_species() method.

When the program is processing commands and the tree_info command is supplied with a partial name
such as oak, instead of �white oak� or �pin oak�, the TreeSpecies container will be checked to see which
trees match the words that the user entered according to the matching rules described in Section 4.2 above.
The set of matching tree names in TreeSpecies will be used for searching the AVL tree.

The class must provide the following public methods. In the descriptions, whenever they refer to �matching,�
it is by the rules described in Section 4.2 above. Your program must use the public interface described below.
Your implementation �le must implement exactly what this interface �le de�nes. You are free to de�ne the

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
8

CSci 335 Software Design and Analysis III
Project 2: Processing New York City Street Tree Data (revised)fe

Prof. Stewart Weiss

private part in any way that you like, and you may add additional public methods, but if your public part
changes anything described below in any way, it will be considered incorrect. If you wish to make changes,
please request permission and justify the change.

Method Syntax Description

TreeCollection (); A default constructor for the class that creates
an empty AVL tree, an empty TreeSpecies

container, and an empty BoroughNames

container.

~TreeCollection (); A destructor for the class.

int total_tree_count() const; This returns the total number of Tree objects
stored in the collection.

int count_of_tree_species (const string

& species_name) const;

This returns the number of Tree objects in the
collection whose spc_common species name
matches the species_name speci�ed by the
parameter. This method should be case
insensitive. If the method is called with a
non-existent species, the return value should be 0.

int count_of_trees_in_boro(const string

& boro_name) const;

This returns the number of Tree objects in the
collection that are located in the borough
speci�ed by the parameter. This method should
be case insensitive. If the method is called with a
non-existent borough name, the return value
should be 0.

list<string> get_matching_species(const

string & species_name) const;

This returns a list<string> object containing a
list of all of the actual tree species that match a
given parameter string species_name. This
method should be case insensitive. The list
returned by this function should not contain any
duplicate names and may be empty.

list<string> get_all_in_zipcode(int

zipcode) const;

This returns a list<string> object containing a
list of all of the actual tree species that are
located in the given zipcode.

list<string> get_all_near(double

latitude, double longitude, double

distance) const;

This returns a list<string> object containing a
list of all of the actual tree species that are
located within distance kilometers from the
GPS position (latitude, longitude).

5.4 The AVL_Tree Interface

Your program must use the public AVL tree class interface contained below. You cannot modify the member
functions, but you may add others. Your AVL tree implementation �le must implement at least what this
interface �le de�nes. You are free to de�ne the private part in any way that you like.

The AVL tree class will use the operator< and operator== methods of the Tree class to implement the
insert(), remove(), find(), findMin(), and findMax() methods. Thus, in AVL tree implementation code
such as

if (current_tree < current_node->tree)

where current_tree and current_node->tree are both Tree objects, the < operator being invoked is really
the overloaded operator< from the Tree class. In short, your AVL tree does not need to �know� how the trees

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
9

CSci 335 Software Design and Analysis III
Project 2: Processing New York City Street Tree Data (revised)fe

Prof. Stewart Weiss

are compared during insertion because the Tree class has its own �compares� method. But to implement the
findallmatches() method, it must use the samename() and islessname() methods, because they rely on
only the primary key.

class AVL_Tree

{

public:

AVL_Tree (); // default

AVL_Tree (const AVL_Tree & tree); // copy constructor

~AVL_Tree (); // destructor

// Search methods:

const Tree& find (const Tree & x) const;

const Tree& findMin () const;

const Tree& findMax () const;

list <Tree >& findallmatches (const Tree & x) const;

// Traversals:

// prints the Tree objects onto the ostream using inorder traversal.

// Each of the members of the Tree object is printed , in the exact

// same order as they are above , e.g., with the tree spc_common name

// first , then the tree_id. Fields should be separated by commas

// in the output stream.

void print (ostream& out) const; // prints the Tree objects

// Methods to consider adding - getting all trees in a zipcode ,

// or near a given point

// Tree modifiers:

void clear (); // empty the tree

void insert(const Tree& x); // insert element x

void remove(const Tree& x); // remove element x

};

The findallmatches() method must search the entire tree for all occurrences of Tree objects that match
its Tree argument. I have not provided code for you to implement this. Your task is to �gure out how to do
it without having to examine every single node in the tree every time it is called and without missing any
matching objects.

Even though this project never deletes trees from the collection, you must have that code!

5.5 Required Files

Your program must contain at least the following �les:

main.cpp

tree.h

tree.cpp

tree_collection.h

tree_collection.cpp

avl.h

avl.cpp

tree_species.h (provided to you)

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
10

CSci 335 Software Design and Analysis III
Project 2: Processing New York City Street Tree Data (revised)fe

Prof. Stewart Weiss

tree_species.o (provided to you)

README

Makefile (provided to you)

The README �le must contain a running log of your progress and changes and thoughts and possibly frus-
trations during this project, or your �eureka� moments. It can also contain documentation of the program.
There is no hard rule about it. The Make�le I will supply to you, and you can modify it as needed for your
code.

6 Testing Your Program

You should make sure that you are testing the program on a much smaller data set for which you can
determine the correct output manually. You should create your own small test �les for that purpose. (Feel
free to share those with other students on Piazza.)

You should make sure that your program's results are consistent with what is described in this speci�cation
by running the program on carefully designed test inputs and examining the outputs produced to make sure
they are correct. The goal in doing this is to try to �nd the mistakes you have most likely made in your
code. Suggestions:

• all trees of a single type, or a single borough, or within a single zipcode

• trees in a �le in sorted order and reverse sorted order (to make sure the trees are constructed in
extremem cases correctly)

• empty data set

• data set with one tree

• commands that result in predictable set of outputs, such as points and distances that produce just one
tree type, or two tree types.

Be warned - do not try to use a large data set when writing and debugging the code. If you do, you will
discover that it can be hours before you see results on typical laptops and desktop computers.

7 Programming Rules

Your program must conform to the programming rules described in the Programming Rules document
on the course website. It is to be your work and your work alone.

8 Grading Rubric

The program will be graded based on the following rubric, based on 100 points.

• A program that cannot run because it fails to compile or link on a cslab host receives only 20%. This
20% will be assessed using the rest of the rubric below.

• Meeting the functional requirements of the assignment: 60%

• Design (choices of algorithms, data structures, modularity, organization): 15%

• Documentation: 20%

• Style and proper naming: 5%

This implies that a program that does not compile on a cslab host cannot receive more than 20 points.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
11

CSci 335 Software Design and Analysis III
Project 2: Processing New York City Street Tree Data (revised)fe

Prof. Stewart Weiss

9 Submitting the Assignment

This assignment is due by the end of the day (i.e. 11:59PM, EST) on March 29, 2018. Create a directory
named named username _project2. where username is to be replaced by your CS Department network
login name. Put all project-related source-code �les and README and Make�le into that directory. Do
not place any executable �les, data �les, or object �les other than tree_species.o into this
directory. You will lose 1% for each �le that does not belong there, and you will lose 2% if you do not
name the directory correctly3.

Next, create a zip archive for this directory by running the zip command

zip -r username_project2.zip ./username_project2

This will compress all of your �les into the �le named username_project2.zip. Do not use the tar compress
utility.

The submit command that you will use is submit_cs335_project. It requires two arguments: the number
of the project and the pathname of your �le. Thus, if your �le is named username_project2.zip and it is
in your current working directory you would type

submit_cs335_project 2 username_project2.zip

The program will copy your �le into the project2 subdirectory

/data/biocs/b/student.accounts/cs335_sw/projects/project2/

and if it is successful, it will display the message, �File ... successfully submitted.�

You will not be able to read this �le, nor will anyone else except for me. But you can double-check that the
command succeeded by typing the command

ls -l /data/biocs/b/student.accounts/cs335_sw/projects/project2

and making sure you see a non-empty �le there.

If you put a solution there and then decide to change it before the deadline, just replace it by the new
version. Once the deadline has passed, you cannot do this. I will grade whatever version is there at the end
of the day on the due date. You cannot resubmit the program after the due date.

10 The TreeSpecies Header File

#inc lude <s t r i ng>
#inc lude <iostream>
#inc lude <l i s t >
#inc lude <set>
#inc lude <vector>
#inc lude " t r e e . h"
#de f i n e MAXWORDS 10

us ing namespace std ;

/∗∗
This c l a s s i s u s e f u l f o r matching . I t w i l l be documented more soon . . .

∗/
c l a s s SpeciesName {
pub l i c :

3I have scripts that process your submissions automatically and misnamed �les force me to manually override them.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
12

CSci 335 Software Design and Analysis III
Project 2: Processing New York City Street Tree Data (revised)fe

Prof. Stewart Weiss

/∗∗ SpeciesName (s) c on s t ru c t s the l i s t o f a l l words in s , to f a c i l i a t e
∗ matching .
∗/

SpeciesName (s t r i n g s) ;

/∗∗ matches (s) r e tu rn s t rue i f the s t r i n g s matches the Species_Name
∗ accord ing to the r u l e s in the ass ignment spec .
∗/
bool matches (s t r i n g s) ;

void p r i n t (ostream & out) ;

p r i va t e :
i n t num_subwords ;
s t r i n g subwords [MAXWORDS] ;
s t r i n g name ;

} ;

c l a s s TreeSpec i e s
{
pub l i c :

/∗
A de f au l t con s t ruc to r f o r the c l a s s that c r e a t e s an empty TreeSpec i e s con ta ine r .

∗/
TreeSpec i e s () ;

/∗ A des t ru c t o r f o r the c l a s s . ∗/
~TreeSpec i e s () ;

/∗∗
∗ This wr i t e s the s e t o f a l l common names found in the data s e t to the
∗ output stream out , one per l i n e . There i s no p a r t i c u l a r order in which
∗ they are wr i t t en .
∗/

void p r in t_a l l_spec i e s (ostream & out) const ;

/∗∗
∗ This r e tu rn s the t o t a l number o f d i s t i n c t s p e c i e s common names found in
∗ the data s e t .
∗/
i n t number_of_species () const ;

/∗∗
∗ This adds the s p e c i e s to the TreeSpec i e s conta ine r . I t r e tu rn s a 0 i f the
∗ s p e c i e s was a l r eady in the TreeSpec i e s con ta ine r and a 1 i f i t was not .
∗/
i n t add_species (const s t r i n g & sp e c i e s) ;

/∗∗
∗ This r e tu rn s a l i s t <s t r i ng> ob j e c t conta in ing a l i s t o f a l l o f the
∗ ac tua l t r e e s p e c i e s that match a given parameter s t r i n g partial_name .
∗ This method should be case i n s e n s i t i v e . The l i s t returned by t h i s
∗ f unc t i on should not conta in any dup l i c a t e names and may be empty .

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
13

CSci 335 Software Design and Analysis III
Project 2: Processing New York City Street Tree Data (revised)fe

Prof. Stewart Weiss

∗/
l i s t <s t r i ng> get_matching_species (const s t r i n g & partial_name) const ;

p r i va t e :
set<s t r i ng> treenames ;
i n t tree_spec ies_count ;

} ;

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int'l License.

see http://creativecommons.org/licenses/by-nc-nd/4.0/
14

	1 Overview
	2 Objectives
	3 About The Data Set
	4 Program Invocation, Usage, and Behavior
	4.1 Processing the Input File
	4.2 Command Processing
	4.2.1 Details About the Commands
	4.2.2 Distance Between Two Points on Sphere (The Haversine Formula)

	5 Program Organization and Files
	5.1 The Tree Class
	5.2 The TreeSpecies Class (Provided to You)
	5.3 The TreeCollection Class
	5.4 The AVL_Tree Interface
	5.5 Required Files

	6 Testing Your Program
	7 Programming Rules
	8 Grading Rubric
	9 Submitting the Assignment
	10 The TreeSpecies Header File

