
CSci 335 Software Design and Analysis 3

Chapter 2 Mathematical Concepts and Performance Measures

Prof. Stewart Weiss

Mathematical Concepts and Performance Measures

The main point of this chapter is to develop a system for evaluating and comparing algorithms, not
programs. For this reason, we do not measure performance di�erences between two implementations

of the same algorithm, nor are we concerned with precise calculations of running times, since these

depend on the implementation, the compiler, the operating system, and the machine architecture.

Instead, we devise a means of evaluating the actual algorithm, independent of its implementation.

We must work at a higher level of abstraction, throwing away details of implementation that do not

a�ect how �fast� it is. We have yet to de�ne what �fast� means.

1 Mathematical Background

First, we de�ne a method of measuring how "fast" functions of a single variable can grow. Use your

intuition here. Consider the three non-decreasing functions

f(x) = x2

g(x) = x3

h(x) = 5x2

Your intuition should tell you that as x gets larger and larger, the function g(x) grows faster and

faster than the others. Furthermore, for any value of x, h(x) will always be exactly 5f(x). So

whatever the rate of growth of f(x), h(x) is growing at the same rate as f(x). They stay in a

kind of lock step, with h and f proportionally the same as x marches towards in�nity. On the

other hand, as x increases, clearly g(x) gets larger and larger than both f(x) and h(x). To see

this, look at the �rst six integer cubes: 1, 8, 27, 64, 125, 216; whereas the �rst six integer squares

are 1, 4, 9, 16, 25, 36. Even the �rst six values of h(x) are overtaken by the faster growing g(x):
5, 20, 45, 80, 125, 180.

The point is that whatever means we use to measure the relative rates of growth of functions, it

ought to ignore constant factors such as the 5 above, and must rank functions like cubics as being

faster of quadratics. The following de�nitions do just that.

2 De�nitions of Asymptotic Rates of Growth

The word asymptotic is an adjective that means, "approaching a limit." In computer science, the

limit is usually in�nity, and the adjective is applied to the behavior of a function. Asymptotic
analysis refers to the study of the limiting behavior of algorithms as their inputs approach in�nity.

The three operators, "big O", "big omega Ω", and "theta Θ", de�ne sets of functions. In other

words, O(f(n)) is a set of functions (of one variable) that are related to f in some precise way,

Ω(f(n)) is a di�erent set of function related to f . It is good to think of "big O", "big omega Ω",
and "theta Θ" as operators that de�ne sets of functions. In fact we will use the membership symbol

∈ to indicate this.

The formal de�nitions of these operators are as follows.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Chapter 2 Mathematical Concepts and Performance Measures

Prof. Stewart Weiss

o(f(n)) ω(f(n))

Ω(f(n))O(f(n)) Θ(f(n))

Figure 1: Relationships among the di�erent classes of rates of growth.

Big O

t(n) ∈ O(f(n)) if there exist two numbers m and c such that m ≥ 0 and c ≥ 0 and t(n) ≤ cf(n)
for all n ≥ m.

In other words, O(f(n)) is the set of all functions t(n) such that there is a constant c such that

t(n) ≤ cf(n) for su�ciently large values of n. You could say that O(f(n)) is the set of functions

that grow no faster than f.

Big Omega Ω

t(n) ∈ Ω(f(n)) if there exist two numbers m and c such that m ≥ 0 and c > 0 and t(n) ≥ cf(n) for
all n ≥ m.

In other words, Ω de�nes something like the opposite of big-O. The functions t(n) in Ω(f(n)) have
the property that for each such t(n) there is a c such that for su�ciently large n, t(n) ≥ cf(n). You
could say that Ω(f(n)) is the set of functions that grow no slower than f .

Theta Θ

t(n) ∈ Θ(f(n) i� t(n) ∈ O(f(n)) and t(n) ∈ Ω(f(n)).

The set Θ(f(n)) is actually the intersection of the �rst two sets. It consists of those functions that

grow no faster than f and grow no slower than f . You could say that it is the set of functions

that grow at the same rate as f . Remember to be careful with this. The functions 1000f(n) and

f(n)/10000 are each in Θ(f(n)).

Little o

t(n) ∈ o(f(n) i� t(n) ∈ O(f(n)) and t(n) /∈ Θ(f(n)).

The set o(f(n)) is the intersection of O(f(n)) and the complement of Θ(f(n). It consists of functions
that grow strictly slower than f . For example, n ∈ o(n2) but 2n2 /∈ o(n2).

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Chapter 2 Mathematical Concepts and Performance Measures

Prof. Stewart Weiss

Little Omega ω

t(n) ∈ ω(f(n)) i� t(n) ∈ Ω(f(n)) and t(n) /∈ Θ(f(n).

The set ω(f(n)) is the intersection of Ω(f(n)) and the complement of Θ(f(n). It consists of functions
that grow strictly faster than f . For example, n3 ∈ ω(n2) but 2n2 /∈ ω(n2).

See Figure 1 for a visual depiction of the relationships among these di�erent functions.

2.1 Some Implications Of The De�nitions

Lemma 1. If t(n) ∈ O(f(n)) and s(n) ∈ O(g(n)) then

1. s(n) + t(n) ∈ O(f(n) + g(n))

2. s(n) · t(n) ∈ O(f(n) · g(n))

Proof. Because t(n) ∈ O(f(n)), there is an integer m and a constant c such that for all n > m,

t(n) ≤ cf(n). Similarly, there are constants k and d such that s(n) ≤ gd(n) for all n > k. Let

C = max(c, d) and let M = max(m, k) . Then s(n) + t(n) ≤ Cf(n) + Cg(n) = C(f(n) + g(n)) for
all n > M , proving that s(n) + t(n) ∈ O(f(n) + g(n)).

Similarly, s(n) · t(n) ≤ Cf(n) · Cg(n) = C2f(n) · g(n) for all n > M . In this case we use C2 as the

constant, and this shows that s(n) · t(n) ∈ O(f(n) · g(n)).

De�ne

max(f(n), g(n)) =

f(n) if g(n) ∈ O(f(n)) and f(n) /∈ O(g(n))

g(n) if f(n) ∈ O(g(n))

undefined otherwise

In other words, max(f(n), g(n)) is the faster growing function of f(n) and g(n). It is not hard to

show that, if max is de�ned for f and g then O(f(n) + g(n)) = O(max(f(n), g(n))). The reason

that it may not be de�ned is that one or the other of f(n) and g(n) may be oscillating . See below
for an example.

Calculus and the theory of limits can be used to determine the relative growth rates of functions.

If necessary, L'Hopital's rule can be used for solving the limit:

if limn→∞(f(n)/g(n))= then all of these are true statements:

0 f(n) ∈ O(g(n)) and f(n) ∈ o(g(n))

c 6= 0 f(n) ∈ Θ(g(n))

∞ f(n) ∈ Ω(g(n)) and f(n) ∈ ω(g(n))

oscillating there is no limit and there is no relationship.

For an example of an oscillating fraction, let

f(n) =

{
n if n is even

1 if n is odd

and let g(n) = n. Then the fraction f(n)/g(n) alternates between 1 and 1/n as n approaches

in�nity, so there is no limit.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Chapter 2 Mathematical Concepts and Performance Measures

Prof. Stewart Weiss

2.2 Some Growth Rate Relationships

In the following, the symbol < means that the function to the left is little-o of the function to the

right.

c < logN < logk N < N < N logN < N2 < N3 < N3+k < 2N < 3N < . . . < N !

where the base of the log does not matter, and k is any integer greater than 1.

3 Model of Computation

When analyzing running time, we assume that the algorithm runs on some theoretical, abstract

computer. It is usually a computer based on theVon Neumann architecture . The Von Neumann

architecture, named after John von Neumann1, the mathematician who invented it, is one in which

both the program and its data are stored in memory, and instructions are executed one after the

other in sequence, fetching operands from memory. This is exactly the kind of computer you

use today. Before Von Neumann, computers were single-purpose machines whose programs were

hardware controlled. Other abstract models yield di�erent running times.

Further assumptions about program execution are that

• all instructions take exactly the same amount of time

• memory is in�nite

• all instructions are �simple� instructions that act on scalars, not vectors.

These assumptions are designed to simplify the analysis process without any loss of correctness.

While it is true that some instructions take longer than others, for example, the di�erence is a

constant factor that gets ignored anyway in the rate of growth analysis.

3.1 Input Size

Every input is assumed to have a positive integer size that depends on the particular problem to be

solved. For example, the sorting problem sorts lists of things. The number of elements in the list

is the size of the input, not the lengths of the items to be sorted, or their combined lengths. If the

problem is searching for the occurrence of one string in a second string, the number of characters in

the �rst string and the number of characters in the second string are the two input sizes. Di�erent

algorithms may depend on their sum, or product, or some other function of the two sizes. If the

problem is to search for a keyword in a dictionary, the input size is not the length of the keyword,

but the number of words in the dictionary.

1John von Neumann, �First Draft of a Report on the EDVAC�, United States Army Ordinance Department and

the University of Pennsylvania, 1945.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Chapter 2 Mathematical Concepts and Performance Measures

Prof. Stewart Weiss

3.2 What to Analyze

The running time of an algorithm depends on the input it is given. For some inputs it might be fast

and for others, it might be slow. We are usually interested in knowing the worst it can possibly do,

because then we can plan conservatively. Sometimes though, we want to know the average running

time. The idea of average is really useless because it treats all inputs as equally likely to occur,

which is never true. What is more useful is the expected running time, which is the weighted

average, i.e., each input is weighted by its probability of occurring. This is also a little silly since

we rarely are able to weight the inputs realistically. Therefore, average running time is used, but

everyone knows it is only an approximation. I will use the following notation the running times for

an input of size N :

Tavg(N) average (not expected value)

Texpected(N) probabilistic analysis taking into account distribution of inputs

Tworst(N) worst case

3.3 Running Time Calculations

These are rules for analyzing the running time of programs as representations of algorithms � the

rules are designed to ignore details of implementation.

Remember that we usually ignore constant multiples and constant terms.

3.3.1 For Loops

The running time of a for loop is at most the running time of the statements inside the loop

multiplied by the number of iterations of the loop.

3.3.2 Nested Loops

From the preceding statement, it follows that the running time of a statement inside nested loops
is the running time of the statement multiplied by the product of the number of iterations of the

loops. For example, the triply nested pseudo-code loop

for i = 1 to n

for j = 1 to 2n

for k = 1 to 3n

S

runs in time proportional to the product of the running time of S and n3. If the running time of S

is r(S),then in order notation it is O(r(S) · n3).

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Chapter 2 Mathematical Concepts and Performance Measures

Prof. Stewart Weiss

3.3.3 Consecutive Statements

The total running time of a sequence of statements is the sum of the running times of the statements.

For example, the sequence

S1 ; S2 ; S3 ; ... ; Sn

has a running time equal to the sum of the running times of S1, S2, S3, ..., Sn. If order notation is

being used to represent running time, then it is usually just the maximum of the running times of

the individual statements that is reported.

3.3.4 If/else

The running time of an if/else statement

if (condition)

S1

else

S2

is at most the running time of the evaluation of the condition plus the sum of the running times of

S1 and S2.

If we are interested in worst case analysis, then we have to assume that both branches of the

statement are reachable unless we can prove that one is never reached. Under this assumption, the

running time of the if/else statement is the maximum of the condition, S1, and S2.

3.3.5 Function Calls

If a sequence of statements contains function calls, the running time of the calls must be determined

�rst. For recursive functions, the analysis can get di�cult, requiring a recurrence relation to be

solved.

Example

long fib(int n)

{

if (n <= 1)

return 1;

else

return fib(n-1) + fib(n-2);

}

Let T (n) be the running time of this function given input n. Then when the argument to the

function is 0 or 1, the function returns without a recursive call, so the running time is a constant,

which we choose to be 1:

T (0) = T (1) = 1

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Chapter 2 Mathematical Concepts and Performance Measures

Prof. Stewart Weiss

If the input is greater than 1, then two recursive calls are made and some constant work is done as

well.

T (n) = T (n− 1) + T (n− 2) + 1

The constant 1 is for the evaluation of the condition and the execution of the return statement.

It indicates that besides the time for each recursive call, there is some work that must be done in

this call to the function, no matter how small. This is a recurrence relation.

To solve this recurrence we make a few observations:

1. T (n) ≥ Fib(n) because it adds 1 each time.

2. Fib(n) ≥ (3/2)n for all n > 4, which we now prove.

Proof. We prove this by induction on n.

Base Case: Fib(5) = 8 > (3/2)5 = 7.59375 and Fib(6) = 13 > (3/2)6 = 11.390625 proving it is true

when n = 5 and when n = 6.

Inductive Hypothesis: Assume that for any n > 6 , if k < n then Fib(k) ≥ (3/2)k. Then we have

Fib(n+1) = Fib (n)+Fib (n-1)

> (3/2)n + (3/2)n−1

= (3/2)n−1((3/2) + 1)

= (3/2)n−1 · 5/2

> (3/2)n−1 · 2.25

= (3/2)n−1 · (3/2)2

= (3/2)n+1

which proves it is true for n + 1.

This shows that T (n) grows exponentially. It doesn't matter how bad it is since that is bad enough.

Recursion is not a very good way to compute Fibonacci numbers.

4 Example: The Maximum Subsequence Problem

This is a very nice problem to study for several reasons. One is that it shows how some cleverness

can be used to replace a poorly performing solution by an extremely e�cient one. Second, it gives

us a chance to analyze three very di�erent types of algorithms. Third, it illustrates an important

concept in algorithm design, that whenever an algorithm computes a piece of information, it should

try to reuse that information as much as possible. You shall see what this means soon.

Roughly stated, the maximal subsequence problem asks you to �nd a subsequence of a sequence

of positive and negative numbers whose sum is the largest among all possible subsequences of the

sequence. For example, given this sequence of numbers:

1, 2, -4, 1, 5, -10, 4, 1

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Chapter 2 Mathematical Concepts and Performance Measures

Prof. Stewart Weiss

you can verify that the subsequence 1, 5 has a sum of 6, and no other subsequence has a sum greater

than 6.

Formally, given a sequence of possibly negative integers A1, A2, ..., AN , �nd

max
i≤j

{
0,

j∑
k=i

Ak

}

For those unfamiliar with the notation, it means, �nd the maximum sum of each possible sequence

of numbers from Ai to Aj for all pairs of indices i and j such that i ≤ j, and choose zero if all are

negative.

Example. The sequence -2, 11, -4, 13, -5, -2 has a maximal subsequence whose sum is 20. The

following table proves this. There is a row for each possible starting value, and a column for each

possible length of sequence that starts at that value. The largest sum is 20, for the sequence of

length 3 starting at 11.

Length of Sequence

Starting
value of
sequence

1 2 3 4 5 6

-2 -2 9 5 18 13 11

11 11 7 20 15 13 0

-4 -4 9 4 2 0 0

13 13 8 6 0 0 0

-5 -5 -7 0 0 0 0

-2 -2 0 0 0 0 0

The brute force method that is described later was used to make the table above.

4.1 Rules for Evaluating Running Time

1. Never count the time to read input, since this is always O(n) for inputs of size n and it will

hide the real running time of e�cient algorithms.

2. Ignore constant multiples � use only order notation for rate of growth problems.

4.2 Solutions to Maximal Subsequence Problem

4.2.1 Brute Force

The following is a C++ function that solves this problem using brute force. It just checks all

possible starting positions and all sequence lengths at that position, and adds the numbers in the

subsequence:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 8

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Chapter 2 Mathematical Concepts and Performance Measures

Prof. Stewart Weiss

int maxSubSeqSum(const vector <int > & a)

{

int max = 0;

for (int i = 0; i < a.size(); i++)

for (int j = i; j < a.size(); j++) {

int sum = 0;

for (int k =i ; k <= j; k++)

sum += a[k];

if (max < sum)

max = sum;

}

return max;

}

4.2.2 Analysis

The innermost loop executes (j − i + 1) times. This ranges over all j from i to N . Thus, the body

of the loop is executed

N−1∑
j=i

(j − i + 1) =

N−1−i∑
j=0

(j + 1) =

N−i∑
j=1

j =
(N − i + 1)(N − i)

2

times. The value of i ranges from 0 to N − 1. Thus, the total number of executions is

N−1∑
i=0

(N − i + 1)(N − i)

2
=

N∑
i=1

(N − (i− 1) + 1)(N − (i− 1))

2

=
N∑
i=1

(N − i + 2)(N − i + 1)

2

=
N∑
i=1

N2 + 3N + 2− (2Ni + 3i) + i2

2

=
1

2

(
N∑
i=1

N2 + 3N + 2

)
− 2N + 3

2

(
N∑
i=1

i

)
+

1

2

(
N∑
i=1

i2

)

=
N(N2 + 3N + 2)

2
− 2N + 3

2

(
N(N + 1)

2

)
+

N(N + 1)(2N + 1)

12

=
6N(N2 + 3N + 2)

12
−
(

3N(N + 1)(2N + 3)

12

)
+

N(N + 1)(2N + 1)

12

=
6N(N + 1)(N + 2)

12
−
(

3N(N + 1)(2N + 3)

12

)
+

N(N + 1)(2N + 1)

12

= N(N + 1)

(
6(N + 2)− 3(2N + 3) + (2N + 1)

12

)
= N(N + 1)

(
2N + 4

12

)
=

N(N + 1)(N + 2)

6
=

N3 + 2N2 + 2N

6

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 9

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Chapter 2 Mathematical Concepts and Performance Measures

Prof. Stewart Weiss

which is O(N3). Why didn't I just use the nested loop rule? Because it was not clear that the loops

were each O(n), was it?

4.2.3 A Divide-and-Conquer, Recursive Solution

A more e�cient solution can be obtained from the following observation:

A maximal subsequence is either entirely within the �rst half, or entirely within the second half, or

it straddles the two halves. If it straddles the two halves, it can be broken into two pieces:

1. the sequence with the largest sum entirely within the �rst half that contains the last element

of the �rst half.

2. the sequence with the largest sum entirely within the last half that contains the �rst element

of the last half.

Thus, we can �nd the sequences in each half that satisfy these conditions, add them up and compare

to the sequences found recursively in each half. We just take the max of all of them.

/**

Recursive maximum contiguous subsequence sum algorithm. Finds maximum sum

in subarray spanning a[left.. right]. Does not attempt to maintain

actual best sequence.

*/

int maxSumRec(const vector <int > & a, int left , int right)

{

if(left == right) // Base cases

if(a[left] > 0)

return a[left];

else

return 0;

int center = (left + right) / 2;

/* Recursion here */

int maxLeftSum = maxSumRec(a, left , center);

int maxRightSum = maxSumRec(a, center + 1, right);

int maxLeftBorderSum = 0;

int leftBorderSum = 0;

/* find the sum of every sequence ending at a[center]

and starting at i, where i = center , center -1, center -2,...

and save the maximum sum in MaxLeftBorderSum */

for (int i = center; i >= left; i--) {

leftBorderSum += a[i];

if (leftBorderSum > maxLeftBorderSum)

maxLeftBorderSum = leftBorderSum;

}

/* Do the analogous thing to the right -hand side of the center */

int maxRightBorderSum = 0, rightBorderSum = 0;

for (int j = center + 1; j <= right; j++) {

rightBorderSum += a[j];

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 10

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Chapter 2 Mathematical Concepts and Performance Measures

Prof. Stewart Weiss

if (rightBorderSum > maxRightBorderSum)

maxRightBorderSum = rightBorderSum;

}

return max3(maxLeftSum , maxRightSum ,

maxLeftBorderSum + maxRightBorderSum);

}

/* Driver for divide -and -conquer maximum contiguous subsequence sum

algorithm. */

int maxSubSum3(const vector <int > & a)

{

return maxSumRec(a, 0, a.size() - 1);

}

Analysis The algorithm makes two recursive calls with half size arrays. It also processes each

element once in a pair of loops. The recurrence is

T (1) = 1

T (N) = 2T (N/2) + cN

If we �telescope� this recurrence relation, we get

T (N) = 2(2T (N/4) + cN/2) + cN

= 4T (N/4) + cN + cN

= 4(2T (N/8) + cN/4) + 2cN

= 8T (N/8) + 3cN

= ...

= 2kT (N/2k) + kcN (1)

The telescoping stops when N/2k = 1 which occurs when N = 2k or when k = log2N . Substituting

log2N for k in Eq. 1, we get

T (N) = N · T (1) + log2N · cN
= N + cN · log2N

∈ O(N + N logN)

This solution has a running time that is O(N logN) which beats O(N3) signi�cantly! Can we do

even better?

4.2.4 Linear Time Solution

A linear time solution to this problem is not hard to �nd. The previous solutions did not use

information they discovered while examining the sequence. This is what I was talking about earlier.

As the algorithm scans the string, it can learn so much more than it was doing, and avoid having

to recompute or even re-examine previous partial sums.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 11

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Chapter 2 Mathematical Concepts and Performance Measures

Prof. Stewart Weiss

Concept We take the liberty of letting the notation ai . . . aj−1 mean both the sequence and its

sum, when the meaning is clear. The following assertions form the basis for the algorithm.

1. If ai is negative, it cannot be the start of a maximal subsequence. (The sequence starting at

ai+1 would be greater than the one starting at ai if ai is a negative number.)

2. More generally than that, any negative subsequence cannot be the start of a maximal subse-

quence (by the same reasoning as in step 1.)

3. If ai . . . aj−1 is positive but ai . . . aj is negative, then ai . . . aj cannot be the start of a maximal

subsequence. Of course, by step 2, if ai . . . aj is negative, then ai . . . aj cannot be the start of
a maximal subsequence, so what does this statement add to that? The next step is the key.

4. Suppose that j is the smallest index greater than i such that ai . . . aj−1 ≥ 0 but ai . . . aj < 0.
In other words, for each index k, i ≤ k < j, ai...ak ≥ 0. Consider any p such that i < p < j.
The sum of the sequence ai . . . aj−1 can be written as the sum of the numbers from ai to ap−1
and the sum of the numbers from ap through aj−1:

ai. . . aj−1 = ai...ap−1 + ap. . . aj−1 (2)

Since we said that for any k, i ≤ k < j, ai...ak ≥ 0, it is true for k = p− 1, so ai . . . ap−1 ≥ 0.
Eq. 2 is of the form

ai. . . aj−1 = X + ap. . . aj−1

where X a non-negative number, so it follows that if we subtract it from the right-hand side,

the right-hand side stays the same or gets smaller:

ai. . . aj−1 ≥ ap. . . aj−1

In other words, ai. . . aj−1 is greater than any of its su�x subsequences. In particular, when

we append aj to both sides of the inequality, it still holds:

ai. . . aj ≥ ap. . . aj

and since the left hand side is negative, so is the right hand side.

5. This implies that if we have some initial subsequence ai . . . aj−1 that is positive or zero, and

we encounter an aj that makes the sum negative, we can advance the start index i to the next
position after j, i.e., j + 1 and start looking for a new maximum subsequence there, because

ai . . . aj cannot be the start of a maximum subsequence.

This leads to the following very simple algorithm.

int maxSubSum4(const vector <int > & a)

{

int maxSum = 0, thisSum = 0;

for (int j = 0; j < a.size(); j++) {

thisSum += a[j];

if (thisSum > maxSum)

maxSum = thisSum;

else if (thisSum < 0)

// this a[j] made the initial sequence negative - start over

thisSum = 0;

}

return maxSum;

}

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 12

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Chapter 2 Mathematical Concepts and Performance Measures

Prof. Stewart Weiss

Analysis It is clearly a linear algorithm since it is a single loop that iterates over every element

of the sequence.

You may be tempted to ask whether there exists an even faster solution. If there is not, then we

would say that this solution is optimal , meaning the best it can be, because it runs as fast as is

possible. But if there does exist a faster solution, this one would not be considered optimal. Can

there be a solution that runs in o(N), meaning in less than linear time? Intuitively it is impossible,

because any solution must look at each number at least once, and so any solution must run in at

least Θ(N) time.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 13

https://creativecommons.org/licenses/by-sa/4.0/

	1 Mathematical Background
	2 Definitions of Asymptotic Rates of Growth
	2.1 Some Implications Of The Definitions
	2.2 Some Growth Rate Relationships

	3 Model of Computation
	3.1 Input Size
	3.2 What to Analyze
	3.3 Running Time Calculations
	3.3.1 For Loops
	3.3.2 Nested Loops
	3.3.3 Consecutive Statements
	3.3.4 If/else
	3.3.5 Function Calls

	4 Example: The Maximum Subsequence Problem
	4.1 Rules for Evaluating Running Time
	4.2 Solutions to Maximal Subsequence Problem
	4.2.1 Brute Force
	4.2.2 Analysis
	4.2.3 A Divide-and-Conquer, Recursive Solution
	4.2.4 Linear Time Solution

