CSci 335 Software Design and Analysis 111 Prof. Stewart Weiss
Project 3: Processing MTA Subway Entrance Data

Programming Project 3: Processing MTA Subway Entrance Data

1 Overview

In this programming project, you will work with a dataset consisting of all entrances and exits to the stations
of the New York City Transit Authority. This dataset, like the others you have used in this course, is part of
the New York City OpenData project, and is provided by the Metropolitan Transit Authority (MTA). It has
been cleaned up by NYC’s Department of Information Technology and Telecommunications (DoITT). The
term “subway entrance (exit)” is used here to mean an entrance (exit) to any station, whether it is above or
below the ground. The dataset has a row for every distinct subway entrance and exiiﬂ Each row provides
the entrance’s spatial location, name, which is really its street address, and the train lines that are accessible
from it. With this information, a rich set of queries is possible. In particular, you will design a program that
determines which entrances are part of the same stations, which stations are part of the same train lines,
and which stations and/or trains are closest to a given GPS location. As you will soon see, solving these
problems will require using algorithms from Chapter 8 (on-line disjoint set operations), and hash tables, as
well as other material you have learned about in this course.

2 Objectives

This project is designed with a few objectives in mind:

e to give you more experience working with real, large, open data sets.
e to give you experience programming the on-line disjoint set problem.
e to give you experience creating a very simple hash table.

e to give you a problem that has practical application and that can be extended to become a useful
application.

3 About the Data Set

The data set is visualized on a map at this URL:
https://data.cityofnewyork.us/Transportation/Subway-Entrances/drex-xx56/data
You can download it in CSV format with this link:
https://data.cityofnewyork.us/api/views/he7q-3hwy/rows.csv?accessType=DOWNLOAD.

The dataset that is downloaded will have as its first row, the labels of its columns. For this assignment, you
should delete that row, so that the program can assume all rows are actual data rows. A version of it without
the first line (which contains column labels) is also posted on the server in the directory

/data/biocs/b/student.accounts/cs335_sw/resources/project3_files/

This particular dataset is relatively small - only 1928 lines, each of which is just five columns. Your project
will read the CSV file and store its rows into an array (or vector). As it reads the rows and stores them, it
will do some preliminary processing. After the data is stored in memory, the program will process various
queries about the dataset. If you need a refresher about CSV files, please read assignment 1 or 2. Remember
that fields can contain embedded commas. (Fields can contain commas if they are within quoted strings,
e.g., “Brooklyn, New York” is a single field.)

There does not appear to be an on-line data dictionary for this dataset. The table below defines its five
fields. In the table, the following terms are used:

decimal A fixed decimal numeric literal, with an optional leading negative sign, such as -40.32 or 7.1234567

1Some stations have exits that are not also entrances, and in this case the “name” field of the row indicates this.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int’l License. 1
see http://creativecommons.org/licenses/by-nc-nd/4.0/

https://data.cityofnewyork.us/Transportation/Subway-Entrances/drex-xx56/data
https://data.cityofnewyork.us/api/views/he7q-3hwy/rows.csv?accessType=DOWNLOAD

CSci 335 Software Design and Analysis 111 Prof. Stewart Weiss
Project 3: Processing MTA Subway Entrance Data

line identifier A string used by the MTA to define a transit line. These are either uppercase letters A
through Z, or single digits 1 through 7, or two- or three-letter uppercase strings such as GS or

SIR.
Field Number | Field Name | Type and Format
1 ObjectID A unique positive integer identifying the particular
subway entrance.
2 URL A URL that provides service information about the
subway entrance.
3 Name A string that specifies a unique name for this subway

entrance, which is always its street address or a similar
locator. This field might contain a substring “(exit)” that
indicates that it is an exit-only.

4 The_Geom The GPS coordinates, in the format

POINT (decimal decimal)

where there is white space between the word “POINT” and
the first parenthesis, and between the two decimals.
Note: the first number is the longitude and the
second is the latitude (the reverse of the tree dataset!)
5 Line A string that consists of either a single
line_identifier, or a sequence of line_identifiers
separated by hyphens.

A sample row from this file, wrapped here because of the limited page width, looks like:

151,http://web.mta.info/nyct/service/,Parsons Blvd & Archer Ave at NE corner,
POINT (-73.799784000399 40.70235300071414) ,E-J-Z

3.1 Subway Entrances, Subway Stations, and Lines

Anyone who uses the New York City subway system knows that there is some ambiguity in the meaning of
the term “subway station”. For example, the 51st Street station of the 6 line is connected to the Lexington
Avenue station of the E-M line. Is this one station or two? In this project, the answer is one. The term
subway station refers to the transitive closure of the set of all stations that are connected to each other by
pedestrian passages without having to pay an additional fare, and without having to exit the subway system,
even if there is a free entrance by doing so. Thus, the 59th Street 6 line is not part of the Lexington Avenue
F line, because one has to leave the station to get to the other.

3.1.1 Connectivity

Given any pair of subway entrances, either they are part of the same subway station or they are not. When
two entrances are part of the same station, we say they are connected. Otherwise they are disjoint. A
moment’s thought should convince you that connectivity is symmetric, reflexive, and transitive, and hence,
an equivalence relation, and that this relation partitions the collection of all subway entrances into a set of
non-empty, disjoint sets such that every entrance belongs to a unique set, which we call a subway station.

Every subway station has a unique name, which we call its station_name. In this project, the station_name
of a given station is any one of the names of the subway entrances that belong to that station. By the nature
of how the stations will be identified, their names may change as the file is being read, but once the entire file
is read, every station will have a unique, stable, station name. This will become clear after you understand
how stations are created.

A line consists of the set of all stations that service that line. One station may be part of many lines, and
hence lines do not partition the collection of stations into disjoint sets. Although most lines define a sequence
of stations, determined by the order in which a train running on that line visits each station, some do not
because they branch. Therefore, in this project, we do not attempt to order the stations for a given line.
Each line is identified by its line_identifier, defined above.

Determining Connectivity. The problem in determining connectivity, meaning which entrances are part
of the same station, is that there is no explicit column in the dataset that tells us this. Therefore, we must

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int’l License. 9
see http://creativecommons.org/licenses/by-nc-nd/4.0/

CSci 335 Software Design and Analysis 111 Prof. Stewart Weiss
Project 3: Processing MTA Subway Entrance Data

use a heuristic rule to determine this. The rule we shall use is the following:
Definition. Two subway entrances F1 and Ey are connected if either
e the set of line_identifiers for each is identical, and
e the distance between them is at most 0.28 kilometers.
or there is a third entrance Ey such that F; is connected to Ey and F> is connected to Fy.

The distance constraint may be subject to change. Your program should make this distance an easily
changeable parameter. With this definition, the dataset can be used to construct the collection of distinct
subway stations. In addition, we can assign a unique location to each station by making it the centroid of
the locations of its entrances. The centroid is the arithmetic mean of the locations of each of its entrances.
We can approximate that mean using the average of the latitude and longitude values. Namely, if a station

has entrances whose GPS points are p; = (x1,91), p2 = (22,¥2), .-, Pn = (Tn,yn) then the centroid is
c=1/m)Q wk > uk) (1)
k=1 k=1

4 Program Invocation, Usage, and Behavior

The program is invoked from the command line and expects two command line arguments, which specify
respectively (1) the esw file to be opened for reading and (2) the sequence of user commands to be processed.
If two files are not specified, it is a usage error and the program must write an appropriate and meaningful
error message onto the standard error stream, after which it must exit. If a file that is specified does not
exist or cannot be opened for some reason, the program must write an appropriate and meaningful error
message onto the standard error stream and then exit.

Assuming that both files are opened successfully, the program must read the entire csv file, line by line,
and process these lines according to the rules specified below. Once the entire csv file has been read and
processed, the program will read the commands from the command file and process them one after the other.
These commands are described and explained in Section below.

4.1 Case Sensitivity and White Space Sensitivity

The program should treat all names of stations and station entrances case insensitively. This means that
the following strings all refer to the same name:

Nassau St & Frankfort St at SE corner

nassau St & frankfort St at SE corner

Nassau st & frankfort St at se corner
It should treat any sequence of space characters as a single space character. Thus, the following strings refer
to the same name:

Nassau St & Frankfort St at SE corner

Nassau St & Frankfort St at SE corner

This is true of names entered as arguments to commands as well. This makes it easier for the user of the
program, but harder for the programmer.

4.2 Processing the Input Data File

It is the task of the main program to read the input file, parse its lines, construct a Subway_Entrance
object for each row, and make the calls to a Subway_System class to insert that object into the collection
of entrances. The Subway_Entrance object should represent a single subway entrance. The Subway_System
class must manage the collection of entrances so that, as each new entrance is found, it is checked against
all other entrances to determine if it is connected to any of them, and if so, to update its sets. It is therefore
a class that contains a container storing Subway_Entrance objects and, as you will see, a container storing
Line objects.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int’l License. 3
see http://creativecommons.org/licenses/by-nc-nd/4.0/

CSci 335 Software Design and Analysis 111 Prof. Stewart Weiss
Project 3: Processing MTA Subway Entrance Data

4.3 Command Processing

After the CSV file has been processed, the program enters a command processing loop, in which it reads
commands from the second file specified on the command line. The syntax of the valid commands from that
file is as follows. The bold text is the command literal and the italicized text is its parameter list. All
output lists should use the names as they are found in the original file, not names whose case
has been changed.

Command Description

list_line_stations Lists the station_names of all subway stations that service the

line_identifier given line.

list_all_stations Lists the station_names of all subway stations in the subway
system.

list_entrances station_name Lists the names of all subway entrances for the given station. The
list should not include exit-only entrances.

nearest_station longitude Lists the station_names of all subway stations that are closest to
latitude the point (longitude, latitude). There may be more than one
because two or more might be the same distance from the point.
nearest_lines longitude Lists the line_ identifiers of all subway lines that are closest to
latitude the point (longitude, latitude). There may be more than one

because two or more lines might be at a station that is nearest to
the point, or because two stations might be at the same distance
from the point.
nearest_entrance longitude Lists the names of all subway entrances that are closest to the
latitude point (longitude, latitude). There may be more than one
because two or more might be the same distance from the point.

4.3.1 Distance Between Two Points on Sphere (The Haversine Formula)

The Haversine formula (see |https: //en.wikipedia.org/wiki/Haversine formula) can be used to compute
the approximate distance between two points when they are each defined by their latitude and longitude
in degrees. The distance is approximate because (1) the earth is not really a sphere, and (2) numerical
round-off errors occur. Nonetheless, for points that are no more than ten kilometers apart, the formula is
accurate enough. Given the following notation

d : the distance between the two points (along a great circle of the sphere,
r : the radius of the sphere,
©1, pa: latitude of point 1 and latitude of point 2, in radians

A1, A2: longitude of point 1 and longitude of point 2, in radians

the formula is

2 - arcsin <\/sin2 (‘”;@1) + cos (1) c0s (52 sin2 (W)))

A C++ function to compute this formula in a numerically efficient way is given in Listing [Remember
that latitude and longitude are not interchangeable, and that the values of these are given in the commands
and in the file with longitude followed by latitude.

Listing 1: Haversine Function (corrected version)

#include <cmath>
To build, link to the math library wusing —Ilm

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int’l License.
see http://creativecommons.org/licenses/by-nc-nd/4.0/

http://https: //en.wikipedia.org/wiki/Haversine_formula

CSci 335 Software Design and Analysis 111 Prof. Stewart Weiss
Project 3: Processing MTA Subway Entrance Data

const double R = 6372.8 // radius of earth in km
const double TO RAD= M _PI / 180.0; // conversion of degrees to rads

double haversine(double latl, double lonl, double lat2, double lon2)
{

latl = TO RAD x latl;
lat2 = TO RAD x lat2;
lonl = TO RAD * lonl;
lon2 = TO RAD % lon2;

double dLat = (lat2 — latl)/2;
double dLon = (lon2 — lonl)/2;
double a = sin(dLat);
double b = sin (dLon);

return 2 % R % asin(sqrt(axa + cos(latl)xcos(lat2)xbxb));

5 Program Organization and Logic

The program must process the commands efficiently. This section discusses some of the logical issues,
technical tools, and algorithms that this suggests you use.

5.1 Bit Masks

Bit masks are an important tool in solving several of the problems in this assignment. For example, given
two subway entrances, each with its own set of lines that it services, how can you quickly decide if the two
sets are identical? Of course you could design a solution that iterates over train lines, and which would be
very inefficient, but you can also design a solution that uses constant time to solve this problem, if each set
is represented by a bit mask. How?

Similarly, given a line_identifier, how can you find the set of all stations that service the line, assuming
that this set is not stored for each line? For each station, you would need to check if the line_identifier
is part of the set of lines that it services. This can also be done in constant time if the station has a bit mask
and the line has a bit mask. How?

Given that there are at most 26 single letter lines, and 7 single digit lines, and just a few lines with more
than one character, a 64-bit integer has more than enough bits to define bit masks to represent sets of lines.

5.2 Determining Connectivity (Subway Station Creation)

Determining the disjoint sets of subway stations and which subway entrances are part of the same station
requires using the find and smart union operations from Chapter 8, which implies that Subway_Entrance
objects should be stored in an array or a vector. In the lecture notes for Chapter 8, simple integers are used
as an example to illustrate the algorithms, but your project must define an array whose elements are class
objects and that also have a member that is the parent index. Thus you need to generalize those algorithms.

Each time a new Subway_Entrance object is created, it is placed into a set of size one. The object in this
set is then compared against all currently existing sets to see if they should be connected to this one. If so,
this is a union operation. If it is not connected to any existing sets, it remains a set of size one. Eventually,
all subway entrances are compared to all others in this way, when the entire file has been read, and the sets
have been formed. At this point the subway stations can be given stable subway station names, which are
simply the names of the subway entrances at the roots of the parent trees that represent them. In addition,
their locations as GPS coordinates can be computed based on Equation [T}

5.3 Finding Stations Efficiently

One of the problems the program must solve is how to find a particular station efficiently. If the only
representation of a subway station is the parent tree for that station stored in an array or vector of such
trees, then when given a station name to find, as when a command is given to list all entrances for that

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int’l License. 5
see http://creativecommons.org/licenses/by-nc-nd/4.0/

CSci 335 Software Design and Analysis 111 Prof. Stewart Weiss
Project 3: Processing MTA Subway Entrance Data

station, the program would have to do an iterative search, taking too much time. Instead, it can create
a hash table whose keys are station names, and whose values are the index values in the array or vector
at which the parent tree root is found. (It can also store the subway station location there too, if it is a
structure or class object.) Therefore, once all stations have been created, a hash table can be created to
store Subway_Station objects for fast access later. (What data and operations should a Subway_Station
object encapsulate?) This hash table should be represented by a class named Subway_Station_Hash.

5.4 Lines

A subway line is a set of stations. Should the program construct these sets as it reads the input file, or only
when a command is issued to list the stations belonging to the line? How would you represent these sets?
Since subway stations are not stabilized until after all data has been read, it is a challenging task to construct
the sets as the input file is processed. Instead, it is better to do so in a lazy way, only when a command is
invoked to list the line’s stations. Then how can this be done efficiently? As was mentioned in Section [5.1
above, if a line has a bit mask and the hash table has a method to enumerate all Subway_Station objects
in it, each of which has a bit mask, then the set of all stations serving that line can be determined with a
single pass across the set of subway stations, and these stations can then be stored, or at least some type of
reference to them can be stored, in a linked list or vector associated with a Line object. Thus a Line object
stores a bit mask and some type of reference to a container of Subway_Station objects. How can you create
this bit mask efficiently?

How can you represent the set of all Line objects in such a way that there is fast access to them? Since
you never delete lines and only insert them and search for them, this suggests that they should be stored
in a hash table. Your program should create a hash table whose keys are line identifiers and whose values
are Line objects. It is possible to design a very simple hash function for this table. In fact, it is possible
to define a perfect hash function that is extremely fast, given the simple form of line_identifiers. Your
program will be evaluated in part on your accomplishing this task. This hash table should be a class in
itself, named Subway_Line_Hash.

5.5 The Subway System

The subway system is represented by a Subway_System object. This object must encapsulate the two
hash tables, Subway_Station_Hash and Subway_Line_Hash, and the vector that stores the Subway_Station
parent trees. These objects need not be exposed to the clients. Instead, the Subway_System should provide
methods to perform all operations required by the program, so that the main program’s only interaction is
with the Subway_System. You are free to design this class interface as you see fit.

5.6 Required Files

Regardless of how you define the class interfaces for your classes, each class must be represented by a separate
pair of files, its header file and its implementation file. Minimally, this implies that your program would
need to contain the following files, assuming they are named in the obvious way:

main.cpp
subway_entrance.h
subway_entrance.cpp
subway_station.h
subway_station.cpp
subway_system.h
subway_system.cpp
subway_station_hash.h
subway_station_hash.cpp
subway_line_hash.h
subway_line_hash.cpp
README

Makefile

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int’l License. 6
see http://creativecommons.org/licenses/by-nc-nd/4.0/

CSci 335 Software Design and Analysis 111 Prof. Stewart Weiss
Project 3: Processing MTA Subway Entrance Data

The README file must contain a running log of your progress and changes and thoughts and possibly frus-
trations during this project, or your “eureka” moments. It can also contain documentation of the program.
There is no hard rule about it. I will provide a Makefile that can be used regardless of how you name the
files.

6 Testing Your Program

You should make sure that you test the program on a much smaller data set for which you can determine
the correct output manually. You should create your own small test files for that purpose. (Feel free to share
those with other students on Piazza.)

You should make sure that your program’s results are consistent with what is described in this specification
by running the program on carefully designed test inputs and examining the outputs produced to make sure
they are correct.

7 Programming Rules

Your program must conform to the programming rules described in the Programming Rules document
on the course website. It is to be your work and your work alone.

8 Grading Rubric
The program will be graded based on the following rubric, based on 100 points.

e A program that cannot run because it fails to compile or link on a cslab host receives only 20%. This
20% will be assessed using the rest of the rubric below.

Meeting the functional requirements of the assignment: 50%

Performance and Design. These are inseparable in this assignment. It includes efficient solutions to
the problems as well as choices of algorithms, data structures, modularity, organization: 25%

e Documentation: 20%

Style and proper naming: 5%

This implies that a program that does not compile on a cslab host cannot receive more than 20 points.

9 Submitting the Assignment

This assignment is due by the end of the day (i.e. 11:59PM, EST) on May 14, 2018. Create a directory
named named username _project3 where username is to be replaced by your CS Department network login
name. Put all project-related source-code files and the README and Makefile into that directory. Do not
place any executable files, data files, or object files into this directory. You will lose 1% for each
file that does not belong there, and you will lose 2% if you do not name the directory correctlyﬂ

Next, create a zip archive for this directory by running the zip command
zip -r username_project3.zip ./username_project3

This will compress all of your files into the file named username_project3.zip. Do not use the tar compress
utility. If you do not zip the directory correctly so that all files, when extracted with the command unzip
username_project3.zip, are not in a properly named directory, your program will lose 2%.

The submit command that you will use is submit_cs335_project. It requires two arguments: the number
of the project and the pathname of your file. Thus, if your file is named username_project3.zip and it is
in your current working directory you would type

submit_cs335_project 3 username_project3.zip

21 have scripts that process your submissions automatically and misnamed files force me to manually override them.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int’l License. 7
see http://creativecommons.org/licenses/by-nc-nd/4.0/

CSci 335 Software Design and Analysis 111 Prof. Stewart Weiss
Project 3: Processing MTA Subway Entrance Data

The program will copy your file into the project3 subdirectory
/data/biocs/b/student.accounts/cs335_sw/projects/project3/

and if it is successful, it will display the message, “File ... successfully submitted.”

You will not be able to read this file, nor will anyone else except for me. But you can double-check that the
command succeeded by typing the command

1s -1 /data/biocs/b/student.accounts/cs335_sw/projects/project3

and making sure you see a non-empty file there.

If you put a solution there and then decide to change it before the deadline, just replace it by the new
version. Once the deadline has passed, you cannot do this. I will grade whatever version is there at the end
of the day on the due date. You cannot resubmit the program after the due date.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Int’l License. 8
see http://creativecommons.org/licenses/by-nc-nd/4.0/

	1 Overview
	2 Objectives
	3 About the Data Set
	3.1 Subway Entrances, Subway Stations, and Lines
	3.1.1 Connectivity

	4 Program Invocation, Usage, and Behavior
	4.1 Case Sensitivity and White Space Sensitivity
	4.2 Processing the Input Data File
	4.3 Command Processing
	4.3.1 Distance Between Two Points on Sphere (The Haversine Formula)

	5 Program Organization and Logic
	5.1 Bit Masks
	5.2 Determining Connectivity (Subway Station Creation)
	5.3 Finding Stations Efficiently
	5.4 Lines
	5.5 The Subway System
	5.6 Required Files

	6 Testing Your Program
	7 Programming Rules
	8 Grading Rubric
	9 Submitting the Assignment

