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The Complexity Classes P and NP

1 Introduction

Some problems have a minimum running time that is exponential in the size of their input simply
because the size of their output is an exponential function of the size of the input. There is nothing
we can do to reduce their time complexity because they must output exponentially many bytes.
There are trivial examples of this:

• The problem in which, given n, all numbers from 1 to 2n must be printed.

• The problem in which, given n, all n! permutations of the numbers from 1 to n must be
printed.

The �rst is very uninteresting and I am not sure why anyone would want a program to do that.
The second is more useful because sometimes we want to generate all such permutations to use as
input to another program, perhaps to test that program or to determine the average running time
as a function of the input size. A program that prints all permutations of the set of integers from
1 to n, for any n, appears in Listing 1 below.

The fact that a program has an enormous amount of output does not mean the program itself is
enormous, as you are well aware, because we can write a very small program with a �small� loop
that produces in�nite output.

Listing 1: Program that prints all permutation of 1..N for given N

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

/* genperms () prints all permutations of numbers 1 to size */

void genperms( int a[], int size , int k )

{

int i,j;

static int depth = -1;

depth ++;

a[k] = depth;

if ( depth == size ) {

for ( j = 1; j <= size; j++ )

printf("%d ",a[j]);

printf("\n");

}

for ( i = 1; i <= size; i++ )

if ( a[i] == 0 )

genperms(a, size , i);

depth --;
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a[k] = 0;

}

int main ( int argc , char* argv[] )

{

int n; // number of permutations to generate

/* Check usage */

if ( argc < 2 ) {

printf("usage: %s n, where n is number of permutations\n",

argv [0]);

exit (1);

}

/* get user input and convert to number */

errno = 0;

n = strtol( argv[1], NULL , 10 );

if ((errno == ERANGE ) || (errno != 0 && n == 0)) {

perror("strtol");

exit(EXIT_FAILURE);

}

/* allocate a dynamic array of size n+1 */

int* p = malloc ((n+1)*sizeof(int) );

if ( NULL == p ) {

printf("problem allocating storage\n");

exit (1);

}

/* zero -fill the array */

memset(p,0,n+1);

/* call recursive function to generate permutations */

genperms(p,n,0);

free(p);

return 0;

}

Problems such as the ones stated above, in which the size of the output is an exponential function
of the size of the input, assuming we have some reasonable way to de�ne size, are excluded from
the remainder of the discussion here; they must take time proportional to the size of the output.

There are many problems that take a long time not because they produce an exponential amount
of output, but because they require searching through an enormous number of candidate solutions
to �nd the true solution. For example, imagine that we are given a complete graph with n vertices
and we are told that each time we visit a vertex, we pick up a clue, and that if we pick up the clues
in the correct order we win a big prize. The graph's vertices might be cities to visit, or trees in a
forest, or train stations. The obvious solution, perhaps the only solution, is to generate all possible
simple paths in the graph and check each one. The program in Listing 1 could be used to do just
that, but instead of outputting each path, it would stop when it �nds the path that collects the
clues in the correct order. In the worst case it requires generating all permutations.

This is a rather simple problem and has a rather simple, though ine�cient, solution. There are
problems for which many known algorithms take an exponential amount of time to �nd a solution,
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but for which no one has yet to �nd an e�cient algorithm. We are about to reconsider our notion
of �e�cient� because as you will soon see, we have not really seen what a di�cult problem is. So far
we have treated an O(n3) algorithm or an O(n2) algorithm as an ine�cient one if we could �nd an
O(n2) or O(n log n) alternative algorithm respectively. For the problems we are about to describe,
we would be quite happy with an algorithm that ran in O(n40) time, because no one has yet to
devise an algorithm that can run in time proportional to any polynomial function of n. The best
that anyone has been able to do has been to �nd algorithms that solve these problems in exponential
time, meaning in time proportional to cn for some real number c > 1.

Is this bad? Consider a problem for which the fastest known algorithm that solves it runs in time
proportional to 2n. Suppose that with the fastest computers available today, it takes an hour to
solve an instance of the problem of size n = 100. To solve an instance of size n = 101 would take
2 hours, and an instance of size n = 116 would take about 7.5 years. Suppose that in ten years,
computers will run 100, 000, 000 times faster. This would only allow us to solve a problem of size
n = 126 in an hour's time! We would never be able to solve an instance of this problem of size
n = 200 with this algorithm.

In general, we call problems such as these intractable:

De�nition 1. A problem is intractable if an exponential amount of time is needed to discover its
solution, and the size of its output is no more than a polynomial function of the size of its input.

1.1 Intractable Problems

What kinds of problems are like this, you might wonder. Some are very easy to state. The most
well-known problem of this nature is called the traveling salesman problem (TSP), which can
be de�ned as follows:

A traveling salesperson wants to visit n distinct cities, starting in her home town and
returning to her home town, but visiting every other city exactly once. The problem is
to �nd a shortest route that visits every city exactly once and returns to the starting
city.

As a graph problem it is stated as follows:

Given an undirected weighted graph, �nd a shortest path that visits every vertex exactly
once and returns to the �rst vertex.

It sounds quite simple, and it arises in a variety of contexts, but in fact there are no ways to solve
this problem that do not need to �nd the lengths of a great many (exponentially many) paths
through the graph, which are usually called tours when discussing this problem.

A similar problem is the Hamiltonian circuit problem:

Given an undirected graph, is there any path that connects all of the nodes with a simple
cycle?

A simple cycle is a cycle in which each vertex appears exactly once except the �rst and the last,
which are the same vertex. For example, 1, 2, 3, 4, 5, 1 is a simple cycle. It is not hard to cycle
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through a graph and visit every node if you do not care about passing through nodes more than
once. It is a completely di�erent problem when you do not have this luxury.

The Hamiltonian circuit problem is an example of a decision problem.

De�nition 2. A decision problem is a problem that has a yes/no answer.

The traveling salesman problem requires a path as its answer. The TSP and the Hamiltonian
circuit problem are similar, but not exactly the same. The TSP as stated above is a minimization
or optimization problem (one that wants a smallest value or a value that minimizes some function
f subject to constraints on its variables), but it has a corresponding decision problem:

Given a �nite set of n cities and a bound B, does there exist a tour starting in her home
town and returning to her home town, visiting every other city exactly once, of length
at most B?

In Chapter 9 we de�ned spanning trees for graphs. A simple question to ask is whether a graph
has a spanning tree in which no vertex has degree larger than some �xed constant k? This sounds
like it should not be hard to solve, but it takes an exhaustive search as well. No one has found an
e�cient algorithm to solve it.

A problem not related to graphs is the bin-packing problem :

Given a �nite set U = {u1, u2, . . . , un} of n items of various sizes, s(ui), and a set of L
bins into which these items must be placed, what is the least number of bins needed to
pack all of the items?

A corresponding decision problem for this is

Given a �nite set U = {u1, u2, . . . , un} of n items of various sizes, s(ui), i = 1, 2, . . . , n,
a set of L bins into which these items must be placed, and a capacity B, is there a
distribution of items into bins such that the sum of the sizes of the items in each bin is
at most B?

A second problem not related to graphs is called circuit satis�ability :

Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to
set the circuit inputs so that the output is 1?

Notice that this is also a decision problem and that it is another problem that requires exhaustive
searching. In fact this problem is a variant of

Boolean satis�ability :

Given a Boolean expression consisting of AND, OR, and NOT operators, is there an
assignment of values to its variables that makes the expression true?

Sometimes there is a very �ne line between an easy problem and a hard problem. A good example
is the following pair of problems:
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• Given a weighted graph G = (V,E), two vertices v and w, and a weight c, is there a simple
path from v to w whose weight is at most c.

• Given a weighted graph G = (V,E), and two vertices v and w, and a weight c, is there a
simple path from v to w whose weight is at least c. This is called the decision problem

version of the longest weighted path problem .

The �rst problem has an e�cient solution; a breadth-�rst search of the graph will give an answer
in linear time. The second has no known solution that runs in less than exponential time. The best
that we can do is generate all possible paths and see whether any are su�ciently long.

2 Preliminaries

We now make more precise the di�erence between easy and intractable problems. To begin we have
to make the idea of input size more precise.

De�nition 3. The size of the input to an algorithm is the number of bits needed to encode the
input, using a reasonable encoding method.

Reasonable generally means using the conventional methods, such as a binary encoding, hexadeci-
mal or base ten or some other constant radix. An unreasonable encoding would be a unary encoding,
requiring m bits to encode the number m.

De�nition 4. An algorithm A solves a problem p if, for every input to the algorithm A, it
terminates and outputs a solution to p for that input.

In this case we will simple say that algorithm A solves p, or that p is solved by A.

De�nition 5. An algorithm A solves a problem p in polynomial time if there exists a number k
such that, for every input of size n given to the algorithm, it solves the problem for that input in
time at most nk.

Notice that this implies a worst case running time , because it says that for all inputs of size
n, the upper bound on the running time is nk. In particular, whichever one takes the longest is
included.

Next we want to de�ne what a deterministic algorithm is. We assume that all instructions have
unique addresses, or numbers, and that all variables can be uniquely identi�ed by their addresses
in memory.

De�nition 6. The state of an algorithm is a complete description of the values of all variables
and memory locations used by the algorithm, together with the address of the instruction that it is
about to be executed. The initial state of the algorithm is the state in which the �rst instruction
is about to be executed for the �rst time1 and all of its memory has been created.

Even things like open �les are part of the state of an algorithm. If the algorithm has a �le open,
then the contents of the �le are part of its state, as well as the address of the next byte in the �le
to be read or written. In essence, the state leaves nothing out that a�ects what might happen next
in the computation.

1It might be re-executed at a later time.
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De�nition 7. An algorithm is deterministic if, given its current state, executing the current
instruction in that state uniquely determines the algorithm's next state.

In other words, a deterministic algorithm leaves nothing to chance; given a particular input, it
always produces the same output. In essence the collection of input/output pairs of the algorithm is a
function. The algorithms we have learned about in this course, and probably most of the algorithms
you have learned about in your other undergraduate courses, are all deterministic algorithms. Soon
we will see what a nondeterministic algorithm looks like.

Lastly, for the remainder of this chapter, we will restrict all problems under consideration

to be decision problems.

3 The Complexity Class P

We de�ne a very important collection of decision problems that have a common property.

De�nition 8. The set of all decision problems that can be solved by a deterministic algorithm in
polynomial time is the complexity class P.

Notice that P is a set of problems, not algorithms. P is called a complexity class, because it is
a class of problems that have the same computational complexity. The computational complexity
of a problem is the asymptotic worst case running time of the best algorithm known to solve
that problem. The de�nition of P states that a problem belongs to this class P if there is some
deterministic algorithm that solves it in polynomial time.

Almost all of the problems that you typically study in an undergraduate program in computer
science run in polynomial time. The ones that are decision problems belong to the class P. Many
of the problems have decision problems that correspond to them. These includes problems such as
sorting, all of the various shortest-path problems in graphs, algorithms to determine whether graphs
are acyclic, strongly-connected, and so on, and searching for keys in trees and tables.

4 The Complexity Class NP

You now have to let your imagination loose a bit, to understand the idea of nondeterminism, because
we will use it to describe an imaginary computer or algorithm, one that cannot exist as a physical
reality. But it plays a very important role in theoretical computer science and dates back many
decades. In a nondeterministic algorithm the next state that it enters is not determined by the
current state; it is endowed with the ability to enter any one of a set of multiple next states, and
this choice occurs, in a sense, simultaneously.

If a person is walking in a forest along a path that forks into two distinct paths, the person is
forced to choose one of the forks and follow it. Suppose that, by some extraordinary means, the
person could walk both paths simultaneously, not by making a copy of him or herself, but by
cloning time. You might also think of this as cloning the world. Then the person would be walking
nondeterministically. It is not the same thing as parallel execution, which would be like copying
the person and having each copy walk a fork. It is not the same thing as a probabilistic algorithm,
which would make a random guess and follow it. It is an abstraction that we can only imagine.
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We apply this idea to algorithms. Imagine an algorithm that can guess a candidate solution to a
problem in one stage and then check if the guess is correct in a second stage. We can call the �rst
stage the guessing stage , and the second, the checking stage . The idea is that the algorithm
can make all guesses simultaneously and then check them all simultaneously. This means, in e�ect,
that if there is a solution to the problem, that solution will be one of the guesses, and the algorithm
will discover this in its checking stage, and the total time it takes to do this is the same as if it
made a single guess and checked it.

All of this can be formalized very rigorously, but to do so would require a fair amount of background
theory. The original formulation was based upon Turing Machines. We do not need to use Turing
Machines to explain the ideas we present here, but we lack rigor by not doing so. Although it is not

necessary to do so, for the remainder of this section we will restrict the problems under consideration

to be decision problems.

As an example, a nondeterministic algorithm could solve the traveling salesperson decision problem
by �rst guessing an arbitrary sequence of cities that start in a given city, end in the same city and
visit each city exactly once, and then in the checking stage, it would check whether the guess had
length at most B. If there is a tour of length at most B, then one of the guesses will be correct and
will be veri�ed by the checking stage and the output will be yes. If there is no tour of that length,
no guess will be found that is of the correct length, and the output will be no. We can make this
more formal with the following de�nition.

De�nition 9. A nondeterministic algorithm solves a decision problem d if,

• For each input to d for which the answer should be yes, there is a guess that it can make in
the guessing stage that, when it is checked in the checking stage, will result in the answer
�yes�, and

• For each input to d for which the answer should be no, there is no guess that it can make
in the guessing stage that when it is checked in the checking stage, will result in the answer
�yes�.

This is a reasonable de�nition. It basically says that the algorithm always �nds a correct guess if it
exists and cannot �nd one if it does not exist. We can de�ne a polynomial-time nondeterministic
algorithm as follows.

De�nition 10. A nondeterministic algorithm whose input size is n solves a decision problem

d in polynomial time if there exists a polynomial p such that, for every input to d for which the
answer should be yes, there is a guess that leads in the checking stage to a yes answer within p(n)
time.

This implies that the size of the guess is also bounded by the polynomial, because it would be
impossible to spend a polynomially-bounded amount of time checking a structure whose size was
more than polynomial. We can now de�ne the class NP:

De�nition 11. The set of all problems that can be solved by a nondeterministic algorithm in
polynomial time is the complexity class NP.

One immediate consequence of this de�nition is that every problem in P is also in NP: if a problem
can be solved with a deterministic algorithm in polynomial time, it can be solved with a nondeter-
ministic algorithm in polynomial time also. Therefore P ⊆ NP. The most important open question

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 335 Software Design and Analysis 3

Chapter 10 The Complexity Classes P and NP

Prof. Stewart Weiss

P

NP−complete

NP−hard

NP
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Figure 2: An Euler diagram showing the world if P = NP .

in computer science is whether P = NP, i.e., whether there are problems in NP that are not in
P. No one has proved or disproved this statement, though many have tried. This is a big problem,
because there are many important, practical problems known to be in NP, not yet known to be in
P, and if someone were to prove that P = NP, this would imply that these problems did indeed
have e�cient solutions. If someone proved that P 6= NP, this would not necessarily mean that any
speci�c problem did not have an e�cient solution, but that certain ones did not, which leads to the
concept of NP-completeness.

4.1 Exponential Time

If a problem is in NP, then it can always be solved by an algorithm that runs in exponential time
deterministically. To see this informally, suppose that D is a problem in NP. Then there is some
polynomial p(n) such that instances of size n can be decided by a nondeterministic algorithm A
that runs in time p(n). This means that the size of the guess that is handed to the checking stage is
no more than p(n) bits in size, otherwise it would take more than p(n) time to check the guess. A
deterministic algorithm can enumerate every possible guess of at most that size and check each one
in polynomial time. There are at most O(2p(n)) such guesses, so such an algorithm can generate the
guesses and check them in O(2p(n)) exponential time. This shows that every problem in NP can
be solved by an exponential time, deterministic algorithm.

5 NP-Completeness and NP-Hardness

There are certain decision problems that are known to belong to NP, but which may or may not
belong to P. No one has found e�cient algorithms for any of them, nor has anyone proved that
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these algorithms cannot exist, and many people have tried to do one or the other. So there is no
proof that they are in P and there is no proof that they are not. The list of such problems is quite
large, but among them are:

1. circuit satis�ability, de�ned above

2. bin-packing, de�ned above

3. Hamiltonian circuit, de�ned above

4. subset sum: Given a set X of integers and an integer t, does X have a subset whose elements
sum to t?

5. longest path: Given a non-negatively weighted graph G = (V,E) , an integer B, and two
vertices u and v, is there a simple path from u to v in the graph of length greater than B?

6. graph isomorphism: Given two graphs G1 = (V1, E1) and G2 = (V2, E2), is there a one-to-one,
onto function f : V1 → V2 such that (u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2?

7. integer factorization: Given an integer n and an integer m with 1 ≤ m ≤ n, does n have a
factor q with 1 < q < m?

There are certain problems for which it has been proved that if any of them can be solved in
polynomial time with a deterministic algorithm, then so can all problems known to be in NP,
meaning that P = NP. Such problems are called NP-hard problems. Informally, a problem is
NP-hard if it is at least as hard as any problem in NP. A problem is NP-complete if it is NP-hard
and also in NP.

If someone were able to prove that any single problem known to be in NP could not be solved with
a polynomial-time algorithm, i.e., that such a problem was in NP but not in P (NP − P), this
would also imply that every NP-complete problem was in NP − P. These NP-complete problems
are an important tool in understanding the relationship between these complexity classes.

Problems 1 through 5 above have been proven to be NP-complete. Problems 6 and 7 are known to
be in NP but no one has proved they are NP-complete and no one has proved they are in P.

Are there decision problems that are NP-hard but not NP-complete? All undecidable problems fall
into this category, such as the Halting Problem2, but there are also decidable problems that are
NP-hard but not NP-complete. One example is called the true quanti�ed Boolean formula

problem , which asks whether a boolean formula containing existential and universal quanti�ers
has an assignment that makes it true. See Figure 1 for a picture of how the sets are related if
P 6= NP.

5.1 Proving NP-Completeness

Suppose that a decision problem D is known to be NP-complete and we are given a problem D′

in NP. Suppose that we can �nd a transformation T that can convert any instance d of the old
problem D into an instance d′ of the new problem D′ in such a way that d′ = T (d) has a yes answer

2The Halting Problem, stated in informal terms, is the problem in which we are given a program and an input to

that program and asked whether the program will eventually halt when run on that input. The original version was

stated in terms of Turing Machines.
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as an instance of D′ if and only if d has a yes answer as an instance of D. Suppose also that the
transformation can be done in polynomial time. Then we have a procedure for solving all instances
of the original problem D as follows:

1. Transform the instance d into a problem T (d) of D′ using polynomial time.

2. Use the algorithm for D′ to solve the problem T (d).

3. Report the answer is yes for d if and only if the answer is yes for T (d).

If D′ has a polynomial time deterministic algorithm (meaning it is in P), this would imply that the
old problem is also in P and that P=NP. In other words, D′ is NP-complete.

Example 12. Suppose that we know that the Hamiltonian circuit problem is NP-complete but we
do not know whether the traveling salesman problem is. The transformation we use is the following:

Given a graph G = (V,E) with |V | = n that is an instance of the Hamiltonian circuit problem,
create a traveling salesman problem instance by creating a city for each vertex in V, and for the
distances between the cities, de�ne the distance between city v and city w to be 1 if there is an
edge (v, w) ∈ E and 2 if there is no edge (v, w). Clearly this is a polynomial-time transformation.

Run the algorithm for the traveling salesman problem to decide if there is a tour of weight at most
n on this constructed instance. If it �nds a tour, this implies that there was a cycle in the original
graph that connected all of the vertices in the graph (because the traveling salesman visits all n
cities, returning to the starting city, and so traversed all vertices and used n edges of weight 1 each.)
If it �nds no tour of weight at most n, then it could only �nd tours whose weight was greater than
n. If the total weight of a tour is greater than n, at least one edge on the tour had weight 2. This
edge corresponds to an edge that was not in the original Hamiltonian circuit problem graph, so the
path does not exist in the original graph. Hence there are no paths in the original graph that form
a simple circuit visits every vertex.

If the traveling salesman algorithm has a deterministic polynomial time algorithm, we can use it
to solve the Hamiltonian circuit problem with this polynomial-time transformation, which implies
that the Hamiltonian circuit problem also has a polynomial-time deterministic algorithm. Since
Hamiltonian circuit is NP-complete, TSP must be NP-complete also.

The procedure described informally above is called a polynomial-time reduction ofD toD′. If we
can reduce a known NP-complete problem to another problem in NP, then the second problem must
be NP-complete as well. This shows that we can extend the set of known NP-complete problems by
�nding suitable polynomial time reductions of known NP-complete problems. But this is only useful
if there is a starting problem known to be NP-complete, one that was not proved to be NP-complete
by reduction from some other NP-complete problem! How did it get there?

5.2 Cook's Theorem

In 1971, Stephen Cook proved the existence of the �rst NP-complete problem. He showed that the
Boolean satis�ability problem is NP-complete, not by a reduction but by a direct proof. In short,
he proved that if satis�ability has a polynomial-time deterministic algorithm, then so does every
other problem in NP.
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We cannot understand his proof unless we know what a Turing Machine is, but we can describe
the basic idea. He showed how the computation performed by a nondeterministic Turing Machine
(NDTM ) could be expressed as a boolean formula in such a way that, the formula has an assignment
that makes it true if and only if the Turing Machine outputs a solution to the given problem. Because
a Turing Machine can be described in precise mathematical terms, it was possible to create a single
boolean expression whose length was a polynomial in the size of the input to the machine such that
the expression represented the running of the machine on that input in polynomial time. Because a
NDTM can be used to solve any problem in NP in polynomial time, his construction showed that
for every problem in NP, there was an instance of the satis�ability problem such that a yes answer
to the satis�ability problem on that instance corresponded to a yes answer to the original problem.
This established the �rst NP-complete problem, which is known as SAT for short.
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