CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

Hashing and Hash Tables

1 Introduction

A hash table is a look-up table that, when designed well, has nearly O(1) average running time for
a find or insert operation. More precisely, a hash table is an array of fixed size containing data
items with unique keys, together with a function called a hash function that maps keys to indices
in the table. For example, if the keys are integers and the hash table is an array of size 127, then
the function hash(x), defined by

hash(z) = %127
maps numbers to their modulus in the finite field of size 127.

Key Space Hash Function Hash Table
(values)

—3 Rome

Canada

—5 Tokyo

t—=6 | Ottawa

Figure 1: A hash table for world capitals.

Conceptually, a hash table is a much more general structure. It can be thought of as a table H
containing a collection of (key, value) pairs with the property that H may be indexed by the key
itself. In other words, whereas you usually reference an element of an array A by writing something
like A[i], using an integer index value i, with a hash table, you replace the index value "i" by
the key contained in location i in order to get the value associated with it. For example, we could
conceptualize a hash table containing world capitals as a table named Capitals that contains the
set of pairs

(“Italy’’, ‘“‘Rome’’), (*‘Japan’’, “Tokyo”’), (‘‘Canada’, ‘‘Ottawa’)
and so on, and conceptually (not actually) you could write a statement such as

print Capitals[“Italy’’]

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

and Rome would be printed, or
print Capitals[‘‘Japan’’]

and Tokyo would be printed. In practice, hash tables are implemented as two-stage lookups. In
the first stage, the hash function is applied to the key to get an index, and in the second stage,
the index is used to get the value associated with the key. Figure [I] illustrates the idea. So
the expression that provides the capital of “Japan” would be Capitals[hash(‘‘Japan’)]. (If the
programming language supports it, the subscript operator could be overloaded so that you could
just write Capitals[‘“‘Japan’’].)

A table that can be addressed in this way, where the index is content rather than a subscript, is
called a content-addressable-table (CAT). Hash tables are content-addressable tables. Some
programming languages provide containers called maps, which are essentially hash tables.

Obviously, if you can look up a value in O(1) running time, you’ve got a good thing going, especially
if inserting the value also takes O(1) time. This would be a much better search table than a binary
search tree of any kind, balanced or not.

2 Properties of a Good Hash Function

To hash means to chop up or make a mess of things, liked hashed potatoes. A hash function is
supposed to chop up its argument and reconstruct a value out of the chopped up little pieces. Good
hash functions

e make the original value intractably hard to reconstruct from the computed hash value,
e are easy to compute (for speed), and

e randomly disperse keys evenly throughout the table, making sure that no two keys map to
the same index.

Hash functions are used in cryptography to encrypt messages. In this case, three other properties
are required:

e They are deterministic.
e Small changes in the key result in big changes in the computed value.

e It is almost impossible to find two different keys that hash to the same value.

Easy to compute generally means that the function is an O(1) operation, practically independent
of the input size and hash table size. For example, if the function tried to find all of the prime
factors of a given number in order to compute the hash function, this would not be easy to compute.
Being easy to compute is a fuzzy concept. Dispersing the keys evenly means that there is as much
distance between successive pairs of keys as possible. For example, if the hash table is of size 1000
and there are 200 keys in it, they should each be about five addresses apart from their neighbors,
because 1000/200 = 5.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

In principle, if the set of keys is finite and known in advance, we can construct a perfect hash
function, one that maps each key to a unique index, so no two keys hash to the same value. Much
research has been done on how to find perfect hash functions efficiently. For example, if we have
the integer keys

112, 46, 75, 515

we would want a function that maps them to the numbers 0,1,2, and 3 uniquely. Coincidentally,
although I picked these numbers randomly, my first guess at a perfect hash function for them was
a good guess. Suppose that g(x) is a function that returns the sum of the decimal digits in z. g(z)
could be defined recursively by

T ifz<9
g(x) = :
%10 + g(x/10) otherwise

For example, ¢(122) =5 and ¢(75) = 12. Let h(x) be defined by

hz) = 9@ gl <9
h(g(x)) otherwise

The function h(z) is the sum of the digits in =, but added recursively until it falls into the range [0, 9].
For example, h(112) = 1+14+2 =4, h(46) = h(4+6) = h(10) = 1, and h(75) = h(7+5) = h(12) = 3.
It was just dumb luck that these numbers mapped to unique indices; this particular hash function
is, in fact, a very poor hash function. It is poor because it does not use much of the information
content in the key such as the order of the digits; to wit, h(112) = h(121) = h(211) = 4. There are
tools that construct perfect hash functions. One such tool is GNU’s gperf, which can be downloaded

from ftp://ftp.gnu.org/pub/gnu/.

3 Collisions

Since almost all practical hash functions are not perfect, they will map one or more keys to the
same indices, the way that h() defined above mapped 112, 121, and 211 to the same index value
4. When two or more keys are mapped to the same location by the hash function, it is called a
colliston. When a collision occurs, a new location must be found for the key that caused it, i.e.,
the second key to be hashed. The strategy for relocating keys for which a collision occurred is called
the collision resolution strategy or the colliston resolution algorithm. Since the relocation
itself may cause further collisions, the goal of a collision resolution algorithm is to minimize the
total number of collisions in a hash table.

Notation. Throughout the remainder of these notes on hash tables, M will denote the length of the
hash table, and the table itself will be denoted by H, so that H[0] through H[M — 1] are the table
entries. Hash functions will be denoted by function symbols such as h(x), hi(z), ha(z) and so on,
and x will always denote a key.

4 Hash Functions

While there are many different classes of integer functions to server as candidate hash functions, we
will focus on the three most common types:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

ftp://ftp.gnu.org/pub/gnu/
https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

division-based hash functions: primary operation is division of the key
bit-shift-based hash functions: bit-shifting is the primary operation

multiplicative hash functions: multiplication is the primary operation

4.1 Division Based Hash Functions

The division method uses the modulus operation (%), which is actually a form of division both
conceptually and operationallyﬂ In the division method, the hash function is of the form

h(z) =2 % M

Certain choices of M are obviously worse than others. For example, if x is an n-bit number and
M = 2™ where m < n, then x % M = x % 2™ is nothing more than the m least significant bits of
x, which is not particularly good because it fails to use the upper m —n bits, throwing away a lot of
information. Although this looks like a division operation, when M = 2™ it is implemented easily
using the bitwise-and operation. Let mask=000...0111...1 where there are n — m 0’s followed by
m 1’s. Then

z % M = x & mask

Other poor choices follow. If M is any even number, h(x) will be even for even x and odd for odd
z, introducing bias into the table. It is a bad idea for M to be a multiple of 3 also, because then
two numbers that differ only by a permutation of their digits will be hashed to locations that differ
by a multiple of 3. For example, if we let M = 6, then 52 % 6 = 4 and 25 % 6 = 1, a distance of 3
apart. Similarly, 1157 % 6 = 5 and if we permute 1157 to 7511, 7511 % 6 = 5.

There are other subtle problems that arise for various values of M. Making the table size M a
prime number tends to avoid these problems. In fact, there are even certain types of primes that
work better than others. (See The Art of Computer Programming, Vol. 8, Sorting and Searching
by Knuth for more details.) The hash functions

hi(z) = o % 127
hs(z) = x % 2311

are examples of division-based hash functions with M being prime. Compared to multiplication,
addition, and subtraction, division is a slow operation; this is one reason to investigate other types
of hash functions. It is easy to write such functions, but they do not have many of the desirable
properties of hash functions.

'k = 2 % M stores into k the remainder of z divided by M for positive z and M. Unless M is a power of 2, it will
most likely require a hardware division.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

4.2 Bit-Shifting Hash Functions Using the Middle Square MethodP|

Bit-shifting refers to the machine operation in which data is shifted to the left or right by some
fixed number of bits. A bit shift of k bits to the right, filling the upper k bits with zeros, is equivalent
to integer division by 2¥. For example, shifting the bit string 101003 = 2010 to the right two bits
results in 001012 = 519, which is 20/4. Let w be the word size in bits of a processor. Most computers
on the market today have a word size of 64 bits. Older models have a 32-bit word size. Let W = 2%.
Then W is the total number of integers that can be represented in a machine word, regardless of
the representation. There are W = 2% integers from 0 to 2% — 1, so W is one more than the largest
unsigned int, i.e., W =UINT_MAX+1, where UINT_MAX is the largest representable unsigned integer
as defined in the header file 1imits.h. The 32-bit number shown below is UINT_MAX on a 32-bit
architecture; W is the number that could be represented with a 1 in the 33" bit and 0’s in the
remaining 32 bits.

Bit# 32 31 30 2 1 0
UINT_MAX = 1111111111111 1111111111111111111
W =1000000000000000000000000000000QO0CDO0

It is not hard to see that the expression (b % W) where b is any integer, is nothing more than the
low-order 32 bits of b. If the machine word is 32 bits, this is just a way to ignore the overflow if
b > W and b is stored in a machine word. If you instruct the processor to ignore integer overflow
during integer computations, you are essentially computing (b % W'). Now consider the expression:

M
h(z) = W(:c2 % W)
First of all, for this function to be efficient, M must be a power of 2. Assume that M = 2™ for

some positive integer m < w. Then M/W = 2™/2% =2~ Then h(x) is equivalent to

h(z) = 2™ % (2% % 2v)

Notice that, because W is larger than M, 0 < M/W < 1 and (m — w) < 0. Thus, multiplying
by M/W is the same as dividing by W/M = 2¥~™ which is the same as shifting right (w — m)
bits. Also, if 2% overflows the machine word, then x2? % 2% is just the low order w bits of 22. This
hash function basically ignores the overflow caused by squaring x, and then shifts 22 to the right
by (w — m) bits. Since 22 is shifted (w — m) bits to the right in a word with w bits, the leading
(w — m) bits are zero filled and the final value lies in the low-order m bits. This proves that
0 < h(z) < 2™ = M. Hence this hash function generates numbers between 0 and M — 1, as it
should.

Notice that this function does not require a division operation, since it is equivalent to the following
C/C++ expression:

hix) = (x*xx) > (w-m
where >> is the shift-right operator in C/C++. This function uses one multiplication and one bit

shift and is therefore much faster than the division method. This assumes that integer overflow is
ignored.

2This method was proposed in 1947 by John von Neumann in a letter written to Robert Richtmyer.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

Example

Suppose that w =8, m = 5. Then W = 28 = 256 and M = 2% = 32. Then

h(x) = 2°78(2?% 256) = 273(2°% 256)

Let = 22. Then z? = 484 = 1111001002 and 2% 256 = 111001002. When this is shifted to the
right by 3 bits, it becomes 000111002 = 28.

4.3 Multiplicative Hash Functions
A multiplicative hash function is of the form

M
%
where A is a carefully chosen constant. Although it is not necessary for M to be a power of 2,
assume for simplicity that M = 2™. When M is so defined, multiplying by M /W has the exact
same effect as described in Section above: it right-shifts the bitstring produced by Az % W by
w —m bits. If Az < W, this hash function does nothing more than bit-shift the product Ax to the
right by (w — m) bits. If Az is larger than W, it removes all but the low-order w bits of Az and
then shifts this value to the right (w —m) bits:

h(z) (Ax % W)

h(x) = A*xx >> (w-m);

The resulting number is a value between 0 and M — 1, for the same reason that the Middle Squares
method result lies between 0 and M — 1. We now explain more about how to choose the constant
A and why its value is so critical to the behavior of this hash function.

The way to think about this hash function is to remind yourself that a binary integer has a decimal
point (a binary point?) to the right of the least significant bit, and that the effect of division by
W is to move that binary "decimal point" to the left side of the most significant bit. Suppose that
the rectangle labeled W in line 1 in Figure[2]is the length of a machine word with w bits. Suppose
that the product Az is much larger than W, as depicted in line 2. Then Ax % W is the portion of
Az shown in line 3, shaded lightly - the part of Az that fits into the low-order w bits. Multiplying
by M /W is the same as dividing by W and then multiplying by M. As we just stated, dividing
by W is the same as shifting the "binary decimal point" from the extreme right of the word to the
point just left of W, as shown in line 4. Multiplication by M is the same as shifting the quantity
Az % W to the left by m bits. If the double-ended arrow labeled M represents the length of an
m-bit word, then line 5 shows the result of this multiplication - the shaded reactangle shifts to the
left by m bits and m zeros are filled to the right.

You have always assumed that the "binary decimal point" is to the right of a w-bit integer. Suppose
instead that all numbers z stored in machine words are actually the numerators of fractions of the
form (z/W) and therefore that the binary decimal point is actually to the left of the word, as it is
in line 4. The picture in line 4 shows you that we can think of Ax % W as just the fractional part
of Ax. The part to the left of the decimal point is the whole number and the part to the right is
the fractional part. Let us denote the fractional part of any real number z by {z} i.e.,

{z} =2— 2]

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

1 w

o
2 Ax

o
3 Ax % W

o
4 ‘ Ax AX % W ‘

m

5 ‘ Ax AX % W ‘ 0000000000 ‘

o

Figure 2: Multiplicative hash function.

For example {2.324} = 0.324 and {62.075} = 0.075. Then Az % W is just {Az}, and the hash
function h(x) can be written as

W) = [M - {Az}]

Now since 0 < {Az} < 1, it follows that 0 < M - {Az} < M. In other words, h(x) hashes values z
into indices in the range of the hash table.

In the multiplicative method, the multiplier A must be carefully chosen to scatter the numbers in
the table. A very good choice for the constant A is ¢~ ' W, where ¢, known as the golden ratio, is
the positive root of the polynomial

2 —r—1

This is because x is a solution to the polynomial if and only if

2 — 1z —1=0

iff 22—z =1
iff x—1 :l
x

In other words, a solution x has the property that its inverse is © — 1. The solution, ¢, is called
the golden ratio because it arises in nature in an astonishing number of places and because the
ancient Greeks used this ratio in the design of many of their buildings, considering it a divine
proportion. Thus, ¢ and ¢~! = ¢ — 1 are both roots of z>-2z-1. ¢ is also the value to which
fn/fa_1 converges as n — oo, where f, is the n!” Fibonacci number. Since ¢! = ¢ — 1, it is
approximately 0.6180339887498948482045868343656. (Well approzimately depends on your notion
of approximation, doesn’t it?)

When we let A = ¢~ 'WW as the multiplicative constant, the multiplicative method is called Fi-
bonacci hashing. The constant has many remarkable and astonishing mathematical properties,
but the property that makes it a good factor in the above hash function is the following fact.

First observe that the sequence of values {¢*1} , {2({71} , {Sgb*l} ,... lies entirely in the interval
(0,1). Remember that the curly braces mean, “the fractional part of”, so for example, 2¢~! ~

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

Fibonacci Hashing

T T
+ N o
o 1
+ +
oE
0.8 4 i +
° +
T +
n +
+
0.6 T 4=
+ +
+
g . i +
* F
0.4 T e
+
4 +
+ - +
+ +
02 T + g
+
+
i +
+ . -
0 \ \ \ + \
0 10 20 30 40 50

Figure 3: Spread of hashed values using Fibonacci hashing.

1.236067977 and {2(15*1} ~ 0.236067977. The first value, {qYl} , divides the interval (0,1) into
two segments whose lengths are in the golden ratio.

Proof. The segment (0, 1) is divided into two segments, one of length ¢~! and the other of length
1 —¢~'. We claim that
1—¢t

-1
P
Multiplying numerator and denominator by ¢ we get
p—1 1
TR

Since ¢ is a solution of 2 —x —1 =0, > —p — 1 = 0 and ¢?> — ¢ = 1. This is just the cross-product
of the above equation. O

In fact, every value {k¢~!'} divides the segment into which it is placed into two segments whose
lengths are in the golden ratio. Moreover, each successive value is placed into one of the largest

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 8

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

segments in the interval (0,1). This implies that the successive values are spread out across the
interval uniformly, no matter how many points there areﬂ See Figure .

When used in the hash function above, they spread successive keys into the hash table in the same
way. This tends to reduce the possibility of collisions. A table showing the values of the multiplier
for typical machine word sizes is shown in Table [I]

w oW
16 40,503
32 2,654,435,769
64 | 11,400,714,819,323,198,485

Table 1: Fibonacci hashing multipliers.

5 String Encodings

Keys are often strings. A hash function is usually a function from integers to integers, so how do
we map strings to integers? Let an arbitrary string be denoted s, consisting of the k£ 4+ 1 symbols
over some fixed alphabet:

S = 505152...Sk

Let S denote the set of all possible strings over this alphabet. A string encoding is a function
from the set of strings S to non-negative integers

encode: S — 7

The encode function does not have to be invertible, i.e., one-to-one and onto; it may map different
strings to the same number. Once we have an encoding function, it can be composed with a hash
function h as follows:

table_index = h(encode(s));
Encodings need to be chosen carefully. There are good encodings and bad ones. Here is a bad one:
encodel(s) = int(sp) + int(sy) + ... + int(sy)

This is bad because it ignores letter order, so that stop, spot, and tops hash to the same location.
It is better to find an encoding that maps words that are permutations of each other to unique
numbers. One way to do that is to reinterpret a text string as a number over a very large alphabet.

In our customary decimal number system, a numeral such as 3276 is a representation of the number
that we express in English as “three thousand two hundred seventy six,” which is equal to

3-1042-10°+7-10' +6-10°

When you see a hexadecimal numeral such as BADCAB2, you know that this is a representation
of the number

B-16°4+A4-16°+D-16*+¢-162+ A-16>+b-16" +2-16°

3This property of the golden ratio is actually a special case of a more general theorem proved in 1957 by Vera
Turan Sos, which states that for any irrational number 0, when the points {6}, {20}, {36), ... {nf}are placed into the
line segment [0, 1], the n + 1 line segments between them are of at most three different lengths and the next point
{(n+ 1)0} will fall into one of the largest intervals!

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 9

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

where A represents the number 10, B represents 11, C represents 12, and so on. This numeration
system is surjective (onto) in that, for any integer n, there is a unique hexadecimal string that
represents it. We can generalize this idea. Suppose all strings are over an alphabet of, say 26
characters, such as the symbols, a,b,c,d,...,z. Suppose that a represents the value 0, b, the
value 1, c, 2, up to z representing 25. Then the string hashing represents the number

h-26%4+a-26°+5-26"+nh-26%+i-26%+n-26"+g-26°
=7-26°40-26°+18-26* +7-26% +8-26% + 13- 26" + 6 - 26°
—=2162410432 + 8225568 + 123032 + 5408 + 338 + 156
—=2170764934

This method of encoding strings maps any string s to a unique integer. The problem is that the
integer is usually larger than can be represented in even a 64-bit number. In the example above, the
value of hashing will not fit into a signed 32-bit integer. Nonetheless, this encoding can be used
by selecting some of the letters from a given word instead of all of them. The encoding can use the
even numbered letters or the first m letters, or every third letter, or the odd letters, and so on.

Summarizing, let s = sps152...5; be a string over an alphabet containing B distinct symbols. As it
does not matter which side of s we start from, we can define an encoding of s to a unique integer

by
k

encode (s) = Z ;B = soB" 4+ s1B' + s’B? + .- + 5, B"
§=0

As mentioned, unless the string is sampled, the encoded value for most strings will be too large.
Another problem with this encoding is that it does not satisfy the condition that it is easy to
compute. The naive way to compute it would require K+ (k— 1)+ (k—2)+...+2+1=k(k+1)/2
multiplications. A much more efficient way to compute this is to use Horner’s Rule, turning off
integer overflow. Horner’s Rule is a way to compute polynomials efficiently. It is based on applying
the following definition of a polynomial recursively:

ap + a1z + agx® 4+ -+ apz” = ao+ (a1 + agz 4 - + apz™)

= ap+z(ar +z(az + azz + -+ apz™?)
and so on. In other words, a polynomial p(z) of degree n can be written p(x) = ag + z(q(z)) where
q(x) is of degree n—1. This definition uses the customary notation for polynomials, with the highest

index coefficient multiplying the highest power of . The following function uses Horner’s Rule for
computing a code value for a string over an alphabet with RADIX many symbols:

long long encode (const int RADIX, const string & s)

{
long long hashval = O;
for (int i = 0; i < s.length(); i++)
hashval = s[i] + RADIX #* hashval; // p(x) = s_i + x(q(x))
return hashval;
}

Notice that this function performs one multiplication and one addition per iteration, for a total of
n multiplications and n additions for a string of length n.

This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License. 10

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

6 Collision Resolution

There are two basic methods of collision resolution:

e separate chaining

e open addressing

Open addressing itself has many different versions, as you will see. Separate chaining is the
easiest to understand, and perhaps implement, but its performance is not as good as open addressing.
There are also methods that are hybrids of the two:

e cuckoo hashing

e universal hashing

Some perfect hash function generators use a form of universal hashing to generate the perfect hash
functions.

6.1 Separate Chaining

In separate chaining, the hash table is an array of linked lists, with all keys that hash to the same
location in the same list. New keys are inserted in the front of the list. In other words, each hash
table entry is a pointer to a list of keys and their associated data items. See Figure

To insert a key into the table, the hash table index is computed, and then the list is searched to see
if the key is already in the table. If it is not, it is inserted at the head of the list. In the worst case,
this requires a search of the entire list. On average, half of the list is searched on each insertion. It
is not worth keeping the list in sorted order if it is short.

0 Shamir

1

2 Knuth Dijkstra Hoare
3

4

5

6 VonNeumann Ritchie

7

Figure 4: Separate chaining method of collision resolution.

The load factor,), is defined as the ratio of the number of items in the table to the table size. If
M is the table size and N is the number of items in the table, then A = N/M. The table in Figure
has a load factor of 6/8 = 0.75. In separate chaining, the load factor is the average length of the
linked lists, if we count the empty ones as well as the non-empty ones. It is possible for the load
factor to exceed 1.0 when separate chaining is used.

This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License. 11

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

The following listing shows an example of a template class interface for a hash table. From the
private part we can surmise that this table uses separate chaining. This interface provides functions
to insert, remove, and find keys, as well as a copy constructor and an ordinary constructor. Once
again the weakness of C++4 surfaces here because the interface, which should hide the fact that the
hash table uses separate chaining, does not. We could overcome this by declaring an abstract base
class and deriving the specific hash table from it.

template <class HashedObj>
class HashTable

{
public:
explicit HashTable (const HashedObj & notFound, int size =
101);
HashTable (const HashTable & rhs)
ITEM_NOT_FOUND (rhs.ITEM_NOT_FQOUND),
Lists (rhs.thelLists) { }
const HashedObj & find (const HashedObj & x) const;
void makeEmpty € s
void insert (const HashedObj & x);
void remove (const HashedObj & x);
private:
vector <List<Hashed0Obj> > Lists; // array of linked lists
const HashedObj ITEM_NOT_FOUND;
s

int hash(const string & key, int tableSize);
int hash(int key, int tableSize);

Let us now analyze the performance of this method of implementation. The most expensive oper-
ation in using a hash table is the operation of accessing a key in a hash table entry and inspecting
its value. We call such an operation a probe. Consider the find operation. If a search is successful,
the key is found in exactly one of the nodes in some list. If that node is the &' node in the list,
then k probes are required. If all nodes are equally likely to be the one searched for, then there are,

on average,
A
1 A+1
el k="
A kzl 2

probes in a list of length A. As \ is the average list length, (A 4 1)/2 is the expected time to find a
key that is in the table. An unsuccessful search requires traversing the entire list, which is A links.
Inserting into a separately chained hash table takes the same amount of time as an unsuccessful
search, roughly. An insertion has to search to see if the key is in the table, which requires traversing
the entire list in which it is supposed to be located. Only after the list is checked can it be inserted
at the front of that list.

Separate chaining makes deletion from a hash table quite easy because it is amounts to nothing
more than a linked list deletion. On the other hand, as we will soon see, it is slower than deletion
in open addressing because of the time it takes to traverse the linked lists.

This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License. 12

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

6.2 Open Addressing

In open addressing, there are no separate lists attached to the table. All values are in the table itself.
When a collision occurs, the cells of the hash table itself are searched until an empty one is found.
Which cells are searched depends upon the specific method of open addressing. All variations can
be described generically by a sequence of functions

ho(x) = h(z)+ f(0,z) % M
hi(z) = h(x)+ f(l,z) % M

hi(x) = h(z)+ f(k,z) % M

where h;(x) is the i'® location tested and f(i,) is a function that returns some integer value based
on the values of ¢ and z. The idea is that the hash function h(x) is first used to find a location in
the hash table for x. If we are trying to insert = into the table, and the index h(z) is empty, we
insert it there. Otherwise we need to search for another place in the table into which we can store
x. The function f(i,x), called the collision resolution function, serves that purpose. We search
the locations

>
—~
8

)+ f(0,2) % M
h(z)+ f(1,2) % M
h(z) + f(2,2) % M

h(z) + f(k,z)% M

until either an empty cell is found or the search returns to a cell previously visited in the sequence.
The function f(i,z) need not depend on both ¢ and x. Soon, we will look at a few different collision
resolution functions.

To search for an item, the same collision resolution function is used. The hash function is applied
to find the first index. If the key is there, the search stops. Otherwise, the table is searched until
either the item is found or an empty cell is reached. If an empty cell is reached, it implies that the
item is not in the table. This raises a question about how to delete items. If an item is deleted,
then there will be no way to tell whether the search should stop when it reaches an empty cell, or
just “jump” over the hole. The way around this problem is to lazy deletion. In lazy deletion, the
cell is marked DELETED. Only when it is needed again is it re-used. Every cell is marked as either

ACTIVE: it has an item in it
EMPTY:: it has no item in it
DELETED: it had an item that was deleted — it can be re-used

These three constants are supposed to be defined for any hash table implementation in the ANSI
standard.

There are several different methods of collision resolution using open addressing: linear probing,
quadratic probing, double hashing, and hopscotch hashing.

This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License. 13

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

6.3 Linear Probing

In linear probing, the collision resolution function, f(i,x), is a linear function that ignores the
value of z, i.e.., f(i) = a-i+b. In the simplest case, a = 1 and b = 0, so that f(i,z) = i and
hi(z) = (h(z)+14) % M. In other words, consecutive locations in the hash table are probed, treating
the table like a circular list.

Example 1. Consider a hash table of size 10 with the simple division hash function h(x) =z % 10
and suppose we insert the sequence of keys,

5,15,6,3,27,8

In principle, only one collision should occur: 5 and 15 because they both map to the location 5.
But linear probing causes many more collisions. After inserting 5, 15 causes a collision. It is placed
in H[6]. Then 6 has a collision at H[6] and is placed in H[7]. 3 gets placed without a collision, but
27 collides with 6 and is placed in H[8]. This causes 8 to collide, and it is placed in H[9]. Figure
shows the state of the hash table after each insertion.

0 1 2 3 4 6 7 8 9
15

0 1 2 3 4 6 7 8 9
5 |15

3 5 |15 | 6
0 1 2 4 5 6 7 8 9
3 5 (156 | 6 | 27

3 5 (156 | 6 |27
0 1 2 3 4 5 6 7 8

Figure 5: Linear probing example. This shows the successive states of the table when the keys
5,15,6,3,27,8 are inserted and the hash function is h(z) = = % 10.

The problem with linear probing is that it tends to form clusters. This phenomenon is called
primary clustering. As more cells that are adjacent to the cluster are filled, a snowball effect
takes place, and the cluster grows ever more faster. It can be proved that the expected number of
probes for insertions and unsuccessful searches is approximately

2 ()

and that the expected number of probes for successful searches is

This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License. 14

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

Linear Probing

expected number of probes

load factor

Figure 6: Graph of number of expected probes for a successful search as a function of load factor
in linear probing.

2 ()

Linear probing performs very poorly as load factor increases.

6.4 Random Probing

We can compare the performance of linear probing with a theoretical strategy in which clusters
do not form and the probability that the next probe will succeed is independent of the probability
that the previous probes succeeded. This is a kind of random collision resolution strategy. In this
strategy, the number of probes in an unsuccessful search when the table has a load factor of A is
1/(1-X). This is because, if the collision resolution strategy is random, keys are placed uniformly
throughout the table. Since X is the fraction of the table that is occupied, the fraction of the
table that is free is 1-A. This means that there is a A probability that a random probe will hit an
unoccupied cell, and a (1-X) probability that it hits an empty cell. The expected number of probes
in an unsuccessful search is the expected number of cells that we visit before we find an empty cell,
given that the item is not in the table. This is the mean of a geometric distribution with parameter
(1 = A), which is 1/(1-)).

As the table is filled, the load factor increases, from 0 to the current load factor,A\. The average
number of probes is therefore approximated by the definite integral

A
1 1 1 1
I(M:)\/l—xdx:)\ln(l—)\)
0

This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License. 15

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

6.5 Quadratic Probing

Quadratic probing eliminates clustering. In quadratic probing the collision resolution function
is a quadratic function of 4 and does not depend on x, namely f(i,z) = 2. In other words, when
a collision occurs, the successive locations to be probed are at a distance (modulo table size) of
1,4,9,16, 25, 26,49, and so on. The sequence of successive locations is defined by the equations

ho = h(:r)
hi = (h0+i2)%M

You should wonder why this is efficient, because it adds another multiplication for each probe.
If it were implemented this way, it would not be efficient. Instead, it can be computed without
multiplications by taking advantage of the recurrence relation

dy = 1
hg = 0
hivi = h; +d;
diy1 = di+2

The values of h; are the successive squares. This relies on the observation that the odd numbers
separate successive squares:

To find an item z in the hash table when quadratic probing is used, the table must be probed until
either an empty cell is found or until z is found. But this raises the question, is it possible that
neither case will arise? The answer is yes, if M is not a prime number.

Example 2. Let M = 24, and suppose that we use the hash function h(z) = x % 24 and quadratic
probing. Further, suppose that the current state of the table is that H[k] = k for k = 0,1,4,9,12,
and 16. Only 6 out of 24 cells are in use, less than half. Suppose that we try to insert 24 into the
table. The probe sequence will be

h() h1 ho h3 Py h5
(24 1 024 | (24 + 1)%24 | (24 1 4)%24 | (24 + 9)%24 | (24 + 16)%24 | (24 + 25)%24

0 1 4 9 16 1

h6 h7 hg hg th hll
(24 1 36)%24 | (24 + 49)%24 | (24 + 64)%24 | (24 + 81)%24 | (24 + 100)%24 | (24 + 121)%24

12 1 16 9 4 1

hi2 his hia h1s hie hi7
(24 1 144)%24 | (24 1 169)%24 | (24 + 196)%24 | (24 + 225)%24 | (24 1 256)%24 | (24 + 289)%24

0 1 4 9 16 1

This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License. 16

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

his hig hao ha1 hao ha3
(24 + 324)%24 | (24 1 361)%24 | (24 + 400)%24 | (24 1 441)%24 | (24 + 484)%24 | (24 1 529)%24
12 1 16 9 4 1

and the sequence (0,1,4,9,16,1,12,1,16,9,4,1,...) will repeat ad infinitum.

Example 3. Suppose M = 24 and the table currently has the following contents:

of o]l [faf T [[fol [foof [[o]l [[[] []|
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Suppose we try to insert 24. h(24) = 0. The locations searched are the successive squares, modulo
24, which are: 1,4,9,16,25%24 = 1, 36%24 = 12, 49%24 = 1, 64%24 = 16, 125%24 = 1, and so on.
In fact, the only locations that will be probed are the ones that are currently filled, and no others.

M must be a prime number or else the search canl go on forever, but this is a necessary but not
sufficient condition to prevent an infinite search. The table must also be less than half full. But if
M is a prime number and the table is less than half full we are guaranteed to find a cell. This is
stated as a theorem:

Theorem 4. If quadratic probing is used, and table size is prime, a new element can always be
inserted if the table is at least half empty.

Proof. Suppose that M is prime and the table is at least half empty. Assume that M is larger than
2, because if M = 2, it is trivial to see that it is true: there is 1 empty cell and adding 1 to the first
location finds it.

Since M > 2 and prime, it is an odd number. Let M = 2m + 1 for some m. Since the table is at
least half empty and M is odd, at least m + 1 cells are empty. (If only m cells were empty, it would
be less than half of 2m + 1.) Therefore at most m cells are full. Now suppose that the theorem is
false. To say it is false means that indefinite, repeated probing fails to find an empty cell. Consider
the first m+ 1 locations probed by quadratic probing, including the first location where the collision
occurred. Let these m + 1 locations be labeled hg, hi, ho, ..., hy,, where

hi, = (h(z) + k%) % M

Since probing did not find an empty cell in these first m+1 locations, all of these m+1 locations are
full. But there are at most m full cells. This implies that two of these m + 1 probes must have been
at the same location. (Pigeon-hole principle: if there are m + 1 pigeons and only m pigeon holes,
then two pigeons share a hole.) Suppose that h; and h; are the two probes at the same location,
where 0 < 57 <4 < m. Then

hi = h; if f
(W) +)% M = (h(z)+55) %M iff
PHM = M if f

(- %M = 0% M iff

(i+)i—) %M = 0% M

Since M is a prime number it has no factors other than 1 and itself. This implies that either (i — j)
is zero or a multiple of M, or (i + j) is a nonzero multiple of M. But since i > j, (i — j) > 0. Also,
since (i — j) < M, their difference cannot be a multiple of M greater than 0. Therefore, the only
possibility is that (i + j) is a multiple of M. But 0 < j < i < m, which implies that j < m and

This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License. 17

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

1 < m, so the sum of ¢ and j cannot be equal to or greater than 2m. Since 2m < 2m+ 1 = M, this
implies that (i + j) < M, so it certainly is not a positive multiple of M. This is a contradiction,
which implies that the hypothesis that probing failed to find an empty location is false. The theorem
must be true. O

7 Algorithms

The probing algorithm can be used for both insertion and searching. The quadratic probing function
is called findPos, and is below. It returns a hash table location where the key is located, or the first
empty cell found. The hash table must have a tag with each cell to indicate whether it is empty
or not. This member is called info. The calling function can check if the return value is an empty
cell using code such as

if (H{findPos(x)].info == EMPTY)
where findPos can be defined as follows:

template <class HashedObj>
int HashTable<HashedObj>::findPos(const HashedObj & x) const
{
int collisionNum = O;
int currentPos = hash(x, array.size());
while(array[currentPos].info t= EMPTY
&& arrayl[currentPos].element != x) {
currentPos += 2 * ++collisionNum - 1; // Compute ith probe
if(currentPos >= array.size())
currentPos -= array.size();
}

return currentPos;

The insertion algorithm:

template <class HashedObj>
void HashTable<HashedObj>::insert(const HashedObj & x)

{
// Insert x as active
int currentPos = findPos(x);
if (isActive(currentPos))
return;
array[currentPos] = HashEntry(x, ACTIVE);
// Rehash
// if the insertion made the table get half full,
// increase table size
if(++currentSize > array.size() / 2)
rehash();
}

This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License. 18

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

The algorithm to find an item is

template <class HashedObj>
const HashedObj & HashTable<HashedObj>::find(const HashedObj & x) const

{
int currentPos = findPos(x);
return
isActive(currentPos) 7
array[currentPos].element : ITEM_NOT_FQUND;
}

8 Double Hashing

In double hashing, the sequence of probes is a linear sequence with an increment obtained by
applying a second hash function to the key:

f(i) = i * hash2(x);

We search locations hash(x) + i*hagh2(x) for i = 1,2,3,...

The choice of the second hash function can be disastrous — it should never evaluate to a factor of
the table size, obviously. It should be relatively prime to table size. It should never evaluate to 0
either. Choosing

hash2(x) = R- (x % R)

will work well if R is a small prime number.

NOTE: Add a worked example here.

Example

A hash table H is of size 23 and the primary hash function is
h(x) = x ¥ 23

The second hash function is chosen to be
hash2(x) = 13 - (x % 13)

The sequence of keys is 12, 35, 6, 29, 5, 28, ...

This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License. 19

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3 Prof. Stewart Weiss
Chapter 5 Hashing and Hash Tables

9 Rehashing

If the hash table gets too full it should be resized. The best way to resize it is to create a new hash
table about twice as large and hash all of the elements of the hash table into the new table using

its hash function.

Rehashing is expensive, so it should only be done when necessary:

1. When an insertion fails, or
2. When the table gets half full, or

3. When the table load factor reaches some predefined value.

This work is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License. 20

https://creativecommons.org/licenses/by-sa/4.0/

	1 Introduction
	2 Properties of a Good Hash Function
	3 Collisions
	4 Hash Functions
	4.1 Division Based Hash Functions
	4.2 Bit-Shifting Hash Functions Using the Middle Square MethodThis method was proposed in 1947 by John von Neumann in a letter written to Robert Richtmyer.
	4.3 Multiplicative Hash Functions

	5 String Encodings
	6 Collision Resolution
	6.1 Separate Chaining
	6.2 Open Addressing
	6.3 Linear Probing
	6.4 Random Probing
	6.5 Quadratic Probing

	7 Algorithms
	8 Double Hashing
	9 Rehashing

