
CSci 335 Software Design and Analysis 3
Project 1: Processing New York City Street Tree Data (minor revisions)

Prof. Stewart Weiss

Programming Project 1: Processing 2015 New York City Street

Tree Census Data

1 Overview

In 2016, as part of its Open Data initiative, New York City made public the results of TreesCount!, the
2015 Street Tree Census, conducted by volunteers and sta� organized by the NYC Department of Parks &
Recreation as well as partner organizations. The data includes information about more than 680,000 trees
on the streets of New York City. This is a large dataset, with over 683,000 lines of text totaling more than
193 MB of data. Although it will �t into your computer's memory, it will make many computers behave
sluggishly, depending on what you do with the data.

In this project, your program will process the data from that data set. It will allow a user to query this data
set to obtain information about selected aspects of the data, such as how many trees of a given species are
growing, borough by borough, or which trees are within a given distance of a given GPS location. The user
will be able to specify a fragment of a species common name, such as �oak� and the program will display
the frequency of occurrence of all types of oak trees throughout the city, such as pin oaks, sawtooth oaks,
scarlet oaks, and white oaks.

The data set is part of the NYC OpenData website and can be found here:

https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/uvpi-gqnh

You may �nd it interesting to take a look at an online visualization project based on an older New York
City tree census data set at http://www.cloudred.com/labprojects/nyctrees/.

Your program will be storing the tree data in a searchable, modi�able container class, speci�cally an AVL
tree. In other words, the program will use an abstract tree to store representations of real trees. You will
not write the main program for this assignment. I will supply the main program, but only in binary form.
You will not be able to see its source code. You will have the main.o object �le, compiled and built on the
cslab machine architecture. The details follow.

The implications are signi�cant:

1. You can only build your executable on a cslab machine or on another machine running Ubuntu 16 with
the same C++ libraries.

2. You will not have to write code to parse the command line.

3. Because the main program will parse the commands, you are freed from having to do so.

4. You must write code that implements the interface �les that are given to you, exactly.

5. Although you will not write the main program, you need to know the form of the inputs that it expects
in order to write tests of your code.

2 Objectives

This project is designed with a few objectives in mind:

• to give you exposure to and experience with large, open data sets. Open data sets are to data what
open source software is to software. No one has proprietary rights to the data. You can download it
and analyze it for free. Wikipedia has a good description of open data: �Open data is the idea that
some data should be freely available to everyone to use and republish as they wish, without restrictions
from copyright, patents or other mechanisms of control.�

• to give you experience writing an AVL tree class, some of the methods of which are slightly modi�ed,
as will be explained below.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/uvpi-gqnh
http://www. cloudred.com/labprojects/nyctrees/
https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 1: Processing New York City Street Tree Data (minor revisions)

Prof. Stewart Weiss

• to get you to write implementations for several class interfaces that are provided to you as abstract
classes and hence cannot be modi�ed. This gives you experience writing code that has been speci�ed
by someone else.

• to give you practice writing code for a client (the main program) whose implementation is hidden.

3 About the Input Data Set

The NYC OpenData website for this tree census data gives everyone the means to download the data in
various formats. Your program has to work with the csv format of the data. A �le in csv format, in case
you are not familiar with it, is a comma-separated-values �le. A comma-separated-values �le is a plain
text �le in which each line represents a single record, and within the line, commas separate the individual
�elds of the record. Fields can also contain commas if they are within quoted strings, e.g., �Brooklyn, New
York� is a single �eld. Because of this, parsing the data is not simply looking for the commas! Spreadsheet
applications let you import csv �les to view their contents by rows and columns. The tree data �le that can
be downloaded contains records for over 680,000 trees. Each row represents a single tree (or tree stump) and
has 41 columns, which means that there are 41 di�erent pieces of information for each tree. If you download
the dataset yourself, it will have as its �rst row, the column labels. For this assignment, you should delete
that row, so that the program can assume all rows are actual data rows. (The version of the data set that I
provide on the server has that �rst row deleted.)

A detailed description of the meaning and form of every column1 in that dataset can be found in the data
dictionary described here:

https://data.cityofnewyork.us/api/views/uvpi-gqnh/files/8705bfd6-993c-40c5-8620-0c81191c7e25?

download=true&filename=StreetTreeCensus2015TreesDataDictionary20161102.pdf

This data dictionary is also available on our server in the resources subdirectory of the cs335_sw directory.
Each valid line in the dataset contains 41 columns. Some of these columns may be empty. An empty column
is represented by two commas with no intervening characters. The columns are determined by the commas
separating each entry. This means that a valid line has to contain at least 40 commas separating the entries
(even if the entries are empty), and maybe more, if the �elds contain embedded commas. While there should
not be invalid lines in the �le, if any are found, the program should handle them by ignoring them.

4 Program Usage and Error Handling

The program is invoked from the command line and expects two command line arguments, which specify
respectively (1) the csv �le to be opened for reading and (2) the sequence of user commands to be processed.
If two �les are not speci�ed, it is a usage error and the program will write an appropriate and meaningful
error message onto the standard error stream , after which it will exit. If a �le that is speci�ed does
not exist or cannot be opened for some reason, the program will write an appropriate and meaningful error
message onto the standard error stream and then exit.

Usage Examples Suppose the program is named nyctreeviewer. If nyctrees.csv is a �le containing a
subset of the trees from the NYC data set and queryfile is a �le containing queries to be processed, then
correct usage includes

$ nyctreeviewer nyctrees.csv queryfile

On the other hand,

$ nyctreeviewer

and

$ nyctreeviewer nyctrees.csv

1This description is missing the description of the column with index 14 that appears between the user_type and root_stone

columns in the dataset.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

https://data.cityofnewyork.us/api/views/uvpi-gqnh/files/8705bfd6-993c-40c5-8620-0c81191c7e25?download=true&filename=StreetTreeCensus2015TreesDataDictionary20161102.pdf
https://data.cityofnewyork.us/api/views/uvpi-gqnh/files/8705bfd6-993c-40c5-8620-0c81191c7e25?download=true&filename=StreetTreeCensus2015TreesDataDictionary20161102.pdf
https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 1: Processing New York City Street Tree Data (minor revisions)

Prof. Stewart Weiss

and

$ nyctreeviewer queryfile

all result in the error message

usage: nyctreeviewer input-file query-file

being displayed on the standard error stream (your terminal by default).

Fortunately for you, the main program handles parsing the command line and checking that the program is
called correctly and that the �les exist and that you have permission to open and read them. Assuming that
both �les are opened successfully, the program reads the tree data �le and the command �le and applies the
commands in the command �le to the data it read from the tree data �le. The commands are described and
explained in Section 6 below.

5 Division of Work

The main program does the work of reading the two �les, but it depends upon on two classes that you must
implement in order to store and process this data: the Tree class and the TreeCollection class. The main
program invokes methods of these two classes to parse, store, query, and retrieve the data. In order for your
program to run correctly, you must implement the Tree and TreeCollection classes exactly as they are
speci�ed later in this assignment speci�cation.

Figure 1: The architecture of the program.

Roughly, the work is divided as follows. The main program reads the csv �le, line by line, and passes each line
to a Tree object to parse it and construct a Tree from it. The Tree object detects whether the data is valid
or not. If it is not valid, the Tree object that is constructed is a null tree and the main program can detect
this. If the Tree is valid, the main program then hands this Tree to the TreeCollection::add_tree()

method, which inserts it into its hidden container. The TreeCollection object is responsible for storing
the data and for computing various properties of that data. The main program calls on the methods of the
TreeCollection class to do most of its work. The speci�cations of the Tree class and the TreeCollection
class and their public methods and required implementation details are contained in Sections 7.1 and 7.3
respectively. The TreeCollection is essentially a container that stores Tree objects in an AVL tree, and
also stores other information contained in the �le. Each Tree object is uniquely identi�ed in the data set by a
numeric tree_id �eld. But this is a pretty useless way to identify a tree because it would require remembering
these numeric ids. Instead, the species common name �eld, denoted spc_common, and tree_id �eld, as a
pair, will be used as the primary and secondary keys of the ordering relation maintained internally by the
TreeCollection object. The user does not need to know this level of detail but you, as a programmer, do.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 1: Processing New York City Street Tree Data (minor revisions)

Prof. Stewart Weiss

The TreeCollection will also keep track of the common names of all species that it stored, and in which
boroughs the trees are located. To do this, it will rely on the methods of a class named TreeSpecies that
encapsulates the set of all species common names found in the data set, and which provides various methods
for interacting with this set of names. Figure 1 illustrates the relationships between the various classes of
the project.

6 Command Speci�cation

Following is a description of the commands that the main program is able to process, with their meaning
and syntax. It reads and carries out these commands from the second �le speci�ed on the command line.
The bold text is the command name and the italicized text is its parameter list. Unless stated otherwise,
all output is to the standard output stream.

Command Description
tree_info tree_to_find where tree_to_find is a string that might contain white space.

This command lists certain information about the trees whose
common name matches tree_to_find . Details about which
information is output by the command and the de�nition of
�matches� are in Section 6.1 below.

listall_names Prints all tree common names found in the TreeCollection, one
name per line.

print_all Prints the entire stored set of tree objects in sorted order, one
tree per line. The tree objects are printed as a
comma-separated-values �le, with the ten stored �elds of each
tree printed one after the other on each line, in the order speci�ed
in Section 7.1 below.

listall_inzip zipcode where zipcode is an int type. Lists the common names of all
trees found in the given zipcode, together with how many of each
occur in that zipcode, in the form
common_name: count
one per line. For example, if three red oaks, four hemlocks, and
two spruce are in the given zipcode its output is

red oak: 3

hemlock: 4

spruce: 2

list_near latitude

longitude dist

where latitude , longitude , and dist are �xed point decimal
numbers, lists the common names and frequencies of all trees
within dist kilometers of the given GPS point
(latitude,longitude). Distance is de�ned the Haversine
formula, which is given in Section 6.1 below.

6.1 Matching and the tree_info Command

6.1.1 Matching

The argument to the tree_info command is a string consisting of a single word or one or more words with
intervening white-space or hyphens. The sequence can be the full name of a species, such as �southern white
oak�, or one or more whole words that are a substring of that name, such as �oak�, �white�, �southern�,
�southern white�, or �white oak�. The program determines which tree species names that were stored when
the input �le was read match the argument string.

As part of this project, you are given the interface �le __tree_species.h for an abstract class named
__TreeSpecies. This __TreeSpecies class contains the functionality to solve this problem. Although we
de�ne matching here, the de�nition of it is also contained in the documentation within the __tree_species.h

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 1: Processing New York City Street Tree Data (minor revisions)

Prof. Stewart Weiss

�le.

The member function of the __TreeSpecies class that performs the matching is

virtual list<string> get_matching_species(const string & partial_name) const = 0;

Let us call the complete species name against which partial_name is compared, tree_type. For the purpose
of matching, a hyphen character is treated like a white-space character - it separates two distinct words.
Thus, for example, �Douglas-fir� is treated as if it were �Douglas fir� consists of two words, �Douglas�
and �fir�. Then partial_name matches tree_type if any of the following conditions are true:

• partial_name is exactly the same string as tree_type, ignoring case.

• If partial_name has no white-space or hyphen characters (it is one word) then if tree_type contains
white space characters or hyphens and consists of the words w1, w2, ..., wk, then partial_name is
exactly one of the words w1, w2, ..., wk. For example if partial_name is �Japanese�, and tree_type

is �Japanese tree lilac�, then partial_name matches tree_type.

• if partial_name has white-space or hyphen characters, then then if tree_type contains white space
characters or hyphens and consists of the words w1, w2, ..., wk, then partial_name is some sub-
sequence wiwi+1...wj of the sequence of words w1, w2, ..., wk. So �tree lilac� matches �Japanese
tree lilac�, but �tree lilac� does not match �lilac�.

Otherwise partial_name does not match tree_type.

Positive Examples:

oak matches �white oak� and �oak�

birch matches �paper birch�

paper matches �paper birch�

fir matches �Douglas-fir�

�two-winged� matches �two-winged silverbell� and �two winged silverbell�

Japanesematches each of �Japanese hornbeam�, �Japanese maple�, and �Japanese tree lilac�

�bur oak� matches �bur oak�

Negative Examples:

range does not match �Osage-orange�

�Japanese horn� does not match �Japanese hornbeam�

chest does not match �chestnut�

locust does not match �honeylocust�

6.1.2 tree_info Command Output

With matching so de�ned, we can state what the program does when the tree_info command is processed.
The program uses the given words to try to match one or more species common names. The set of all
such matching common names is constructed. Then, all occurrences of any of the matched species common
names are searched for in the stored data, the program determines which borough each is in, and displays
the number of those types of trees in the city in total, and in each borough, as well as the percentage of
total trees that this represents, in the city as a whole, and in each borough. For example, the output for the
command

tree_info linden

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 1: Processing New York City Street Tree Data (minor revisions)

Prof. Stewart Weiss

might look like this:

linden

All matching species:

american linden

silver linden

littleleaf linden

Frequency by borough:

Total in NYC: 51,267 (683,788) 7.50%

Manhattan: 5,457 (65,423) 8.34%

Bronx: 6,719 (85,203) 7.89%

Brooklyn: 15,299 (177,293) 8.63%

Queens: 20,817 (250,551) 8.31%

Staten Island: 2,975 (105,318) 2.82%

In the above display, for NYC and for each borough:

• the �rst value is the total number of the di�erent types of linden trees in that borough;

• the number in parenthesis is the total number of trees in that borough;

• the last number is the percentage calculated as the total number of lindens divided by the total
number of trees times 100. The program produces the output formatted in aligned columns, with
commas grouping the tree digits in larger numbers and with two digits after the decimal point in the
last column. To be clear, although there may be multiple, distinct species, when multiple species match
the user's input tree name, the counts for all species that match are summed and the totals are used
in the output display.

6.1.3 Distance Between Two Points on Sphere (The Haversine Formula)

The Haversine formula (see https: //en.wikipedia.org/wiki/Haversine_formula) can be used to compute the
approximate distance between two points when they are each de�ned by their decimal latitude and longitude
in degrees. The distance is approximate because (1) the earth is not really a sphere, and (2) numerical round-
o� errors occur. Nonetheless, for points that are no more than ten kilometers apart, the formula is accurate
enough. Given the following notation

d : the distance between the two points (along a great circle of the sphere,

r : the radius of the sphere,

ϕ1, ϕ2: latitude of point 1 and latitude of point 2, in radians

λ1, λ2: longitude of point 1 and longitude of point 2, in radians

the formula is

2r · arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos (ϕ1) cos (ϕ2) sin

2

(
λ2 − λ1

2

))
A C++ function to compute this formula in a numerically e�cient way is given in Listing 1.

Listing 1: Haversine Function (corrected version)

#inc lude <cmath>
To bui ld , l i n k to the math l i b r a r y us ing −lm

const double R = 6372.8 // rad iu s o f earth in km

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

http://https: //en.wikipedia.org/wiki/Haversine_formula
https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 1: Processing New York City Street Tree Data (minor revisions)

Prof. Stewart Weiss

const double TO_RAD= M_PI / 180 . 0 ; // conver s i on o f degree s to rads

double have r s ine (double lat1 , double lon1 , double lat2 , double lon2)
{

l a t 1 = TO_RAD ∗ l a t 1 ;
l a t 2 = TO_RAD ∗ l a t 2 ;
lon1 = TO_RAD ∗ lon1 ;
lon2 = TO_RAD ∗ lon2 ;
double dLat = (l a t 2 − l a t 1) / 2 ;
double dLon = (lon2 − lon1) / 2 ;
double a = s i n (dLat) ;
double b = s i n (dLon) ;

r e turn 2 ∗ R ∗ as in (sq r t (a∗a + cos (l a t 1)∗ cos (l a t 2)∗b∗b)) ;
}

7 Project Organization and Structure

Your project must implement and/or use the classes listed in this section. You may implement additional
classes as well, if you wish. As you are working on your classes, keep in mind that they should be (and may
be) tested separately from the rest of your program.

7.1 The Tree Class

The interface for the Tree class is given to you in a �le named tree.h. This class represents an individual
tree on a public street in New York City. As stated above, the csv �le has 41 �elds, but your Tree class will
represent trees using just a subset of them. Speci�cally, the Tree class encapsulates the following �elds of
the data set (listed in the order in which they appear in the �le, except for spc_common):

Data Dictionary

• string spc_common; the common name of the tree, such as �white oak� or a possibly empty string

• int tree_id; a non-negative integer that uniquely identi�es the tree

• integer tree_dbh; a non-negative integer specifying tree diameter

• string status; a string, valid values: �Alive�, �Dead�, �Stump�, or the empty string

• string health; a string, valid values: �Good�, �Fair�, �Poor�, or the empty string

• string address: nearest estimated address to tree

• int zipcode; a positive �ve digit integer (This means that any number from 0 to 99999 is acceptable.
The values that are shorter should be treated as if they had leading zeroes, i.e., 8608 represents zipcode
08608, 98 represents zip code 00098, etc.)

• string boroname; valid values: �Manhattan�, �Bronx�, �Brooklyn�, �Queens�, �Staten Island�

• double latitude; speci�es GPS latitude of the tree point, in decimal degrees

• double longitude; speci�es GPS longitude of the tree point, in decimal degrees

These are private data members of the Tree class. All of the string data �elds should store the data
in the exact case (upper or lower) as it is in the original input �le . The spatial coordinates are
GPS coordinates that can be used to locate the trees on a map. The Tree class must provide the following
public methods. You may add other methods if you think they are necessary. In any case, the Tree class
implementation �le must be in a �le named tree.cpp. All methods must be case insensitive when comparing
string data. Your program should not modify any of the public methods in tree.h in any way.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 1: Processing New York City Street Tree Data (minor revisions)

Prof. Stewart Weiss

Method Syntax Description

Tree(const string & treedata); A constructor for the class that takes a string
from a csv �le.

Tree (int id, int diam, string status,

string health, string spc, int zip,

string addr, string boro, double

latitude, double longitude);

A constructor for the class.

friend bool operator==(const Tree & t1,

const Tree & t2);

Given two Tree objects, it returns true if and
only if they have the same species common name
(spc_common) and tree_id, (case insensitive).

friend bool operator<(const Tree & t1,

const Tree & t2);

This compares the two trees using spc_common as
the primary key and tree_id as the secondary
key and returns true if t1 is less than t2 in this
ordering and false otherwise. (case insensitive)

friend ostream& operator<�< (ostream & os,

const Tree & t);

This prints a Tree object onto the given
ostream. Each of the members of the Tree
object should be printed, in the exact same order
as they are described in the table above, e.g.,
with the tree spc_common name �rst, then the
tree_id. Fields should be separated by commas
in the output stream.

friend bool samename(const Tree & t1,

const Tree & t2);

This returns true if and only if the two trees
passed to it have identical spc_common members.
This di�ers from operator== because it ignores
the tree_id. (case insensitive)

friend bool islessname(const Tree & t1,

const Tree & t2);

This returns true if and only the spc_common
member of the �rst Tree object is smaller than
that of the second as strings. This di�ers from
operator< because it ignores the tree_id. (case
insensitive)
For example,
mytree.follows(�mimosa�) is true if
mytree.spc_common == �pine�

string common_name() const; This returns the spc_common name of the Tree.

string borough_name() const; This returns the name of the borough in which
the Tree is located.

string life_status() const; This returns the status of the Tree .

string tree_health() const; This returns the health of the Tree.

int id() const; This returns the Tree id value.

string nearest_address() const; This returns the street address nearest to which
the Tree is located.

int diameter() const; This returns the value of the tree_dbh member.

int zip() const; This returns the value of the zipcode member of
the tree.

void get_position(double & latitude,

double & longitude) const;

This stores into its two parameters the latitude
and longitude of the Tree.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 8

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 1: Processing New York City Street Tree Data (minor revisions)

Prof. Stewart Weiss

7.2 The TreeSpecies Class

You are given an abstract class named __TreeSpecies from which you must derive a class named TreeSpecies,
overriding all of its virtual functions. This class encapsulates the set of all common names of trees found
in the input data set. This class also provides the functionality to test if a word matches a particular tree
common name, and to list all common names that are matched by a word. An e�cient implementation of
this class will require no more storage than the number of distinct names in the data set. Anything else is not
e�cient. The class interface is de�ned as follows. Note that the abstract class does not have a constructor
or a destructor, but your concrete class must have them.

Method Syntax Description

void print_all_species(ostream & out)

const;

This writes the set of all common names found in
the data set to the output stream out, one per
line. They are written in lexicographic order.

int number_of_species() const; This returns the total number of distinct species
common names found in the data set.

int add_species(const string & species); This adds the species to the TreeSpecies
container. It returns a 0 if the species was
already in the TreeSpecies container and a 1 if
it was not.

list<string> get_matching_species(const

string & partial_name) const;

This returns a list<string> object containing a
list of all of the actual tree species that match a
given parameter string partial_name. This
method should be case insensitive. The list
returned by this function should not contain any
duplicate names and may be empty.

7.3 The TreeCollection Class

You are given an abstract class named __TreeCollection from which you must derive a class named
TreeCollection, overriding all of its virtual functions. The TreeCollection class provides the functionality
to the main program for storing and accessing tree data and its properties. When you derive it from the
abstract class, it must encapsulate at least two objects:

• an AVL tree that stores the tree objects that were found in the input data set, and

• a TreeSpecies object that stores the set of all spc_common tree species names that were found in the
input data set.

You might �nd it useful to provide a third object for it, one that stores the names of each New York City
borough and how many trees from the data set are in each borough.

These objects, which are essentially containers, must be private or protected members of the TreeCollection
class. No other component of the program needs access to them.

The class must provide the following public methods. In the descriptions, whenever they refer to �matching,�
it is by the rules described in Section 6 above. Your subclass must implement exactly what this interface
�le de�nes. You are free to de�ne the private part in any way that you like, and you may add additional
public methods, but if your public part changes anything described below in any way, it will be considered
incorrect and the program will not compile when I try to build it using the main program supplied to you.
If you wish to make changes, you do so at great risk. The methods described below are in the interface �le
__tree_collection.h. and are described there in more detail. Note that the abstract class does not have
a constructor or a destructor, but your concrete class must have them.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 9

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 1: Processing New York City Street Tree Data (minor revisions)

Prof. Stewart Weiss

Method Syntax Description

int total_tree_count (); This returns the total number of Tree objects
stored in the collection.

int count_of_tree_species (const string

& species_name);

This returns the number of Tree objects in the
collection whose spc_common species name
matches the species_name speci�ed by the
parameter. This method should be case
insensitive. If the method is called with a
non-existent species, the return value should be 0.

int count_of_tree_species_in_boro(const

string & boro_name);

This returns the number of Tree objects in the
collection that are located in the borough
speci�ed by the parameter. This method should
be case insensitive. If the method is called with a
non-existent borough name, the return value
should be 0.

int get_counts_of_trees_by_boro (const

string & species_name, boro tree_count[5]

);

This �lls the array tree_count of boro
structures with the number of Tree objects in
each borough whose spc_common species name
matches the species_name. This method should
be case insensitive. The return value is the total
number of trees of given species in all boroughs.

int add_tree(Tree & new_tree); This inserts Tree new_tree into the collection,
updates the list of species names and counts of
the number of trees and types of trees in the
borough.

void print_all_species(ostream & out)

const;

This writes the set of all species common names
found in the data set to the output stream out,
one per line. The species common names are
printed in lexicographic order, using the default
string comparison ordering.

void print(ostream & out) const; This writes the entire data set to the output
stream out, one tree per line, in sorted order by
species common name as primary key, and then
by tree_id as a secondary key. The members of
the Tree object are printed in the same order as
they are described in the Tree Data Dictionary
(Section 7.1), EXCEPT THAT the species
common name is printed FIRST.

list<string> get_matching_species(const

string & species_name) const;

This returns a list<string> object containing a
list of all of the actual tree species common
names that match a given parameter string
species_name. This method is case insensitive.
The list returned by this function should not
contain any duplicate names and may be empty.

list<string> get_all_in_zipcode(int

zipcode) const;

This returns a list<string> object containing a
list of all of the actual tree species common
names that are located in the given zipcode. The
list returned by this function should not contain
any duplicate names and may be empty.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 10

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 1: Processing New York City Street Tree Data (minor revisions)

Prof. Stewart Weiss

Method Syntax Description

list<string> get_all_near (double

latitude, double longitude, double

distance) const;

This returns a list<string> object containing a
list of all of the actual tree species common
names that are located within distance

kilometers from the GPS position (latitude,
longitude). The list returned by this function
should not contain any duplicate names and may
be empty.

Adding Trees to the Tree Collection The TreeCollection object has two tasks to perform when it
is given a Tree object to insert into its AVL tree:

1. It must determine within which borough the tree is located and update the count of the total number
of Tree objects located in that borough, even if the tree is dead or just a stump. If an object is inserted
into the AVL tree, then it is part of the �census.�

2. For each Tree object, if the spc_common member is not an empty string, it should be inserted
into the TreeSpecies object, so that, when the entire �le has been read and its trees stored, the
TreeCollection will have a list of all of the species names of trees that have been stored into the AVL
tree. For example, if the input �le has ten lines consisting of three magnolia trees, two mimosas, one
white oak, and four mulberry trees, then the TreeSpecies container would contain these four names:
magnolia, mimosa, mulberry, white oak.

Finding All Matches: Performance When the program is processing commands and the tree_info

command is supplied with a partial name such as oak, instead of �white oak� or �pin oak�, the TreeSpecies
container will be checked to see which trees match the words that the user entered according to the matching
rules described in Section 6 above. The set of matching tree names in TreeSpecies will be used for searching
the set of stored Tree objects.

The get_matching_species() method of the TreeCollection must be e�cient. Your task is to �gure out
how to do it without having to examine every single node in the tree every time it is called and without
missing any matching objects.

Deleting Trees Although there are no visible commands that cause trees to be deleted form the TreeCol-
lection, your AVL tree class must still provide a method to remove a Tree object, given its species common
name and tree_id.

7.4 Required Files

I provide the abstract class interfaces and an object �le for the main program. Your project must contain
all of these �les:

main.o (provided to you)

__tree_collection.h (provided to you)

__tree_species.h (provided to you)

tree_collection.h

tree_collection.cpp

tree.h

tree.cpp

avl.h

avl.cpp

tree_species.h

tree_species.cpp

README

Makefile

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 11

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 1: Processing New York City Street Tree Data (minor revisions)

Prof. Stewart Weiss

The README �le must contain a running log of your progress and changes and thoughts and possibly frus-
trations during this project, or your �eureka� moments. It can also contain documentation of the program.
There is no hard rule about it. The Make�le I will supply to you, and you can modify it as needed for your
code.

8 Testing Your Program

You should make sure that you are testing the program on a much smaller data set for which you can
determine the correct output manually. You should create your own small test �les for that purpose. (Feel
free to share those with other students on Piazza.)

You should make sure that your program's results are consistent with what is described in this speci�cation
by running the program on carefully designed test inputs and examining the outputs produced to make sure
they are correct. The goal in doing this is to try to �nd the mistakes you have most likely made in your
code. Suggestions:

• all trees of a single type, or a single borough, or within a single zipcode

• trees in a �le in sorted order and reverse sorted order (to make sure the trees are constructed in
extreme cases correctly)

• empty data set

• data set with one tree

• commands that result in predictable set of outputs, such as points and distances that produce just one
tree type, or two tree types.

Be warned - do not try to use a large data set when writing and debugging the code. If you do, you will
discover that it can be hours before you see results on typical laptops and desktop computers.

9 Programming Rules

Your program must conform to the programming rules described in the Programming Rules document
on the course website. It is to be your work and your work alone.

10 Grading Rubric

The program will be graded based on the following rubric, based on 100 points.

• A program that cannot run because it fails to compile or link on a cslab host receives only 20%. This
20% is the maximum it can receive. It will be assessed using the rest of the rubric below.

• Meeting the functional requirements of the assignment: 60%

• Design (choices of algorithms, data structures, modularity, organization): 15%

• Documentation: 20%

• Style and proper naming: 5%

This implies that a program that does not compile on a cslab host cannot receive more than 20 points.

11 Submitting the Assignment

This assignment is due by the end of the day (i.e. 11:59PM, EST) on March 12, 2019. Create a directory
named named username _project1. where username is to be replaced by your CS Department network
login name. Put all project-related source-code �les and README and Make�le into that directory. Do not
place any executable �les, data �les, or object �les other than main.o into this directory. You
will lose 1% for each �le that does not belong there, and you will lose 2% if you do not name the directory
correctly2.

Next, create a zip archive for this directory by running the zip command

2I have scripts that process your submissions automatically and misnamed �les force me to manually override them.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 12

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Project 1: Processing New York City Street Tree Data (minor revisions)

Prof. Stewart Weiss

zip -r username_project1.zip ./username_project1

This will compress all of your �les into the �le named username_project1.zip. Do not use the tar
compress utility.

Assuming this �le is in your current working directory you submit by entering the command

submit_cs335_hwk 3 username_project1.zip

because it is the third homework. The program will copy your �le into the hwk3 subdirectory

/data/biocs/b/student.accounts/cs335_sw/hwks/hwk3/

and if it is successful, it will display the message, �File ... successfully submitted.�

You will not be able to read this �le, nor will anyone else except for me. But you can double-check that the
command succeeded by typing the command

ls -l /data/biocs/b/student.accounts/cs335_sw/hwks/hwk3

and making sure you see a non-empty �le there.

If you put a solution there and then decide to change it before the deadline, just replace it by the new
version. Once the deadline has passed, you cannot do this. I will grade whatever version is there at the end
of the day on the due date. You cannot resubmit the program after the due date.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 13

https://creativecommons.org/licenses/by-sa/4.0/

	1 Overview
	2 Objectives
	3 About the Input Data Set
	4 Program Usage and Error Handling
	5 Division of Work
	6 Command Specification
	6.1 Matching and the tree_info Command
	6.1.1 Matching
	6.1.2 tree_info Command Output
	6.1.3 Distance Between Two Points on Sphere (The Haversine Formula)

	7 Project Organization and Structure
	7.1 The Tree Class
	7.2 The TreeSpecies Class
	7.3 The TreeCollection Class
	7.4 Required Files

	8 Testing Your Program
	9 Programming Rules
	10 Grading Rubric
	11 Submitting the Assignment

