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Review of Prerequisite Topics

1 Mathematical Preliminaries

This is the math that you are required to know for the remainder of the course. It is extremely

important that you commit these formulae to memory and know how to apply them in practice,

because they do arise often in the study of algorithmic analysis, and in computer science in general.

1.1 Series Summations

Arithmetic Series The formula for an arithmetic series is

n∑
k=0

k =
n(n+ 1)

2
(1)

Equation 1 is easily proved by mathematical induction. From this formula you can solve the more

general arithmetic series sum of the form

n∑
k=0

(ak + b) (2)

by writing it out directly and redistributing the terms of the series:

n∑
k=0

(ak + b) = a

n∑
k=0

k +

n∑
k=0

b

=
an(n+ 1)

2
+ (n+ 1)b (3)

If it appears that the series does not start at 0, but say, at c, then observe that

n∑
k=c

(ak + b) = (a(c+ 0) + b) + (a(c+ 1) + b) + ...+ (a(c+ n− c) + b)

=
n−c∑
k=0

(a(c+ k) + b) (4)

=

n−c∑
k=0

(ac+ ak + b) (5)

=

m∑
k=0

(ak + d) (6)
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where m = n− c and d = ac+ b. In other words, it can always be viewed as starting at 0.

To illustrate, suppose you need to �nd the sum of the sequence 9, 13, 17, 21, 25, 29, 33, ..., 257. You
observe that the di�erence between each pair of terms is the constant a = 4, from which you can

conclude that this is an arithmetic series. The �rst term is 9, so you can take b = 9. So you know

that a = 4 and b = 9. Now you need to know the value of n. The last term is an + b = 257; so
4n+ 9 = 257. Solving for n we get n = (257− 9)/4 = 62. Therefore, applying Equation 3, the sum

is 4 · 62 · 63/2 + 63 · 9 = 133 · 63 = 8379.

Quadratic Series The formula for the sum of the sequence of squares 1, 4, 9, 16, and so forth, is

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
(7)

This can be proved by mathematical induction, which we do below.

Higher Order Series The quadratic series is the special case of m = 2 in the more general series

n∑
k=1

km ≈ nm+1

m+ 1
, m 6= −1 (8)

A discrete sum such as the above can be viewed as an approximation to the de�nite integral that

de�nes the area under the curve xm between the points x = 0 and x = n. From calculus we know

that
´ n
0 x

mdx = nm+1/(m+1). When m = −1, the denominator in Eq. 8 is zero and the right hand

side is unde�ned. In this case there is a di�erent approximation, which can also be seen through

the perspective of calculus:

Hn =
n∑

k=1

1

k
≈
ˆ n

1

1

x
dx = lnn (9)

.

The sum in Equation 9 for each value of n is given a name, the harmonic number of order n, Hn.

The absolute di�erence between the nth harmonic number Hn and the integral
´ n
1

1
xdx, as n→∞,

is Euler's constant , γ ≈ 0.577216.

Geometric Series The formula for the sum of a geometric series for x 6= 1, is

n∑
k=0

xk =
xn+1 − 1

x− 1
(10)

This is proved directly by showing that the product of the left-hand-side and the denominator of

the right hand side is equal to the numerator of the right-hand-side. The left-hand side is the

polynomial of degree n all of whose coe�cients are 1. When it is multiplied by x−1, all terms drop

out except the xn+1 and the 1. When 0 < x < 1, as n→∞, this converges to 1/(1− x).

Another series that we will encounter quite a bit is

n∑
k=0

kak 0 < a (11)
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where a is either 2 or 1/2. Although it is a bit simpler to derive the formula for this series when

a = 2 or a = 1/2, we derive it for arbitrary a as follows, using Equation 10. First observe that

a

(
n∑

k=0

kak

)
=

n∑
k=0

kak+1

= a2 + 2a3 + 3a4 + ...+ (n− 1)an + nan+1 (12)

Second, expand the original sum in Eq. 11:

n∑
k=0

kak = a+ 2a2 + 3a3 + 4a4 + ...+ nan (13)

and subtract Eq. 12 from Eq 13, adding 1 and subtracting 1:

n∑
k=0

kak − a

(
n∑

k=0

kak

)
= 1 + a+ a2 + a3 + a4 + ...+ an − nan+1 − 1

=

(
n∑

k=0

ak

)
− nan+1 − 1

=

(
an+1 − 1

a− 1

)
−
(
1 + nan+1

)
(14)

The left hand side of this equation is

n∑
k=0

kak − a

(
n∑

k=0

kak

)
= (1− a)

(
n∑

k=0

kak

)

so we can divide both sides of Equation 14 by (1− a) and, adjusting minus signs on the right-hand

side, we get

n∑
k=0

kak =

(
1− an+1

)
(a− 1)2

+
1 + nan+1

a− 1
(15)

When we substitute a = 1/2 in Equation 15, we have

n∑
k=0

k

2k
=

(
1− 1/2n+1

)
1/4

+
1 + n/2n+1

−1/2

= 4− 1

2n−1
− 2− n

2n

= 2− 1

2n−1
− n

2n
(16)

As n → ∞, the right hand side approaches 2, since both 1/2n−1 and n/2n approach 0 as n → ∞.

Hence
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∞∑
k=0

k

2k
= 2

When a = 2 in Eq. 15the result, which you can verify, is

n∑
k=0

k2k = 2 + (n− 1)2n+1 (17)

1.2 Modular Arithmetic (Congruences)

You should be familiar with the basic rules of modular arithmetic, but perhaps you have not heard

the language associated with it. Computer science students write a = b%N to mean that a is the

remainder of the integer division b/N . But actually, in mathematics, we say that two numbers a
and b are congruent modulo N if their absolute di�erence, |a− b|, is divisible by N , or in other

words, if there exists an integer q such that q ·N = |a− b|, and we write a ≡ bmodN , or a ≡N b.
I will use both notations here.

When numbers are congruent modulo N , their remainders when divided by N are the same. E.g.,

53 ≡8 29 ≡8 13 because they all have remainder 5 when divided by 8. In general, modular arithmetic

obeys these same rules as integer arithmetic:

• If a ≡ bmodN , then a+ c ≡ b+ cmodN and

• If a ≡ bmodN , then ad ≡ bdmodN

With ordinary integer arithmetic, we know that if ab = 0, then either a = 0 or b = 0. But if ab ≡ 0
mod N , it does not imply that one of a or b must be 0. For example, ab ≡ 0 mod 12 can be true

if a = 3 and b = 4.

Furthermore, with rational numbers, we know that for any number a 6= 0, ax = 1 has a unique

solution called its multiplicative inverse. But with modular arithmetic this is not true; a number

does not necessarily have a multiplicative inverse. For example there is no x such that 3x ≡ 1
mod 12.

When N is a prime number, however, which we will now write as p instead of N , the picture becomes

much more interesting, because the set of numbers 0, 1, 2, ..., p − 1 has been turned into a �eld ,

speci�cally a �nite �eld , and the following statements are true:

• ab ≡ 0mod p implies that at least one of a or b is divisible by p. For example, if ab ≡ 0mod 53
then either a or b is 0 or 53.

• If ax ≡ 1mod p, then x is uniquely determined: there is a single integer x for which it is true,

and it is called the multiplicative inverse of a. For example, if 8x ≡ 1mod 11, then x = 7
because 8 · 7 = 56 ≡ 1mod 11.

• The equation x2 ≡ amod p has either no solution or exactly two solutions if 0 < a < p.
For example, x2 ≡ 1mod 11 has the solutions x = 1 and x = 10, whereas the equation

x2 ≡ 2mod 11 has no solutions.
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1.3 Greatest Common Divisor

The greatest common divisor of two integers a and b is the largest integer that divides both a
and b, which we denote by gcd(a, b). For example, gcd(24, 30) = 6 and gcd(5, 15) = 5. Formally,

d is the greatest common divisor of a and b if d divides both a and b and if any number c divides
both a and b, then c divides d. When gcd(a, b) = 1, we say that a and b are relatively prime ,

or co-prime . For example, 5 and 8 are relatively prime. For the domain of integers, every pair

of numbers has a unique greatest common divisor. For other domains, the gcd is not necessarily

unique, but we restrict our discussion to the integers. An important result concerning greatest

common divisors is the following theorem.

Theorem 1. Let a and b be two integers and let d = gcd(a, b). Then there exist two integers x and

y such that d = ax+ by.

Proof. Let N be the set of all integer linear combinations of a and b. Formally, N = {ra+ sb | r, s ∈
Z}. Observe that N is closed under addition (and subtraction) and multiplication, because for any

integers r1, s1, r2, s2, t ∈ Z, we have

(r1a+ s1b)± (r2a+ s2b) = (r1 ± r2)a+ (s1 ± s2)b ∈ N

since (r1 ± r2), (s1 ± s2) ∈ Z. Also,

t(ra+ sb) = (tr)a+ (ts)b ∈ N

since (tr), (ts) ∈ Z.

Since N is a subset of the integers, it has some smallest positive member. Let d be the smallest

positive number in N. By the divisibility property of the integers, we know that, for any n ∈ N
there are integers q and r such that

n = qd+ r

where r = 0 or 0 < r < d. Suppose r 6= 0. Then 0 < r < d and r = n − qd = 1 · n + (−q) · d.
Since n ∈ N and d ∈ N and N is closed under addition, r must be in N as well. But then r would

be a member of N smaller than d which is a contradiction, because we chose d to be the smallest

positive member of N. Therefore, r = 0. But then

n = qd

for some q ∈ Z. This shows that d|n. Since we chose n ∈ N arbitrarily, this shows that for every

n ∈ N, d is a divisor of n. Let r = 1 and s = 0. Then

d | (ra+ sb)⇒ d | a

and letting r = 0 and s = 1
d | (ra+ sb)⇒ d | b

so d is a common divisor of a and b. Suppose that c divides a and c divides b. Then clearly c divides
ra and c divides sb, so c | (ra + sb). This implies that c divides all numbers in N. In particular, c
divides d, which implies that c ≤ d and therefore d must be a greatest common divisor of a and b.
Is it unique? Since d ∈ N, there are integers x and y such that d = ax+ by. If there were another
number d1 that was a gcd of a and b then we would have to have d | d1 by the de�nition of the gcd,

and since d = ax+ by and d1 divides a and b, d1 | d. If d | d1 and d1 | d then d = d1. Therefore d is

the unique gcd of a and b.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 1 Review of Prerequisite Topics

Prof. Stewart Weiss

This is a very important statement. The gcd of any two numbers is a linear combination of the two

numbers. If a and b are relatively prime, their gcd is 1, and therefore there are x and y such that

1 = ax+ by. This also implies that every integer c can be written as a linear combination of a and

b, because c = c · 1 = c · (ax+ by) = acx+ bcy. The x and y do not have to be positive; in fact it

is not always possible to �nd two non-negative integers x and y in this theorem. But under certain

conditions, we can:

Theorem 2. Let a and b be two relatively prime positive integers. If d ≥ (a− 1)(b− 1) then there

exist non-negative integers x and y such that d = ax+ by.

Proof. Since a and b are relatively prime, 1 = gcd(a, b). By Theorem 1, there exist integers x and

y such that 1 = ax+ by. Therefore, d = adx+ bdy. Let x0 = dx and y0 = dy. Then d = ax0 + by0.
Since d is a non-negative number, at least one of x0 or y0 must be non-negative. Let us assume

that x0 ≥ 0 but y0 < 0. Observe that for any x and y, if d = ax+ by then d = a(x− b) + b(y − a),
because a(x− b) + b(y + a) = ax− ab+ by + ab = ax+ by = d. In particular,

d = a(x0 − b) + b(y0 + a)

If y0 < 0 it is not possible that x0 − b < 0. To see this, suppose to the contrary that x0 − b < 0.
Then x0 < b, implying that x0 ≤ b− 1. Also, since y0 < 0, y0 ≤ −1 . This would imply that

d = ax0 + by0 ≤ a(b− 1) + b(−1) = ab− a− b < ab− a− b+ 1 = (a− 1)(b− 1)

which contradicts the premise that d ≥ (a − 1)(b − 1). Hence x0 − b ≥ 0. This shows that if we

have a pair of numbers x and y such that d = ax+ by but that y < 0, we can �nd a second pair of

numbers x′ = x − b and y′ = y + a such that d = ax′ + by′ but for which x′ ≥ 0 and y′ > y. This
leads to the pair we need, as we now formalize.

Let x1 = x0 − b and y1 = y0 + a. In general, let xi+1 = xi − b and yi+1 = yi + a, for all i ≥ 0.
You should see that all pairs (xi, yi) satisfy d = axi + byi. The sequence y0, y1, y2, . . . is a strictly

increasing sequence and so not all yi are negative. Let k be the largest index such that yk is

negative. Then yk+1 = yk + a is non-negative. For this k, we have d = axk + byk with yk < 0, so
xk+1 = xk − b ≥ 0 by our preceding discussion. Therefore, we have found a pair, (xk+1, yk+1) such
that d = axk+1 + byk+1 and both xk+1 and yk+1 are non-negative.

1.4 Proofs

Proofs are important. When we make a claim that something is true, we have to prove that it is

true. Although there are philosophical arguments about what constitutes a proof, we will restrict

this discussion to methods of proof that no one disputes are valid. Three such methods of proof can

be used to solve most problems:

1. proof by mathematical induction,

2. proof by contradiction, and

3. proof by counterexample.

We describe and give examples of each.
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1.4.1 Proof by induction

Suppose a statement S can be formulated as depending on a single non-negative integer n. A proof

of S by mathematical induction has two parts: a base case that establishes that S(n) is true for

a �nite number of values of n, typically that it is true for n = 0, and an inductive argument that

shows that if S is true for arbitrary k, then it is also true for k + 1. I.e., S(k) =⇒ S(k + 1). We

demonstrate this method by proving Equation 7 above using induction. We display the equation

again for easy reference:
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

Base Case: n = 0 . The left side of the equation is 0 and the right hand side is also 0. Thus,
the base case is true.

Inductive Hypothesis We assume the equality is true for n = N :

N∑
k=0

k2 =
N(N + 1)(2N + 1)

6

Inductive Step We prove that it will be true when n = N + 1, given that it is true for n = N :

N+1∑
k=0

k2 =
N∑
k=0

k2 + (N + 1)2

=
N(N + 1)(2N + 1)

6
+ (N + 1)2

= (N + 1)

(
N(2N + 1)

6
+

6(N + 1)

6

)
= (N + 1)

(
2N2 + 7N + 6)

6

)
= (N + 1)

(
(N + 2)(2N + 3)

6

)
= = (N + 1)

(
(N + 1 + 1)(2(N + 1) + 1)

6

)

which shows that the equation is valid when n = N + 1.

1.4.2 Proof by Contradiction

In a proof by contradiction, the idea is to assume that the statement to be proved true is false and

then show that the assumption that it is false leads to some contradiction. In symbolic language,

let S be a statement to be proved true. Suppose that S implies that some statement R and its

negation, ∼ R are both true. Then S implies ( R and ∼ R). Since (R and ∼ R) must be logically
false, S implies false, which by Modus Tollens implies that S is false. (Modus Tollens states that if

P implies Q and Q is false, then P is false.)

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 1 Review of Prerequisite Topics

Prof. Stewart Weiss

Example 3. Proof that the square root of 2 is an irrational number.

Suppose that the square root of 2 is rational.

Then by the de�nition of a rational number, there are two integers p' and q' with q' 6= 0, such that

(p'/q')2 = 2.

This implies that there are two integers p and q that are relatively prime to each other such that

(p/q)2 = 2, because we can let p = p'/ gcd(p', q') and q = q'/ gcd(p', q') where gcd means �greatest

common divisor�.

Since (p/q)2 = 2, p2 = 2q2 implying in turn that p2 is even.

This means p is even because if it were odd, p2 would be odd. So p = 2m for some m, and p2 = 4m2.
Hence 4m2 = 2q2, implying 2m2 = q2 implying q2 is even which then implies q is even for the same

reason that we stated above regarding p.

But then p and q are each even and cannot be relatively prime, which is a contradiction. So the

supposition that square root of 2 is rational leads to a contradiction and therefore it must be false.

Example 4. This is another proof that the square root of 2 is an irrational number, but it is more

intuitive; it is from Alexander Bogomolny. It is based on the Fundamental Theorem of Arithmetic,

which states that every number is uniquely (up to the order of factors) representable as a product

of primes. Assume the square root of 2 is rational and let (p/q)2 = 2 for some integers p and q.
Then p2 = 2q2. Factor both p and q into a product of primes. p2 is factored into a product of the

very same primes as p each taken twice. Therefore, p2 has an even number of prime factors. So does

q2 for the same reason. Therefore, 2q2 has an odd number of prime factors. As p2 = 2q2, it cannot
have both an even number of prime factors and an odd number of prime factors simultaneously, so

this is a contradiction.

1.4.3 Proof by counterexample

There are two types of quanti�ed statements: universal statements and existence statements. A

universal statement is of the form, "For every such-and-such, P(such-and-such) is true" where P is

some predicate involving such-and-suches. The symbol ∀x means �for all x.� For example,

"Every month has 31 days."

is a statement that says, "for every month x, 'has-thirty-one-days(x)' is true". This is clearly false

and is easily proved by showing that there is some month that does not have 31 days, such as April.

An existence statement is of the form, "There is a such-and-such for which Q(such-and-such) is

true." This can be proved by �nding a single such-and-such that makes Q true, but it is disproved

by showing that for any possible such-and-such, Q(such-and-such) is false.

The proof that P is not universally true for every month is an example of a proof by counterexample.

Proof by counterexample is used to prove that universal statements are false. It cannot be used to

prove that universal statements are true.

Example 5. The Fibonacci numbers are de�ned recursively as follows:

F0 = 1

F1 = 1

Fn+2 = Fn+1 + Fn
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Fk is the kth Fibonacci number, which are important numbers that arise in unexpected places in

nature and mathematics alike. Suppose we want to prove that the statement (∀k)Fk <= k2 is

false. This is a universal statement, and to prove it false we need a witness to its falsehood, i.e., a

counterexample. We can take k = 11: F11 = 144 > 121.

2 C++ Review

This is a review of selected topics about C++ that should have been covered in the prerequisite

courses. They are here mostly for reference.

2.1 Functions with Default Arguments

C++, unlike C, allows any function to have default arguments for its parameters. A default argu-

ment is the value assigned to a formal parameter in the event that the calling function does not

supply a value for that parameter.

Example 6. The declaration

void point2d(int = 3, int = 4);

declares a function that can be called with zero, one, or two arguments of type int. It can be called

in any of these ways:

point2d(1,2);

point2d(1);

point2d();

The last two calls are equivalent to point2d(1,4) and point2d(3,4), respectively.

The syntax for declaring default arguments is:

return_type function_name ( t1 p1, t2 p2, ..., tk pk = dk, ..., tn pn = dn);

where each tk is a type symbol, pk is a parameter symbol, and dk is an initializing expression, which

should be a constant literal or a constant global variable. It is not allowed to be a local variable. If

parameter pk has a default value, then all parameters pi, with i > k must also have default values.

In other words, trailing parameters, the parameters to its right in the list of parameters must have

default values also.

If a function is declared prior to its de�nition, as in a class interface, the defaults should not be

repeated again � it is not necessary and will cause an error.

If default parameters are supplied and the function is called with fewer than n arguments, the

arguments will be assigned in left to right order, as the point2d() example illustrated. As another

example, given the function declaration,

void carryOn( int count, string name = "", int max = 100);
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carryOn(6) is a legal call that is equivalent to carryOn(6, "", 100), and carryOn(6, "flip") is

equivalent to carryOn(6, "flip", 100). If argument k is not supplied, then all arguments to the

right of k must be omitted as well. The following are all invalid.

void bad1(int a = 2, int b , int c);

void bad2(int a = 1, int b = 2, int c);

void bad3(int a , int b = 3, int c);

The C++ standard also allows you to add default arguments to overloaded function declarations

(not de�nitions) at a later time. The following program is valid code.

void f(int a, int b, int c); // f() has no defaults

void f(int a, int b, int c = 1); // c is given a default

void f(int a, int b = 1, int c); // b is given a default

void f(int a = 1, int b, int c); // a is given a default

int main()

{

return 0;

}

void f( int a, int b, int c)

{

//stuff here

}

Be warned though that there are not many good reasons to do this in your programs. The reason

that default arguments are important is that they are particularly useful in reducing the number of

separate constructor declarations within a class. One can write good programs without ever using

default arguments for function parameters.

2.2 Member Initializer Lists

Consider the following class de�nitions.

class MySubClass

{

public:

MySubClass(string s) { m_name = s; }

private:

string m_name;

};

class X

{

public:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 10

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 1 Review of Prerequisite Topics

Prof. Stewart Weiss

X(int n, string str ): pmc(quirk), quirk(str), x(n) { }

private:

const int x;

MySubClass quirk;

MySubClass& pmc;

};

The constructor

X(int n, string str ): pmc(quirk), quirk(str), x(n) { }

causes the constructors for the int class and the MySubClass class to be called prior to the body

of the constructor, in the order in which the members appear in the de�nition1, i.e., �rst int then

MySubClass, then passing the address of quirk to the constructor for pmc.

Member initializer lists are necessary in three circumstances:

• To initialize a constant member, such as x above,

• To initialize a member that does not have a default constructor, such as quirk, of type

MySubClass,

• To initialize a reference member, such as pmc above. References are explained below.

2.3 Separation of Interfaces and Their Implementations

A class de�nition should always be placed in a header �le (a .h �le) and its implementation

in an implementation �le , typically called a .cpp �le. The header �le should be thoroughly

documented; it serves as a contract between the implementation of the class and the client code

that uses it, and if you expect someone to use your class or read its interface, then you must describe

in unambiguous, complete, and consistent language, what each member function and friend function

does. This is nothing new.

If you would like to distribute this class to other users, you should distribute the thoroughly docu-

mented header �le and the compiled implementation �le , i.e., object code . The users do not

need to see the source code for the implementation �le. Of course, you can only do this if you know

the target machine architecture and can compile for that architecture.

For a class, the implementation needs the interface, so you must put an #include directive in the

.cpp �le. Remember that the #include directive is executed by the preprocessor (cpp) and that it

copies the included �le into the position of the directive in a copy of the source �le that it creates.

You should always put a header guard into the header �le. A header guard is a construction of

the form

#ifndef __HEADERNAME_H

#define __HEADERNAME_H

the interface definitions here

#endif // __HEADERNAME_H

1Not the order in which they appear in the list!
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where __HEADERNAME_H is a placeholder for a suitable name. Usually it is the name of the �le in

uppercase. It is used to prevent multiple inclusions of the same �le, which would cause compiler

errors. The �rst time it is encountered, the ifndef is true (because it is short for �if not de�ned�),

the symbol __HEADERNAME_H is then de�ned, and the code is included. Subsequent attempts to

include the �le fail because the symbol is de�ned so ifndef is false.

For those wondering why we bother, if you do not do this, then multiple de�nitions of the same class

will occur when the header �le is included indirectly by other �les, and this will cause a compile-time

error.

Separating the interface and implementation is part of the process of organizing a program into

distinct modules to make it easier to maintain the project, and for this reason it is important. It

is better to create many small �les than a few large ones, because changes are easier to control,

compiling and relinking becomes faster, and debugging becomes easier.

Lastly, separation of interface and implementation is not just a good idea for classes, but for modules

in general. If you are creating a program that has several utility functions that are needed by many

other functions, but they are not really related to each other, you could create two �les, utilities.h

and utilities.cpp that have the function prototypes and their implementations respectively, and

this will make the program easier to maintain.

2.4 Separate Compilation of Multi�le Programs

If you have a project that contains multiple source code �les, then these should be compiled sepa-

rately into individual object �les, which would then be linked into a single project executable �le.

The main reason for doing this is that when a change is made to just a single �le, the least possible

recompilation and linking is done, saving time.

If your project consists of the �les utilities.cpp, utilities.h, tree.cpp. tree.h, io.cpp,

io.h, and main.cpp, then the following lines build the project executable myproject:

g++ -c utilities.cpp

g++ -c tree.cpp

g++ -c io.cpp

g++ -o myproject main.cpp utilities.o tree.o io.o

If tree.cpp is changed, it su�ces to repeat only

g++ -c tree.cpp

g++ -o myproject main.cpp *.o

2.5 Vectors and Strings

There have been some changes in the C++ standard, C++11, that allow you to do things that you

could not do before with vectors and with strings. These notes will not discuss the changes, but

you are advised to review the textbook to see what they are. Some of these changes are very useful,

others, less so. One useful addition is the range for-loop. This type of loop existed in the original

UNIX Bourne shell (sh), was retained in bash, made its way into languages like Perl, and has now

been added to C++. This loop
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int sum = 0;

int squares[] = {0,1,4,9,16,25,36};

for ( int x : squares )

sum += x;

states that the variable x declared within the loop expression takes on the value of every element

of the vector squares, so you as coder, do not need to know or specify how many values that is.

This cannot be used to modify the vector, since x is just a copy of the element. In this particular

example, the type of x is declared as int. If we wanted a loop that worked for any type that

supported addition, we could use the new auto keyword:

int sum = 0;

int squares[] = {0,1,4,9,16,25,36};

for ( auto x : squares )

sum += x;

Here, the compiler determines the type of x automatically.

3 C++ Details

The assumption is that you know about pointers, but might need a reminder about a few things.

Here it is.

3.1 Dynamic object creation

In C++, the new operator dynamically allocates memory on the heap and returns a pointer to the

starting address of the created object, as in

myclass = new MyClass;

The new operator is overloaded to create arrays as well, as in

p = new int[100];

The old C++ standard speci�ed that, if it fails, it would return a NULL pointer. In the most recent

standard, it will throw an exception that, unless it is handled, will terminate the program. Thus,

if you plan on using C++11, you must catch the std::bad_alloc exception that new might throw,

as in

#include <cstdio>

#include <new>

using namespace std;

int main()

{
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int sum = 0;

try {

int* p = new int[200000000000];

}

catch ( bad_alloc ) {

printf(" too much memory requested \n" );

}

return 0;

}

The delete and delete[] operators free the storage associated with the pointer; the latter is used

when the pointer is to an array. Assuming the objects are those created above, we release their

resources with

delete myclass;

delete[] p;

If you fail to release memory when you are �nished, you will be wasting memory, and guilty of

causing memory leaks as in

while ( 1 ) {

int* p = new int[1000000000];

printf("la di da . The ship is leaking and I don\'t care.\n");

}

3.2 References Versus Pointers

The thing to remember is that a reference is another name for the same object, not an object

containing its address2. Thus,

int x = 4;

int & y = x; // y is another name for x, so y == 4

int z = y; // z is not a reference

int* px = &x; // px is a pointer to x;

z = 2;

int & m; // illegal � m must be bound to an object when declared

y++; // increments x

px++; // increments px, which now points to something else.

3.3 Return Values

A function should generally return by value, as in

2This is a white lie. A reference is a pointer, but it is a special pointer that can be used with the same syntax as

the thing that is pointed to. So if y is a reference to x, then y contains the address of x, but can only be used in the

program as if it did not contain an address but was a substitute for the name x.
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double sum(const vector<double> & a);

string reverse(const string & w);

sum returns a double and reverse returns a string. Returning a value requires constructing a

temporary object in a part of memory that is not destroyed when the function terminates. If an

object is large, like a class type or a large array, it may be better to return a reference or a constant

reference to it, as in

const string & findmax(const vector<string> & a);

which searches through the string vector a for the largest string and returns a reference to it. It

does not copy the string. Of course if the caller needs to modify it, then passing by const reference

is not a solution. But in general, passing by reference can be error-prone � if the returned reference

is to an object whose lifetime ends when the function terminates, the result is a runtime error. In

particular, if you write

int& foo ( )

{

int temp = 1;

return temp;

}

then your function is returning a reference to temp, which is destroyed when the function terminates.

Usually you return a reference when you are implementing a member function of a class, and the

reference is to a private data member of the class or to the object itself.

3.4 Constructors, Destructors, Copy Constructors, and Copy Assignment Con-
structors

3.4.1 Default Constructor

A default constructor is a constructor that can be called with no arguments. If a class does not

have a user-supplied constructor of any kind, the compiler tries to generate a default constructor at

compile time. If it has any kind of constructor, the compiler will not do this.

3.4.2 Destructor

A destructor is called when an object goes out of scope or is deleted explicitly by a call to delete.

The compiler supplies destructors if the user does not. The reason to supply a destructor is to

remove memory allocated by a call to new, to close open �les, and so on. The destructor created by

the compiler will be a shallow destructor , meaning that it simply deletes the actual members of

the class, and not any memory that members may point to, directly or indirectly.
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3.4.3 Copy Constructor

A copy constructor is called in the following situations:

1. When an object needs to be constructed because of a declaration with initialization from

another object of a type that can be converted to the object's class, as in

IntCell C;

IntCell B = C; // called here

IntCell B(C); // called here

but not

B = C;

because B already has been constructed, so this is not a constructor call of any kind.

2. When an object is passed by value to a function.

3. When an object is returned by value from a function. If an object is returned by reference,

then it is not copied. If by value, the object to be returned is constructed as a copy of the

object within the function.

Again, C++11 has made things more complex, by the inclusion of the move operator and call by

rvalue-reference parameters. It de�nes another type of constructor called amove constructor .

This is mentioned only brie�y here. The move operation is what it sounds like � unlike an assignment

such as x = y, which copies the value of y into x, the assignment x = std::move(y) does not

perform a copy, but instead gives x the value stored in y and removes the value stored in y; it moves

it from y to x.

3.4.4 Copy Assignment Operator

The copy assignment operator is called when two objects already exist and one is being assigned

to the other. In C++ it is operator=. Again, C++11 has increased the complexity, as there are

two di�erent assignment operators, the copy assignment operator and the move assignment

operator . The copy assignment operator is called when the right hand side of the assignment is

a lvalue, i.e., the name of an object. The move assignment operator is called in C++11 when the

right hand side is a temporary object that is about to be destroyed.

3.4.5 Using Defaults or Not

In general, you should either declare no destructors or constructors or assignment operators of any

kind, or de�ne all of them. If your data members include pointers, in general you should de�ne all

of these functions. Even if it does not include pointers, then whether or not you need to depends

on whether any of the conditions described in Section 3.4.3 are true and you need to implement a

copy constructor. C++ does a great deal for you, but in turn you must understand its complex

semantics if you are to avoid hard-to-diagnose bugs. This is why it is best to follow the simple rule

of either all-or-nothing when it comes to these functions.
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4 Templates

One di�erence between C and C++ is that C++ allows you to de�ne templates for both classes

and functions. It is easier to understand class templates if you �rst understand function templates.

Suppose that in the course of writing many, many programs, you �nd that you need a swap function

here and there. Sometimes you want a swap function that can swap two integers, sometimes you

want one that can swap two doubles, and sometimes you need to swap objects of a class. In C,

you have to write a swap function for each type of object, or you can reduce the work by writing

something like this3:

typedef int elementType;

void swap ( elementType *x, elementType *y)

{

elementType temp = *x;

*x = *y;

*y = temp;

}

and you would call this with a call such as

int a, b;

a = ... ; b = ... ;

swap(&a, &b);

In C, the parameters need to be pointers to the variables to be swapped, and their address must be

passed. If you wanted to swap doubles, you would change the typedef by replacing the word �int�

by �double.�

In C++, you could do the same thing using reference parameters:

typedef int elementType;

void swap ( elementType &x, elementType &y)

{

elementType temp = x;

x = y;

y = temp;

}

and you could call this with code such as

int a, b;

a = ... ; b = ... ;

swap(a, b);

Although you do not have to write a separate swap function for each di�erent element type, it is

inconvenient. The C++ language introduced function templates as a way to avoid this.

3There are other methods as well, but these are the two principal approaches.
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4.1 Function Templates

A function template is a template for a function. It is not an actual function, but a template

from which the compiler can create a function if and when it sees the need to create one. This will

be clari�ed shortly. A template for the swap function would look like this:

template <class elementType>

void swap ( elementType &x, elementType &y)

{

elementType temp = x;

x = y;

y = temp;

}

The word class in the template syntax has nothing to do with classes in the usual sense. It is just

a synonym for the word type. All types in C++ are classes. The syntax of a (single-parameter)

function template de�nition is

template <class type_parameter > function-definition

where function-definition is replaced by the body of the function, as swap() above demonstrates.

The syntax for a (single-parameter) function template declaration (i.e., prototype) is

template <class type_parameter > function-declaration

You need to repeat the line

template <class type_parameter>

before both the declaration and the de�nition. For example:

// Declare the function template prototype

template <class T>

void swap( T & x, T & y );

int main()

{

int n= 5;

int m= 8;

char ch1 = 'a', ch2 = 'b';

// more stuff here

swap(n,m);

swap(ch1, ch2);

// ...

}
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// Define the function template declared above

template <class T>

void swap( T & x, T & y )

{

T temp = x;

x = y;

y = temp;

}

You will often see just the letter �T� used as the type parameter in the template.

When the compiler compiles the main program above, it sees the �rst call to a function named

swap. It is at that point that it has to create an instance of a function from the template. It infers

from the types of its parameters that the type of the template's parameter is int, and it creates

a function from the template, replacing the type parameter by int. When it sees the next call, it

creates a second instance whose type is char.

Because function templates are not functions, but just templates from which the compiler can

create functions, there is a bit of a problem with projects that are in multiple �les. If you want

to put the function prototype in a header �le and the function de�nition in a separate .cpp �le,

the compiler will not be able to compile code for it in the usual way if you use that function in a

program. To demonstrate, suppose that we create a header �le with our swap function prototype,

an implementation �le with the de�nition, and a main program that calls the function.

This is swap.h:

#ifndef SWAP_H

#define SWAP_H

template <class T>

void swap( T &x, T &y);

#endif

and swap.cpp:

template <class T>

void swap( T &x, T &y)

{

T temp = x;

x = y;

y = temp;

}

and main.cpp:

#include "swap.h"

int main ()

{
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int a = 10, b = 5;

swap(a,b);

return 0;

}

When we run the command

g++ -o demo swap.cpp main.cpp

we will see the error message

/tmp/ccriQBJX.o: In function `main':

main.cpp:(.text+0x29): undefined reference to `void swap<int>(int&, int&)'

collect2: ld returned 1 exit status

This is because the function named swap does not really exist when main is compiled. It has a

reference only to a function template. The solution is to put the function template implementation

into the header �le, as unsatisfying as that is because it breaks the wall that separates interface and

implementation. This can be accomplished with an #include directive:

#ifndef SWAP_H

#define SWAP_H

template <class T>

void swap( T &x, T &y);

#include �swap.cpp�

#endif

The general rule then, is to put the function template prototypes into the header �le, and at the

bottom, include the implementation �les using an #include directive. There will be no problem

with multiply-de�ned symbols in this case when you compile the code.

Note. Function templates, and templates in general, can have multiple parameters, and they do

not have to be classes, but that is a topic beyond the scope of this introduction. You may also see

the word typename used in place of the word class as the type of the template parameter. For

the most part, these are interchangeable, but it is better to use class until you know the subtle

di�erence. The interested reader can refer to a good C++ book for the details.

4.2 Class Templates

Imagine that you want to implement a list class. There is nothing in the description of a list that is

speci�c to any particular type of data object, other than the ability to copy objects. For a sorted

list, the objects do have to be comparable to each other in some linear ordering, but that is about

the only limitation in terms of the data's speci�c properties. It stands to reason that you should be

able to create a generic kind of list, one whose de�nition does not depend on the underlying element

type. This is one reason that C++ allows you to create templates for classes as well. A class

template is like a generic description of that class that can be instantiated with di�erent underlying

data types.
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4.2.1 De�ning Class Templates

As with function templates, a C++ class template is not a class, but a template for a class. An

example of a simple class template interface is

template <class T>

class Container

{

public:

Container();

Container( T initial_data);

void set( T new_data);

T get() const;

private:

T mydata;

};

Notice that a class template begins with the template keyword and template parameter list, after

which the class de�nition looks the same as an ordinary class de�nition. The only di�erence is that

it uses the type parameter T from the template's parameter list. The syntax for the implementations

of the class template member functions when they are outside of the interface is a bit more complex.

The above functions would have to be de�ned as follows:

template <class T>

void Container<T>::set ( T initial_data )

{

mydata = new_data;

}

template <class T>

T Container<T>::get() const

{

return mydata);

}

Notice the following:

1. Each member function is actually a function template de�nition.

2. All references to the class are to Container<T> and not just Container. Thus, the name of

each member function must be preceded by Container<T>::.

In general the syntax for creating a class template is

template <class T> class class_name { class_definition };

and a member function named foo would have a de�nition of the form

template <class T>

return_type class_name<T>::foo ( parameter_list ) { function definition }
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4.2.2 Declaring Objects

To declare an object of a class that has been de�ned by a template requires, in the simplest case,

using a syntax of the form

class_name<typename> object_name;

as in

Container<int> int_container;

Container<double> double_container;

If the Container class template had a constructor with a single parameters, the declarations would

instead be something like

Container<int> int_container(1);

Container<double> double_container(1.0);

The following is a complete listing of a very simple program that uses a class template.

Listing 1: A program using a simple class template.

#include <iostream >

using namespace std;

template <class T>

class MyClass

{

public:

MyClass( T initial_value);

void set( T x) ;

T get( ) ;

private:

T val;

};

template < class T >

MyClass < T >:: MyClass (T initial_value)

{

val = initial_value;

}

template < class T >

void MyClass < T >:: set (T x)

{

val = x;

}

template < class T >

T MyClass < T >::get ()
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{

return val;

}

int main ()

{

MyClass <int > intobj (0);

MyClass <double > floatobj (1.2);

cout << "intobj value = " << intobj.get()

<< " and floatobj value = " << floatobj.get() << endl;

intobj.set (1000);

floatobj.set (0.12345);

cout << "intobj value = " << intobj.get()

<< " and floatobj value = " << floatobj.get() << endl;

return 0;

}

Again, remember that a class template is not an actual de�nition of a class, but of a template

for a class. Therefore, if you put the implementation of the class member functions in a separate

implementation �le, which you should, then you must put an #include directive at the bottom of

the header �le of the class template, including that implementation �le. In addition, make sure

that you do not add the implementation �le to the project or compile it together with the main

program. For example, if myclass.h, myclass.cpp, and main.cpp comprise the program code, with

myclass.h being of the form

#ifndef MYCLASS_H

#define MYCLASS_H

// stuff here

#include �myclass.cpp�

#endif // MYCLASS_H

and if main.cpp includes myclass.h, then the command to compile the program must be

g++ -o myprogram main.cpp

not

g++ -o myclass.cpp main.cpp

because the former will cause errors like

myclass.cpp:4:6: error: redefinition of `void MyClass<T>::set(T)'

myclass.cc :4:6: error: `void MyClass<T>::set(T)' previously declared here

This is because the compiler will compile the .cpp �le twice! This is not a problem with function

templates, but it is with classes, because classes are turned into objects.
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4.3 Object and Comparable

The textbook makes use of Object and Comparable as generic types. The Object class represents

any class with a default constructor, an operator=, and a copy constructor. The Comparable class is

intended to represent any class that, in addition, has an operator<. When a class has an operator<,

the collection of all of its instances is a totally ordered set; i.e., given any two Comparables A and

B, either A < B or B < A.

4.4 Function Objects

A function object is a special type of object in C++. It is a class that contains a public overload

of the function call operator , operator(). A function object may be used instead of an ordinary

function . In C++ this is also called a class type functor . An example or two will illustrate.

A simple function object can look like this:

class is_less_than

{

public:

bool operator()(const int &a, const int &b) const

{

return a < b;

}

};

Note that the name of this class uses the function name style rather than the PascalCase class

naming convention. This is a class with nothing but the overloaded operator(). It has two

parameters and compares their values and returns true if the �rst is less than the second, and false

otherwise. It can be called like this:

int x = 10, y = 7;

if ( is_less_than(x,y) )

/* more stuff */

The call is indistinguishable from a call to a function named is_less_than. We can pass a function

object, not an instance of the function, but the class name itself, to a routine that expects a function

pointer. Listing 2 demonstrates.

Listing 2: Function object example 1.

#include <iostream >

#include <iterator >

#include <vector >

#include <algorithm >

/* The function object is named is_less_than */

class is_less_than

{

public:
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bool operator ()(const int &a, const int &b) const

{

return a < b;

}

};

int main()

{

std::vector <int > items;

/* put numbers in reverse order into the vector */

for ( int i = 10; i > 0; i--)

items.push_back(i);

/* The sort() algorithm from the standard algorithm library has the

syntax

void sort (RandomAccessIterator first ,

RandomAccessIterator last ,

Compare comp);

where the first two parameters are iterators to the start and one

past the end of the range of the container to be sorted , and

the third parameter is a binary function that accepts two

elements in the range as arguments , and returns a value

convertible to bool. The third argument can be a function

pointer or a function object.

*/

std::sort(items.begin (), items.end(), is_less_than ());

/* prove it is sorted by printing it out */

for ( int i = 0; i < 10; i++)

std::cout << items[i] << " ";

std::cout << std::endl;

return 0;

}

Function objects can also have data members to maintain their state. There is no restriction about

this. They can also have a constructor to initialize the data members. The Ticker function object

below retains its state and can be used like the ticker in a store that makes you take a number to

be served. It is named using PascalCase because it has a constructor and this also looks like an

object, not just a function:

class Ticker {

private:

int &count;

public:

Ticker(int &n) : count(n) {}

int operator()()

{

return count++;

}
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};

The following listing shows how it could be used.

Listing 3: Function object with state.

#include <iostream >

#include <iterator >

#include <algorithm >

class Ticker {

private:

int &count;

public:

Ticker(int &n) : count(n) {}

int operator ()()

{

return count ++;

}

};

int main ()

{

int numbers [20];

int startvalue (10);

std:: generate_n (numbers , 20, Ticker(startvalue));

std::cout << "Numbers given out today are:";

for (int i=0; i<20; ++i)

std::cout << ' ' << numbers[i];

std::cout << '\n';

return 0;

}
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