
CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

Sorting

1 Introduction

Insertion sort is the sorting algorithm that splits an array into a sorted and an unsorted region,

and repeatedly picks the lowest index element of the unsorted region and inserts it into the proper

position in the sorted region, as shown in Figure 1.

sorted region unsorted region

unsorted regionsorted region

x

x

Figure 1: Insertion sort modeled as an array with a sorted and unsorted region. Each iteration

moves the lowest-index value in the unsorted region into its position in the sorted region, which is

initially of size 1.

The process starts at the second position and stops when the rightmost element has been inserted,

thereby forcing the size of the unsorted region to zero.

Insertion sort belongs to a class of sorting algorithms that sort by comparing keys to adjacent keys

and swapping the items until they end up in the correct position. Another sort like this is bubble

sort. Both of these sorts move items very slowly through the array, forcing them to move one

position at a time until they reach their �nal destination. It stands to reason that the number of

data moves would be excessive for the work accomplished. After all, there must be smarter ways to

put elements into the correct position.

The insertion sort algorithm is below.

for (int i = 1; i < a.size(); i++) {

tmp = a[i];

for (j = i; j >= 1 && tmp < a[j-1]; j = j-1)

a[j] = a[j-1];

a[j] = tmp;

}

You can verify that it does what I described. The step of assigning to tmp and then copying the

value into its �nal position is a form of e�cient swap. An ordinary swap takes three data moves;

this reduces the swap to just one per item compared, plus the moves at the beginning and end of

the loop.

The worst case number of comparisons and data moves is O(N2) for an array of N elements. The

best case is Ω(N) data moves and Ω(N) comparisons. We can prove that the average number of

comparisons and data moves is Ω(N2).

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

2 A Lower Bound for Simple Sorting Algorithms

An inversion in an array is an ordered pair (i, j) such that i < j but a[i] > a[j]. An exchange of

adjacent elements removes one inversion from an array. Insertion sort needs to remove all inversions

by swapping, so if there are m inversions, m swaps will be necessary.

Theorem 1. The average number of inversions in an array of n distinct elements is n(n-1)/4.

Proof. Let L be any list and LR be its reverse. Pick any pair of elements (i, j) ∈ L with i < j.
There are n(n − 1)/2 ways to pick such pairs. This pair is an inversion in exactly one of L or

LR. This implies that L and LR combined have exactly n(n − 1)/2 inversions. The set of all n!
permutations of n distinct elements can be divided into two disjoint sets containing lists and their

reverses. In other words, half of all of these lists are the reverses of the others. This implies that

the average number of inversions per list over the entire set of permutations is n(n− 1)/4.

Theorem 2. Any algorithm that sorts by exchanging adjacent elements requires Ω(n2) time on
average.

Proof. The average number of inversions is initially n(n− 1)/4. Each swap reduces the number of

inversions by 1, and an array is sorted if and only if it has 0 inversions, so n(n − 1)/4 swaps are

required.

3 Shell Sort

Shell sort was invented by Donald Shell. It is like a sequence of insertion sorts carried out over

varying distances in the array and has the advantage that in the early passes, it moves data items

close to where they belong by swapping distant elements with each other. Consider the original

insertion sort modi�ed so that the gap between adjacent elements can be a number besides 1:

Listing 1: A Generalized Insertion Sort Algorithm

int gap = 1;

for (int i = gap; i < a.size(); i++) {

tmp = a[i];

for (j = i; j >= gap && tmp < a[j-gap]; j = j-gap)

a[j] = a[j-gap];

a[j] = tmp;

}

Now suppose we let the variable gap start with a large value and get smaller with successive passes.

Each pass is a modi�ed form of insertion sort on each of a set of interleaved sequences in the array.

When the gap is h, it is h insertion sorts on each of the h sequences

0, h, 2h, 3h, . . . , k0h,

1, 1 + h, 1 + 2h, 1 + 3h, . . . , 1 + k1h

2, 2 + h, 2 + 2h, 2 + 3h, . . . , 2 + k2h

. . .

h− 1, h− 1 + h, h− 1 + 2h, . . . , h− 1 + kh−1h

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

where ki is the largest number such that i+ kih < n. For example, if the array size is 15, and the

gap is h = 5, then each of the following subsequences of indices in the array, which we will call

slices, will be insertion-sorted independently:

slice 0: 0 5 10

slice 1: 1 6 11

slice 2: 2 7 12

slice 3: 3 8 13

slice 4: 4 9 14

For each �xed value of the gap, h, the sort starts at array element a[h] and inserts it in the lower

sorted region of the slice, then it picks a[h + 1] and inserts it in the sorted region of its slice, and

then a[h+ 2] is inserted, and so on, until a[n− 1] is inserted into its slice's sorted region. For each

element a[i], the sorted region of the slice is the set of array elements at indices i, i− h, i− 2h, . . .
and so on. When the gap is h, we say that the array has been h-sorted . It is obviously not sorted,

because the di�erent slices can have di�erent values, but each slice is sorted. Of course when the

gap h = 1 the array is fully sorted. The following table shows an array of 15 elements before and

after a 5-sort of the array.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Original Sequence: 81 94 11 96 12 35 17 95 28 58 41 75 15 65 7

After 5-sort: 35 17 11 28 7 41 75 15 65 12 81 94 95 96 58

The intuition is that the large initial gap sorts move items much closer to where they have to be,

and then the successively smaller gaps move them closer to their �nal positions.

In Shell's original algorithm the sequence of gaps was n/2, n/4, n/8,. . . , 1. This proved to be a

poor choice of gaps because the worst case running time was no better than ordinary insertion sort,

as is proved below.

Listing 2: Shell's Original Algorithm

for (int gap = a.size()/2; gap > 0; gap /=2)

for (int i = gap; i < a.size(); i++) {

tmp = a[i];

for (j = i; j >= gap && tmp < a[j-gap]; j = j-gap)

a[j] = a[j-gap];

a[j] = tmp;

}

3.1 Analysis of Shell Sort Using Shell's Original Increments

Lemma 3. The running time of Shell Sort when the increment is hk is O(n2/hk).

Proof. When the increment is hk, there are hk insertion sorts of n/hk keys. An insertion sort of

m elements requires in the worst case O(m2) steps. Therefore, when the increment is hk the total

number of steps is

hk ·O
(
n2

h2k

)
= O

(
n2

hk

)

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

Theorem 4. The worst case for Shell Sort, using Shell's original increment sequence, is Θ(n2).

Proof. The proof has two parts, one that the running time has a lower bound that is asymptotic to

n2, and one that it has an upper bound of n2.

Proof of Lower Bound .

Consider any array of size n = 2m, where m may be any positive integer. There are in�nitely

many of these, so this will establish asymptotic behavior. Let the n/2 largest numbers be in the

odd-numbered positions of the array and let the n/2 smallest numbers be in the even numbered

positions. When n is a power of 2, halving the gap, which is initially n, in each pass except the last,

results in an even number. Therefore, in all passes of the algorithm until the very last pass, the gaps

are even numbers, which implies that all of the smallest numbers must remain in even-numbered

positions and all of the largest numbers will remain in the odd-numbered positions. When it is

time to do the last pass, all of the n/2 smallest numbers are sorted in the indices 0, 2, 4, 6, 8, ...,

and the n/2 largest numbers are sorted and in indices 1, 3, 5, 7, and so on. This implies that the

jth smallest number is in position 2(j − 1) (e.g., the second is in 2 · 2 − 2 = 2 and the third is in

2 · 3 − 2 = 4) and must be moved to position j − 1 when h = 1. Therefore, this number must be

moved(2j−2)−(j−1) = j−1 positions. Moving all n/2 smallest numbers to their correct positions

when h = 1 requires
n/2∑
j=1

(j − 1) =

(n/2)−1∑
j=0

j =
(n/2− 1)(n/2)

2
= Θ(n2)

steps. This proves that the running time is at least Θ(n2).

Proof of Upper Bound.

By Lemma 3, the running time of the pass when the increment is hk is O(n2/hk). Suppose there

are t passes of the sort. If we sum over all passes, we have for the total running time,

O

(
t∑

k=1

n2

hk

)
= O

(
n2

t∑
k=1

1

hk

)
= O

(
n2

t∑
k=1

1

2k

)
= O(n2)

because, as we proved in Chapter 1,

t∑
k=1

1

2k
= 2− 1

2t−1
− t

2t
< 2

and this shows that n2 is an asymptotic upper bound as well. It follows that the worst case is

Θ(n2).

3.2 Other Increment Schemes

Better choices of gap sequences were found after Shell's initial publication of the algorithm. Before

looking at some of the good ones, consider an example using a simple sequence such as 5, 3, 1.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

Example

This uses the three gaps, 5, 3, 1 on an arbitrary array whose initial state is on the �rst row in the

table below.

0 1 2 3 4 5 6 7 8 9 10 11 12

Original Sequence: 81 94 11 96 12 35 17 95 28 58 41 75 15

After 5-sort: 35 17 11 28 12 41 75 15 96 58 81 94 95

After 3-sort: 28 12 11 35 15 41 58 17 94 75 81 96 95

After 1-sort: 11 12 15 17 28 35 41 58 75 81 94 95 96

Hibbard proposed using the sequence

h1 = 1, h2 = 3, h3 = 7, h4 = 15, . . . , ht = 2t − 1

which is simply the numbers one less than powers of 2. Such a sequence, 1, 3, 7, 15, 31, 63, 127,. . . ,

has the property that no two adjacent terms have a common factor: if they had a common factor

p, then their di�erence would also be divisible by p1. But the di�erence between successive terms is

(2k+1�1) � (2k�1) = (2k+1� 2k) = 2k which is divisible by powers of 2 alone. Hence the only number

that can divide successive terms is a power of 2. Since all of the terms are odd numbers, none are

divisible by 2, so they have no common factor.

Successive terms are related by the recurrence

hk+1 = 2hk + 1

Sedgewick proposed a few di�erent sequences, such as this one, de�ned recursively:

h1 = 1, hk+1 = 3hk + 1

which generates the sequence

1, 4, 13, 40, 121, 364, . . .

This sequence has a worst case running time of Θ(n4/3). Hibbard's increment sequence turns out

to be an improvement over Shell's original increment sequence.

Theorem 5. The worst case running time of Shell Sort using Hibbard's sequence, h1 = 1, h2 =
3, h3 = 7, h4 = 15, . . . , ht = 2t − 1, is Θ(n3/2)

Proof. Because this theorem states the bound using Θ() notation, we need to show that the running

time grows no faster than n3/2 and also that it grows no slower than it. The �rst part requires

showing that n3/2 is an asymptotic upper bound on the worst case running time. The second part

requires showing that it is an asymptotic lower bound on the worst case running time.

1If a and b are two integers with a common factor p, then there are two integers r and q such that a = qp and

b = rp. Then a− b = qp− rp = (q − r)p, showing that the di�erence has this same common factor.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

The asymptotic upper bound alone is proved here. Proving the lower bound requires showing that

there is some input array such that the algorithm's running time will be proportional to n3/2. As
the upper bound shows it is at most n3/2 and the lower bound shows at least one array requires

n3/2 time, this establishes that it is Θ(n3/2).

Lemma 3 establishes that the running time of a pass when the increment is hk is O(n2/hk). We will

use this fact for all increments hk such that hk > n1/2. This is not a tight enough upper bound for

the smaller increments, and we need to work harder to get a tighter bound for them. The general

idea will be to show that by the time the increments are that small, most elements do not need to

be moved very far.

So we turn to the case when hk ≤ n1/2. By the time that the array is hk-sorted, it has already been

hk+1-sorted and hk+2-sorted. Now consider the array elements at positions p and p− i for all i ≤ p.
If i is a multiple of hk+1 or hk+2, then a[p− i] < a[p] because these two elements were part of the

same slice, either for increment hk+1 or increment hk+2, and so they were sorted with respect to

each other. More generally, suppose that i is a non-negative linear combination of hk+1 and hk+2,

i.e., i = c1hk+1 + c2hk+2, for some non-negative integers c1 and c2. Then

p− i = p− (c1hk+1 + c2hk+2) = p− c1hk+1 − c2hk+2

and

(p− i) + c2hk+2 = p− c1hk+1

which implies that after the hk+2-sort, a[p − i] < a[p − c1hk+1] because they are part of the same

hk+2-slice. Similarly, after the hk+1-sort, a[p − c1hk+1] < a[p] because they are part of the same

hk+1-slice and p− c1hk+1 < p . Thus, a[p− i] < a[p− c1hk+1] < a[p] .

Since hk+2 = 2hk+1 by the de�nition of Shell's increment scheme, hk+2 and hk+1 are relatively prime.

(If not, they have a common factor >1 and so their di�erence hk+2 − hk+1 = 2hk+1 + 1− hk+1 =
hk+1 + 1 would have a common factor with each of them, and in particular hk+1 and hk+1 + 1
would have a common factor, which is impossible.) Because hk+2 and hk+1 are relatively prime,

their greatest common divisor (gcd) is 1. An established theorem of number theory is that if

c = gcd(x, y) then there are integers a and b such that c = ax + by. When x and y are relatively

prime, this implies that there exist a, b such that 1 = ax + by, which further implies that every

integer can be expressed as a linear combination of x and y. A stronger result is that all integers

at least as large as (x− 1)(y − 1) can be expressed as non-negative linear combinations of x and y.
Let

m ≥ (hk+2 − 1)(hk+1 − 1)

= (2hk+1 + 1− 1)(2hk + 1− 1)

= 2(hk+1)(2hk)

= 4hk(2hk + 1) = 8h2k + 4hk

.

By the preceding statement, m can be expressed in the form c1hk+1 + c2hk+2 for non-negative

integers c1 and c2. From the preceding discussion, we can also conclude that a[p−m] < a[p]. What

does this mean? For any number i ≥ 8h2k + 4hk, a[p − i] < a[p]. Or stated the other way, a[p] is
de�nitely larger than all elements in its hk-slice below a[p − (8h2k + 4hk)], so the furthest it would

have to be moved is 8h2k + 4hk cells down. Therefore, during the hk-sort, no element has to be

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

moved more than 8hk − 4 times (since each moves in hk increments each time.) There are at most

n− hk such positions, and so the total number of comparisons in this pass is O(nhk).

How many increments hk are smaller than n1/2? Roughly half of them, because if we approximate

n as a power of 2, say 2t, then
√
n = 2t/2 and the increments 1, 3, 7, . . . , 2t/2 − 1 are half of the

total number of increments. For simplicity, assume t is an even number. Then the total running

time of Shell Sort is

O

 t/2∑
k=1

nhk +

t∑
k=t/2+1

n2

hk

= O

n t/2∑
k=1

hk + n2
t∑

k=t/2+1

1

hk

Now we have

n

t/2∑
k=1

hk = n
(

1 + 3 + 7 + · · ·+ 2t/2 − 1
)

< n
(

1 + 4 + 8 + · · ·+ 2t/2
)

= n

t/2∑
k=1

2k

= n · (2t/2+1 − 1)

< n · 2
√
n

= 2n3/2

which shows that the �rst sum is O(n · n1/2) = O(n3/2). Since ht/2+1 = Θ(n1/2), the second sum

can be written as

n2
t∑

k=t/2+1

1

hk
= n2

(
1

2t/2+1 − 1
+

1

2t/2+2 − 1
+ · · ·+ 1

2t − 1

)

= n2
(

1

2
√
n− 1

+
1

4
√
n− 1

+ · · ·+ 1

2t/2
√
n− 1

)
≈ n2 · 1√

n

(
1

2
+

1

4
+ · · ·+ 1

2t/2

)
< 2n3/2

which shows that the second sum is also O(n3/2). This shows that the upper bound in the worst

case running time using Hibbard's sequence is O(n3/2). The lower bound proof, i.e., that there is a

sequence that achieves it is an exercise.

Many other sequences have been studied. Studies have shown that the sequence de�ned by

(hi, hi+1) = (9 · (4i−1 − 2i−1) + 1, 4i+1 − 6 · 2i + 1) i = 1, 2, . . .

which generates 1, , 5, 19, 41, 109, . . . has O(n4/3) worst case running time (Sedgewick, 1986). The

notation above means that the formula generates pairs of gaps.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

Example

This shows how Shell sort works on an array using the gap sequence 13,4,1:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A S O R T I N G E X A M P L E

After 13-sort A E O R T I N G E X A M P L S

After 4-sort A E A G E I N M P L O R T X S

After 1-sort A A E E G I L M N O P R S T X

4 Heap Sort

The idea underlying heapsort is to convert the array to be sorted into a maximum heap in O(n)
steps, and to use this heap to sort the data e�ciently. A maximum heap is a heap in which the heap

order property is reversed � each node is larger than its children, not smaller. Having converted the

array into a maximum heap, the algorithm repeatedly swaps the maximum element with the one at

the end of the working array, decrements the size of the working array by one element afterward.

This way, the next swap is with the element that immediately precedes the one just swapped.

4.1 The Algorithm

There are less e�cient ways to do this than is described here. This algorithm builds the maximum

heap, and then pretends to delete the maximum element by swapping it with the element in the last

position, and decrementing the variable that de�nes where the heap ends in the array, e�ectively

treating the largest element as not being part of the heap anymore. Because arrays are usually

0-based, the code is di�erent from the code in the description of heaps in the chapter on priority

queues. In particular, the 0 index of the array will be the root element of the heap. This does

not pose a major problem, as it simply means we need to change the de�nition of the leftchild,

rightchild, and parent functions to the following:

leftchild(i) = 2*i + 1;

rightchild(i) = 2*i + 2;

parent(i) = (i-1)/2;

Proof that the above changes are correct is left as an exercise.

We de�ne the following macros to make the code a bit clearer and easier to maintain:

#define LEFT(i) 2*(i)+1

#define RIGHT(i) 2*(i)+2

#define PARENT(i) ((i)-1)/2

The PercolateDown function must be changed slightly from the one described in Chapter 6, Priority
Queues for a few reasons:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 8

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

• Because it needs to prevent an element from being dropped �too far down� the heap, it needs a

parameter that acts like a sentinel within the heap. This is the function of the third parameter,

last.

• Because we are creating a maximum heap rather than a minimum heap, the comparisons need

to be reversed.

• Because it is part of a sorting algorithm, rather than a method of a class, it needs a param-

eter to store a reference to the data to be sorted. We assume that the data is a vector of

Comparables and make the �rst parameter of type vector<Comparable>.

#define LEFT(i) 2*(i)+1

/*

* @param int [in] last is the size of the array

* @param int [in] hole is the index of the array element to be percolated

down

*/

void PercolateDown(vector <Comparable > & array , int hole , int last)

{

int child;

Comparable temp = array[hole];

while (LEFT(hole) < last) {

child = LEFT(hole);

if (child < last -1 && array[child] < array[child +1])

child ++;

if(temp < array[child])

array[hole] = array[child];

else

break;

hole = child;

}

array[hole] = temp;

}

Using the above-de�ned PercolateDown, the heapsort algorithm is

void heapsort(vector <Comparable & a)

{

// Build the heap using the same algorithm described in Chapter 6

int N = A.size();

for (int i = (N/2) -1; i >= 0; i--)

// percolate down in a max heap stopping if we reach N-1

PercolateDown (A, i, N);

// A is now a heap

// Now repeatedly swap the max element with the last element in the

heap

for (int j = N - 1; j > 0; j--) {

swap(A[0], A[j]); // assume a swap function exists

PercolateDown(A, 0, j);

}

}

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 9

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

4.2 Analysis

In Chapter 6 we proved that building the heap takes O(n) steps (to be precise, 2n steps.) In the

second stage of the algorithm, the swap takes constant time, but the PercolateDown step, in the

worst case, will require a number of comparisons and moves in proportion to the current height of

the heap. The jth iteration uses at most 2 · log(N − j + 1) comparisons. We have

N−1∑
j=1

log(N − j + 1) =
N∑
j=2

log(j) = logN !

It can be proved that log(N !) = Θ(N logN)2, so heapsort in the worst case has a running time

that is Θ(N logN). A more accurate analysis will show that the most number of comparisons is

2N logN −O(N).

Experiments have shown that heapsort is consistent and averages only slightly fewer comparisons

than its worst case. The following theorem has been proved, but the proof is omitted here.

Theorem 6. The average number of comparisons performed to heapsort a random permutation of
n distinct items is 2n log n�O(n log log n).

5 Quicksort

Quicksort is the fastest known sorting algorithm when implemented correctly, meaning that the

non-recursive version should be used and the longer partition should be stacked rather than the

shorter one. Quicksort has an average running time of Θ(N log N) but a worst case performance

of O(N2). The reason that quicksort is considered the fastest algorithm for sorting when used

carefully, is that a good design can make the probability of achieving the worst case negligible.

Here we review the algorithm and analyze its performance.

5.1 The Algorithm

Basic idea:

Let S represent the set of elements to be sorted, i.e., S is an array. Let quicksort(S) be de�ned as

the following sequence of steps:

1. If the number of elements in S is 0 or 1, then return, because it is already sorted.

2. Pick any element v in S. Call this element v the pivot .

3. Partition (S�v) into two disjoint sets S1 = {x ∈ S | x ≤ v} and S2 = {x ∈ S | x ≥ v} with
some elements equal to v in S1and others in S2

4. Return quicksort(S1) followed by v followed by quicksort(S2).

2Replace the summation by the integral as an approximation to verify this.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 10

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

Picking a Pivot

A poor choice of pivot will cause one set to be very small and the other to be very large. The result

will be that the algorithm achieves its O(n2) worst case behavior. If the pivot is smaller than all

other keys or larger than all other keys this will happen. We want a pivot that is the median element

without the trouble of �nding the median(because that is too expensive.) One could pick the pivot

randomly, but then there is no guarantee about what it will be, and the cost of the random number

generation buys little savings in the end.

A good compromise between safety and performance is to pick three elements and take their median.

Doing this almost assuredly eliminates the possibility of quadratic behavior. A good choice is to

choose the �rst, last, and middle elements of the array.

Partitioning

The best way to partition is to push the pivot element out of the way by placing it at the beginning

or end of the array. Having done that, all of the implementations do basically the same thing,

except for how they handle elements equal to the pivot.

The general idea is to advance i and j pointers towards the middle swapping elements larger than

the pivot until i and j cross. The following example shows an array with the initial placements of

the i and j pointers and the pivot, after it has been moved to the last position in the array. In

each step, �rst j travels down the array looking for a culprit that doesn't belong, and then i travels

up the array doing the same thing. When they each stop, the elements are swapped and they each

advance one element. In the following example, the lowest index element is not less than or equal

to the pivot, as would be true if a smarter way of choosing the pivot were used.

8 1 4 9 0 3 5 2 7 6

i j pivot

8 1 4 9 0 3 5 2 7 6

i j

2 1 4 9 0 3 5 8 7 6

i j

2 1 4 9 0 3 5 8 7 6

i j

2 1 4 5 0 3 9 8 7 6

i j

2 1 4 5 0 3 9 8 7 6

j i

It stops at this point and the pivot is swapped, so the �nal array is

2 1 4 5 0 3 6 8 7 9

The real issue is handling elements that are equal to the pivot. The safest way to handle elements

equal to the pivot is to swap them as if they were smaller or larger, otherwise the algorithm can

degrade to the worst case.

A recursive version of quicksort that uses this strategy is in the listing below. The function median3

is listed below quicksort.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 11

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

C median3(vector <C> & a, int first , int last);

void quicksort(T A[], int left , int right)

{

// make sure array has at least ten elements:

if (left + 10 <= right) {

// pick three values , sort them , and put the pivot into A[right],

// the smallest of the three into A[left] and the largest into A[

right -1].

// assume that the function choose_pivot () does all of this.

T pivot = median3(A, left , right);

// A[left] <= pivot <= A[right -1] and pivot is A[right]

// now partition

int i = left;

int j = right -1;

bool done = false;

while (! done) {

while(A[++i] < pivot) { } // advance i

while (pivot < A[--j]) { } // advance j

// A[j] <= pivot <= A[i]

if (i < j)

swap(A[i], A[j]);

else

done = true;

}

// now j <= i and A[i] >= pivot and A[j] <= pivot

// so we can swap the pivot with A[i]

swap(A[i], A[right]);

// Now the pivot is between the two sets and in A[i]

// quicksort the left set:

quicksort(A, left , i-1);

// quicksort the right set:

quicksort(A,i+1, right);

}

else {

// A is too small to quicksort efficiently

insertion_sort(A,left ,right);

}

}

Notes.

1. That i starts at left+1 is intentional. The median3 function rearranges the array so that

a[left] ≤ pivot, so it is not necessary to examine it.

2. A symmetric statement is true of j: median3 places the pivot in a[right-1] so j can start

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 12

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

by comparing pivot to a[right-2].

3. Neither i nor j can exceed the array bounds because of the above reasoning. The ends act as

sentinels for i and j.

/*

* @post a[first] <= a[(first+last)/2] <= a[last -1] && a[last] contains

the

* median of the original values in locations a[first], a[last], and

* a[(first+last)/2].

*/

C median3(vector <C> & a, int first , int last)

{

int middle = (first + last)/2;

C temp;

if (a[first] < a[middle])

if (a[middle] < a[last]) {

// first < mid < last

temp = a[last -1];

a[last -1] = a[last];

a[last] = a[middle]; // middle is pivot

a[middle] = temp;

}

else if (a[last] < a[first]) {

// last < first < middle

temp = a[last -1];

a[last -1] = a[middle];

a[middle] = temp;

temp = a[last];

a[last] = a[first]; // first is pivot

a[first] = temp;

}

else {

// first < last < middle

temp = a[last -1];

a[last -1] = a[middle];

a[middle] = temp;

// last is pivot

}

else if (a[middle] < a[last]) {

if (a[last] < a[first]) {

// middle < last < first

temp = a[last -1];

a[last -1] = a[first];

a[first] = a[middle];

a[middle] = temp; // last is pivot

}

else {

// middle < first < last

temp = a[last -1];

a[last -1] = a[last];

a[last] = a[first];

a[first] = a[middle]; // first is pivot

a[middle] = temp;

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 13

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

}

}

else {

// last < middle < first

temp = a[last -1];

a[last -1] = a[first];

a[first] = a[last];

a[last] = a[middle]; // middle is pivot

a[middle] = temp;

}

return a[last];

}

5.2 A Non-recursive Quicksort Algorithm

Although function call overhead is not what it used to be, the recursion in quicksort reduces its

performance because of the time to create and maintain stack frames. A non-recursive quicksort

can depend on a user-de�ned stack and avoid the runtime library's overhead. The version below

refers to generic pop and push operations. The function median3 is the one de�ned earlier.

Listing 3: Non-recursive Quicksort

typedef int C;

void swap(C &x, C &y)

{

C temp = x;

x = y;

y = temp;

}

struct Pair

{

Pair(int x, int y): l(x), r(y) {}

int l,r;

};

void quicksort(vector < C > &a, int last)

{

stack <Pair > s;

int left ,right;

int i, j;

Pair temp(0,last);

s.push(temp);

while (! s.empty()) {

temp = s.top();

s.pop();

left = temp.l;

right = temp.r;

while (left < right) { /* or left < (right - MINSIZE) */

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 14

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

C pivot = median3(a, left , right);

// partition step

i = left;

j = right -1;

while (true) {

while (a[++i] < pivot) { }

while (pivot < a[--j]) { }

if (i < j)

swap(a[i], a[j]);

else

break;

}

// move pivot into position in middle

swap(a[i], a[right]);

// pick larger of two regions to push on stack , and do the

// smaller within the loop. This guarantees that the stack

will

// never have more than log_2 (n) pairs of parameters.

if ((right -i) > (i-left)) {

if (right > i)

s.push(Pair(i+1,right));

right = i-1;

}

else {

if (i > left)

s.push(Pair(left ,i-1));

left = i+1;

}

}

// could do the insertion sort here if right -left < MINSIZE

}

}

This version is designed so that the larger of the two choices of partition is always put on the stack,

and the smaller is processed immediately. By doing this we prevent the stack from ever having more

than log n frames. If we did not so this, the worst case stack would be O(n) frames.

5.3 Analysis of Quicksort

A recurrence relation describes the total number of comparisons. Letting T (n) denote the number
of comparisons with an array of size n, and let i denote the number of elements in the lower part

of the partition, S1. T (1) is some constant, say a. Then

T (n) = T (i) + T (n− i�1) + cn

Worst Case

The worst case is when the partition always creates one array of size 0 and the other of size n− 1.
The recurrence in this case is

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 15

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

T (n) = T (n− 1) + cn

for n > 1, which implies that

T (n) = T (n− 2) + cn+ c(n− 1)

= T (n− 3) + c(n+ n− 1 + n− 2)

= · · ·
= T (1) + c(n+ n− 1 + n− 2 + . . . + 1)

= a+
cn(n+ 1)

2
∈ Θ(n2)

Average Case

The average case analysis assumes that all sizes for S1 are equally likely. We now let T (n) rep-
resent the average running time for an array of size n. It follows that T (n) is the average of the

running times for all possible sizes of S1, which are each of probability 1/n because S1can be of

size 0, 1, 2, . . . , n− 1 with equal probability (the pivot is excluded from S1.) Therefore the average
running time for an array of size n is the sum of the average running times of arrays of size j and
those of size n− j − 1 for all j = 0 . . . n− 1, divided by n, plus the cost of the partitioning step for

the array of size n:

T (n) =
1

n

n−1∑
j=0

(T (j) + T (n− j − 1)) + cn

=
2

n

n−1∑
j=0

T (j) + cn iff

nT (n) = 2
n−1∑
j=0

T (j) + cn2 iff

(n− 1)T (n− 1) = 2

n−2∑
j=0

T (j) + c(n− 1)2

Now subtract the last two equalities and get

nT (n)− (n− 1)T (n− 1) = 2T (n− 1) + c(n2 − (n− 1)2)

= 2T (n− 1) + 2cn− c

Rearranging and dropping the constant c,

nT (n) = (n+ 1)T (n− 1) + 2cn

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 16

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

Dividing by n(n+ 1), we get a formula that can be telescoped by successive adding:

T (n)

n+ 1
=

T (n− 1)

n
+

2c

n+ 1
T (n− 1)

n
=

T (n− 2)

n− 1
+

2c

n
T (n− 2)

n− 1
=

T (n− 3)

n− 2
+

2c

n− 1
...

T (2)

3
=

T (1)

2
+

2c

3

Adding these equations and then subtracting the common terms from both sides yields the following

equation:

T (n)

n+ 1
=
T (1)

2
+ 2c

n+1∑
i=3

1

i
≈ T (1)

2
+ 2c log(n+ 1) ∈ Θ(log n)

The last sum is actually 2c loge(n+ 1) + γ− 3/2 where γ ≈ 0.577 and is known as Euler's constant.

Multiplying by n+ 1 on both sides gives the result

T (n) ∈ O(n log n)

6 A Lower Bound for Sorting

The question is, can we ever �nd a sorting algorithm better than the O(n log n) algorithms we have

seen so far, or is it theoretically impossible to achieve this?

The answer is that if our sorting algorithm sorts by making binary comparisons, then the worst

case number of comparisons is Ω(n log n) . The proof is based on the following argument:

Any sorting algorithm that uses only comparisons requires dlog(n!)e comparisons in the worst case

and log(n!) on average. To prove this we use a decision tree.

6.1 Decision Trees

A decision tree is a tree representation of an algorithm that solves a problem by a sequence of

successive decisions. In a decision tree, the nodes represent logical assertions and an edge from a

node to a child node is labeled by a proposition. A binary decision tree is based on binary decisions.

Because a binary decision tree is a binary tree, we can use reasoning about binary trees to arrive at

a theorem about algorithms that sort using binary comparisons. Figure 2 illustrates a decision tree

that represents the comparisons that would sort three distinct numbers. We need some preliminary

lemmas.

Lemma 7. A binary tree of height d has at most 2d leaves.

Proof. We can prove this by induction on the height of the tree. If d = 0, the tree consists of a

root, and it has 1 = 20 leaves. If d > 0, assume it is true for d− 1. The tree must have a root and

two subtrees of height at most d− 1, which by assumption have at most 2d−1 leaves each. Since the
root is not a leaf, the tree has at most 2 · 2d−1 = 2d leaves.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 17

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

b < aa < b

a < c c < a

a < c c < a
b < c c < b

b < c c < b

a < c < ba < b < c

b < a < c

b < c < a

c < b < a

c < b < ab < a < c

b < c < a

b < c < ab < a < c

a < b < c

a < c < b

c < a < b

c < a < ba < b < c

a < c < b

a < b < c

a < c < b

b < a < c

b < c < a

c < a < b

c < b < a

Figure 2: A decision tree that represents the decisions to sort three numbers.

Lemma 8. If a binary tree has n leaves then it must have height at least dlog ne.

Proof. Suppose a tree with n leaves has height less than dlog ne. There are two cases: n is not a

power of 2 and n is a power of 2.

If n is not a power of 2, its height is at most blog nc because that is the largest integer less than

dlog ne in this case. But the preceding lemma states that if the tree had height blog nc , it would
have at most 2blognc < n leaves which contradicts the premise that the tree has n leaves.

If n is a power of 2, then its height is at most log(n)− 1 because that would be the largest integer

less than dlog ne. From the preceding lemma, the tree would have at most 2logn−1 = n/2 < n
leaves, which contradicts the fact that the tree has n leaves. Thus the tree must have height at least

dlog ne.

Lemma 9. Any sorting algorithm that uses only binary comparisons between elements requires at
least dlog n!e comparisons for an array of size n.

Proof. There are n! leaves in a decision tree to sort n elements because there are n! di�erent possible
outcomes. By Lemma 8, the height of this tree is at least dlog n!e.

Theorem 10. Any sorting algorithm that uses only comparisons between elements requires Ω(n log n)
comparisons.

Proof. We show that log(n!) is Ω(n log n).

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 18

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3
Chapter 7 Sorting

Prof. Stewart Weiss

log(n!) = log n+ log(n− 1) + log(n− 2) + · · · log 2 + log 1

≥ log n+ log(n− 1) + log(n− 2) + · · · log(n/2)

≥ n

2
· log

n

2

≥ n

2
· (log n− 1)

≥ n

2
· log n− n

2
= Ω(n log n)

This shows that we cannot do better than Ω(n log n) if we are limited to binary comparisons. There

are sorts that do not use them, such as radix sort and bucket sort.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 19

https://creativecommons.org/licenses/by-sa/4.0/

	1 Introduction
	2 A Lower Bound for Simple Sorting Algorithms
	3 Shell Sort
	3.1 Analysis of Shell Sort Using Shell's Original Increments
	3.2 Other Increment Schemes

	4 Heap Sort
	4.1 The Algorithm
	4.2 Analysis

	5 Quicksort
	5.1 The Algorithm
	5.2 A Non-recursive Quicksort Algorithm
	5.3 Analysis of Quicksort

	6 A Lower Bound for Sorting
	6.1 Decision Trees

