
CSci 335 Software Design and Analysis 3

Programming Requirements

Prof. Stewart Weiss

Programming Requirements and Guidelines

Every major project has its own coding requirements and style guidelines, which are conventions about how
to write code for that project. It is much easier to understand a large codebase when all of the code in it
is in a consistent style. Many organizations, such as Google1, require that all of the code written for its
projects conform to these guidelines. In this course, you must write your programs so that they conform to
several requirements. Some requirements are related to how and what to submit; others have to do with the
form of the code.

The requirements stated in this document are implicitly part of every programming assignment
and must be satis�ed by your solution to that assignment. They are arranged by category.

1 Requirements

1.1 Submission, Correctness, and Authenticity

1. The submitted program must be free of all errors when it is compiled, linked, and executed on any of
the department's cslabXX computers. These are the machines in the walk-in lab, 1001B, which are
named cslab1, cslab2, and so on. All of these machines have identical architectures and software,
so if a program runs correctly on one, it will run correctly on any other2. In general, a program's
behavior on one computer may be di�erent than on another because of di�erences in the installed
program libraries, compilers, and the operating system kernels. This requirement stipulates that it
must run correctly on these lab machines regardless of what it does on any other computer.

2. Every program must be correct to receive full credit . "Correct" means that for every possible
input, it produces output that is consistent with the speci�cation. If the program produces correct
results for some, but not all, inputs, it is not correct. Since there may be an unbounded number of
possible inputs, you cannot possibly establish your program's correctness by running it on all inputs.
You must use a combination of sampling (i.e., testing) and logical analysis to convince yourself of its
correctness. A very common mistake is for a student to hand in a program that does not even run
correctly on the input �le distributed by the instructor. In other words, the student failed to check the
outputs of the program before submitting it. This is either laziness or hubris. It is also very common
to make a �small� last-minute change to a program and fail to re-test the program on all inputs, only
to learn later that the change �broke� the program completely. Test the exact version that you submit!

3. You must submit all of the source code and absolutely nothing else, unless the assignment states
otherwise. Do not submit any executable code, data �les, or output �les.

4. For full credit, a program must be submitted in the manner described in the assignment by the stated
due date. Whether or not it is accepted after the deadline, and if so, how much it will be penalized
for lateness, is a rule that will vary from one course to another; whatever is stated in that course's
syllabus is the determining rule.

5. The program must be your work, and your work alone. You are not free to share solutions or parts
thereof with anyone else unless this has been explicitly stated by the instructor. If you do not under-
stand what it does or why it works because someone else's hand is in it, this will be discovered one
way or another. You are forewarned that your instructor might ask you to explain how your program
works and that you should be able to do so without advance preparation. If you cannot explain it,

1The C++ guidelines for Google can be found here: https://google.github.io/styleguide/cppguide.html
2Unless you are so clever that you have �gured out how to make it behave di�erently depending on which host it is running,

in which case you might have �shot yourself in the foot.�

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

https://google.github.io/styleguide/cppguide.html
https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Programming Requirements

Prof. Stewart Weiss

then it is not �yours�. Representing someone else's work as your own is plagiarism, and it is a violation
of Hunter College policy. We will �le an o�cial complaint against any student who we believe has
committed plagiarism.

1.2 Documentation Requirements

Every program must be thoroughly documented. In particular it must satisfy the following
documentation rules:

1. Every distinct source code �le must contain a preamble with the �le's title, author, brief purpose and
description, date of creation, and a revision history. It must also contain detailed instructions on how
to build the executable from all of the source code �les. If the build instructions require multiple
commands, creating a Make�le and submitting it with the source code is the best possible solution.
The description must be a few sentences long at the minimum. A revision history is a list of brief
sentences describing revisions to the �le, with the date and author (you) of the revision. This is an
example of an acceptable �le preamble:

/**

Title : draw_stars.c

Author : Stewart Weiss

Created on : April 2, 2010

Description : Draws stars of any size in a window, by dragging the mouse to

define the bounding rectangle of the star

Purpose : Demonstrates drawing with the backing-pixmap method, in which the

application maintains a separate, hidden pixmap that gets drawn

to the drawable only in the expose-event handler. Introduces the

rubber-banding technique as well.

Usage : draw_stars

Press the left mouse button and drag to draw a 5-pointed star

Build with : gcc -o drawing_demo_03 draw_stars.c \

`pkg-config --cflags --libs gtk+-2.0`

Modifications: April 29, 2010

Improved efficiency of the algorithm a bit. See the code.

**/

2. All function prototypes in your program, whether members of a class or not, must have a prologue
containing a description of each parameter and the return value, if it has one, as well as appropriate
pre- and post-conditions. These prologues must not be in the implementation �les of classes,
but in the class interfaces (i.e., .h �les). Example:

/∗∗ get_next (i s t ream & in) r e s e t s the va lue s o f the command ob j e c t on
∗ which i t i s c a l l e d to the va lue s found at the cur rent read po in t e r o f
∗ the i s t ream in , provided in . e o f () i s f a l s e .
∗ @param ist ream in [inout] an i s t ream al ready opened f o r read ing
∗ @pre i s t ream in i s open f o r read ing and in . e o f () i s f a l s e
∗ @post I f in . e o f () i s f a l s e on entry to t h i s cons t ructor , then
∗ the command i s re− i n i t i a l i z e d to the va lue s found in the input
∗ stream in , and the i s t ream po in t e r i s advanced to the next l i n e .
∗ I f the command i s i nva l i d , then when typeo f () i s c a l l e d on i t ,
∗ i t w i l l r e turn bad_command .
∗ I f in . e o f () i s t rue on entry , then the Command_type i s s e t
∗ to nu l l and the remaining va lue s are undef ined .
∗ @return true i f the command was i n i t i a l i z e d to something other than a

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Programming Requirements

Prof. Stewart Weiss

∗ bad_command , and f a l s e o therwi se .
∗/

bool get_next (i s t ream & in) ;

3. Functions that have non-trivial algorithms must be documented in plain English in a multi-line com-
ment block. All non-trivial declarations must have adjoining, brief comments.

4. Every non-obvious class declaration should have an accompanying comment that describes what it is
for and how it should be used. An example adapted from Google's style guidelines:

// I t e r a t e s over the content s o f a BigTable .
// Example :
// B igTab l e I t e ra to r ∗ i t e r = table−>NewIterator () ;
// f o r (i t e r−>Seek (" foo ") ; ! i t e r−>done () ; i t e r−>Next ()) {
// proce s s (i t e r−>key () , i t e r−>value ()) ;
// }
// d e l e t e i t e r ;
c l a s s B igTab l e I t e ra to r {

. . .
} ;

5. In general, variable names should be descriptive enough to give a good idea of what the variable is
used for. Sometimes, more comments are required. Example:

i n t entrance_id ; // unique p o s i t i v e i d e n t i f i e r f o r t h i s s t a t i o n
s t r i n g entrance_url ; // URL of s e r v i c e i n f o webpage f o r t h i s entrance
s t r i n g entrance_name ; // s t r i n g d e f i n i n g l o c a t i o n o f entrance
GPS gps_locat ion ; // the GPS l o c a t i o n o f the s t a t i o n
l i n e_se t entrance_mask ; // a bitmask d e s c r i b i n g l i n e s acce s s ed at t h i s

// s t a t i o n
bool exit_only ; // true i f t h i s entrance i s only an e x i t

1.3 Style Requirements

1. The names of variables, including function parameters and data members of classes, must be all lower-
case, with underscores between words. For example, line_count or table_size meet this requirement
whereas Big_num does not. Do not use camelCase or PascalCase for variable names,

2. Use PascalCase for class and structure names and type names in general: TreeInfo or ListObject.
Pascal case is the equivalent to Camel case with a starting uppercase letter.

3. Function names can use either method 1 or 2 but must be consistent throughout the entire project.

4. Declared constants should use PascalCase, such as const int MaxListSize = 100;

5. Every program must follow commonly accepted stylistic guidelines regarding the use of blank lines,
white space, and indentation. In particular

(a) Each line of text in your code should be at most 80 characters long.

(b) Use only spaces, not tabs, and indent 4 spaces at a time.

(c) When you have a boolean expression that is longer than the standard line length, be consistent
in how you break up the lines. In this example, the logical AND operator is always at the end of
the lines:

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

https://creativecommons.org/licenses/by-sa/4.0/

CSci 335 Software Design and Analysis 3

Programming Requirements

Prof. Stewart Weiss

if (this_one_thing > this_other_thing &&

a_third_thing == a_fourth_thing &&

yet_another && last_one) {

...

}

1.4 Performance

1. Every program must satisfy speci�ed performance requirements if these are stated. This means that
it uses an amount of storage and running time within speci�ed or reasonable limits.

2 Miscellaneous Guidelines

There is a di�erence between requirements and guidelines. A requirement must be followed. A guideline is
a suggestion; it is strongly encouraged but does not have to be followed.

1. Programs should avoid error-prone syntax as much as possible. For example, it is better to write the
condition

if (0 == N)

than the condition

if (N == 0)

because of the very common mistake of writing (N = 0) instead. Similarly, one should always
use braces with compound statements such as if's and while's, even if they are not necessary, as the
following example demonstrates:

count = N;

while (0 < count) {

a[count--]++;

}

because if you make a habit of doing this, you will not be in the situation where you inadvertently
write this:

count = N;

while (0 < count)

cout <�< a[count] <�< endl;

count--;

and waste time trying to �gure out why your program is stuck in an in�nite loop.

2. The output of any program should be readable and understandable by ordinary human beings who
lack mind-reading capability and who have not read the assignment or the program, unless speci�ed
otherwise. For example, the output

The file �playlist1� contains 6 songs that won Grammies in 2010.

is more understandable than the output

6 songs

or this

playlist1: 6

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

https://creativecommons.org/licenses/by-sa/4.0/

	Requirements
	Submission, Correctness, and Authenticity
	Documentation Requirements
	Style Requirements
	Performance

	Miscellaneous Guidelines

