Chapter 2: Operating-System
Structures

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

Operating-System Structures

Operating System Services

User and Operating System-Interface

System Calls

System Services

Linkers and Loaders

Why Applications are Operating System Specific
Operating-System Design and Implementation

Operating System Structure

A
\\
\

ﬁ(

Operating System Concepts — 10t Edition 2.2 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

=

«.m%.k/
I Chapter Objectives
B [dentify services provided by an operating system
B [llustrate how system calls are used to provide operating

Operating System Concepts — 10" Edition 2.3

system services

Compare and contrast monolithic, layered, microkernel,
modular, and hybrid strategies for designing operating
systems

Apply tools for monitoring operating system performance

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

=

e 5 Operating System Services 1

L\
o\

B Operating systems provide an environment for execution of programs
and services to programs and users

B One set of operating-system services provides functions that are
helpful to the user:

® User interface - Almost all operating systems have a user
interface (Ul).

» Varies between Command-Line (CLI), Graphical User
Interface (GUI), touch-screen, Batch

® Program execution - The system must be able to load a program
into memory and to run that program, terminate execution, either
normally or abnormally (indicating error).

® 1/0 operations - A running program may require /O, which may
involve a file or an I/0O device; OS must provide interface to 1/O
subsystems.

Operating System Concepts — 10t Edition 2.4 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

57 Operating System Services 2

B More operating-system services that are helpful to the user :

® File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and delete
them, search them, list file Information, permission management.

® Communications — Processes may exchange information, on the same
computer or between computers over a network

» Communications may be via shared memory or through message
passing (packets moved by the OS)

® Error detection — OS needs to be constantly aware of possible errors

» May occur in the CPU and memory hardware, in I/O devices, in user
program

» For each type of error, OS should take the appropriate action to
ensure correct and consistent computing

> Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Concepts — 10" Edition 2.5

»

g - i
g Operating System Services 3

= N

B Another set of OS functions exists for ensuring the efficient operation of the
system itself via resource sharing

® Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

» Many types of resources - CPU cycles, main memory, file storage,
/O devices.

® Logging - To keep track of which users use how much and what kinds
of computer resources

® Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of that
information, concurrent processes should not interfere with each other

* Protection involves ensuring that all access to system resources is
controlled

» Security of the system from outsiders requires user authentication,
extends to defending external I/O devices from invalid access
attempts

‘‘‘‘

=\
)\ %
AP

2 =
g

/

“

Operating System Concepts — 10t Edition 2.6 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

%,;*;‘« A View of Operating System Services

N
| il '
\‘i}\é\:

user and other system programs

GUI touch screen command line

user interfaces

system calls
program I/0 file Ll resource !
2 f communication : accounting
execution operations systems allocation
protection
error
. and
detection -
: security
services

operating system

hardware

Operating System Concepts — 10" Edition

2.7

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

/q%
,.f:.‘m“-s

v’jggy;(User Operating System Interface - CLI

CLI or command line interpreter allows direct command entry

® Sometimes implemented in kernel, sometimes by systems
program

® Sometimes multiple programs implemented — shells (sh,
bash,csh, tcsh, zsh)

® Primarily reads a command entered by user and executes it

® Sometimes commands are built-in, sometimes just names of
programs

> If the latter, adding new features doesn’t require shell
modification

Soac il
= > gt
F }\ﬂ\
4/ \ 1O
A 0

Operating System Concepts — 10t Edition 2.8 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Bourne Shell Command Interpreter

1. root@r6181-d5-us01:~ (ssh)
root@r6181-d5-u... @ 81 X 5% 82 X root@r6181-d5-us01... 33

Operating System Concepts — 10* Edition) Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

User Operating System Interface - GUI

o
\
&\

B User-friendly desktop metaphor interface
® Usually mouse (or touchpad), keyboard, and monitor
® |cons represent files, programs, actions, etc

® Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute function,
open directory (also known as a folder)

® |nvented at Xerox PARC
B Many systems now include both CLI and GUI interfaces
® Microsoft Windows is GUI with CLI “command” shell

® Apple Mac OS X is “Aqua” GUI interface with UNIX kernel
underneath and shells available

® Unix and Linux have CLI with optional GUI interfaces (CDE,
KDE, GNOME)

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Concepts — 10" Edition 2.10

;.59

e)
sw% Touchscreen Interfaces

\L\‘

®0e00 AT&T LTE 14:10 57%)
B Touchscreen devices require new . .
interfaces =) \ A

Messages Calendar Photos Camera

® Mouse not possible or not desired

® Actions and selection based on
gestures

® Virtual keyboard for text entry

. . Seittigwgs Calculator App Store Weather
Voice commands - .
= = =
(— > @ - B0 =
@ = 7 A

Podcasts Photography Avalanche VPR

A :} ; ‘ ;@

Mtn Project Dropbox Spotify Travel

’l&

Twitter Instagram Weather

!

Phone Safari

\
\

: i\&\ M|

a
A%

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

/
/(
S

2.11

Operating System Concepts — 10" Edition

& PowerPoint _File Edit View Insert Format Arrange Tools _Slide Show Window _Help

= 0 © M e BB

B 2 “5a@: T FiosEoT I O D

peter Galvin _ Q.

<
\> - =l
coomosee Fles 7909 lock 2 macros JUsers/pbg/Doc:
© > pbg > imp > book > 0s10-dir > - text-dir ~ © osc > 0s10c-dir > text-dir > Chapters > ch2 JCPRl Bl Z < #*
si omov Nao oate v T
2 20 awe oone,zsoem | (sl 2okeps siori6, 510 P e s TR = =i
7 oot 78Ke oon6zs0PM | u OSKIOSeps o, 1143 out
= 750t atoke 92115, 228 M & LinacArcheps 8121116, 5:56 PM D All My Files. 2.04.eps Today, 3:09 PM 35.1MB Enca..cript
© 7-pbgtex 98Ke s 1AM | a WSLep werte,si2s . Screen Shot 2016-09-09 at 3.05.17 PM Today, 3:05 PM 29MB PNGimage
= 7pvset 9266 o115, 1193 | % UNKLOADeps 7124116, 609 1R} wo = Screen Shot 2016-09-09 at 3.05.15 PM (2) Today, 3:05 PM 16.9MB PNGimage
o k8, eI tosTAMIY| - i 203-phonseny — Screen Shot 2016-09-09 at 3.05.15 PM Today, 3:05 PM 7.8MB PNG image
e el @i Q dictionary] - Screen Shot 2016-09-09 at 2.37.04 PM Today, 2:37 PM 13M8 PNGimage
e ipe sl [e —— » 1= Civilization IV Beyond the Sword Today, 1:36 PM — Folder
18268 4115,6307M | placonoderaps Screen Shot 2016-09-09 at 10.30.22 AM Today, 10:30 AM 997KB PG image
ssske annseroM ||| 2130 - ey = Screen Shot 2016-09-09 at 10.24.55 AM Today, 10:25 AM 330KB PNG image
225, 3260M | & 220 B st odrd i Otrary Screen Shot 2016-09-09 at 10.12.40 AM Today, 10:12 AM 304KB PNGimage
om apy sl b2t ey » 1 ChronoSync Documents Today, 3:04 AM -~ Folder
el S = Screen Shot 2016-09-08 at 5.33.55 PM Yesterday, 5:34 PM 187K8 PNGimage [N
e amisaseilll - Baisse B ax = Screen Shot 2016-09-08 at 5.24.42 PM Yesterday, 5:24 PM 187KB PNG image
2k apznsazeeM || a 2t7ems sucorsreo wessres = Screen Shot 2016-09-08 at 5.12.47 PM Yesterday, 5:12 PM 69KB PNGimage
ke apznsazeeM || a 2t6ems @ dictieoorg —Engish o German D) 4 xfs-gpfs-performance v53 Yesterday, 5:09 PM 418KB Micr..(xisx)
aKe 322115326 PM & 2.150p8 @ e Dictionary = Screen Shot 2016-09-08 at 5.09.18 PM Yesterday, 5:09 PM 114KB PNG image
s amnesuelll B i v Version: 22 = Screen Shot 2016-09-08 at 5.08.49 PM Yesterday, 5:08 PM 120K PNG image
bl kit | ot b = Screen Shot 2016-09-08 at 5.08.29 PM Yesterday, 5:08 PM 118KB PNG image
ak apas,azeem ||| m 2riens ictonary :
il iy |-t o = Screen Shot 2016-09-08 at 5.05.22 PM Yesterday, 5:05 PM 176KB PNG image
ae s, sasew || & 200 B The Stceping Ditionary . Applcation = Screen Shot 2016-09-08 at 5.04.33 PM Yesterday, 5:04 PM 116KB PNG image
axe apisszeeM || a 207 rowsens size 139MB | = Screen Shot 2016-09-08 at 5.04.27 PM Yesterday, 5:04 PM 111KB PNG image
aKks 322115, 326 oM & 2.06eps avetetara0ict e ‘ Screen Shot 2016-09-08 at 5.04.09 PM Yesterday, 5:04 PM 207KB PNGimage
4k a2, 3z6em | s 20600 e e Lastopencd 91916 Screen Shot 2016-09-08 at 4.56.21 PM Yesterday, 4:56 PM 120KB PNG image
IRB RmsIaMyl | 8 L0nwe - Screen Shot 2016-09-08 at 4.56.14 PM Yesterday, 4:56 PM 113KB PNG image
= Screen Shot 2016-09-08 at 4.53.40 PM Yesterday, 4:53 PM 111KB PNG image
B e = Screen Shot 2016-09-08 at 4.44.37 PM Yesterday, 4:44 PM 185KB PNG image
Gl - Screen Shot 2016-09-08 at 4.42.43 PM Yesterday, 4:42 PM 214KB PNG image
) crestive cloud s ~ Screen Shot 2016-09-08 at 4.41.37 PM Yesterday, 4:41 PM 196 KB PNG image
Screen Shot 2016-09-08 at 4.29.24 PM Yesterday, 4:29 PM 78KB PNG image
[0 runes = Screen Shot 2016-09-08 at 3.47.41 PM Yesterday, 3:47 PM 214KB PNG image
as T = Screen Shot 2016-09-08 at 3.46.43 PM Yesterday, 3:46 PM 314KB PNGimage
%) dedctex = Screen Shot 2016-09-08 at 11.48.03 AM Yesterday, 11:48AM ~ 635KB PNG image
) chaptarbibaty £ wacero = Screen Shot 2016-09-08 at 11.45.45 AM Yesterday, 11:45 AM 732KB PNG image
enoun Bl = Screen Shot 2016-09-08 at 11.44.36 AM Yesterday, 11:44AM 588KB PNG image
s e & mactuson » = Usors 3 2 pog 5 = Gocumana > 4 2045 L i 8
) bitex = APFS Sna Ve & 1 ot 2,220 sectod 1.2 T8 avaible
e Transtions _ Animations _ Side Show _ Review _ View e i
Bamn P A =t . sroe i B < omecomprer 9 Apple Computer Inc. ~
. bosex - s —— =
< bivtex e T A G Pews Swes Tt amme Guek L shaeoutne ‘Apple Computer Inc. é -
< biex 3
e B Format Background ° Shone 1(800) MYAPPLE . oo
-z = = [Otises Coleotion
<)[A]A ating syt 2 email 800-275-2273
. —
A1 G These o Wiipas work 1 nfiie Loop
5 A ©soid il Cupertino CA 95014
Gradient i United States sprotty CIITENT) spec.bits
operating system operating system | paadiNG sistam | s = Picture or texture fil
operating systems noun o = Pattrn il e -
|
{7 = Hide Backsround Graphics
has
. : 290.2425
Untited Export
| v Te.. Tronsparency O ™ ()
| e
CLICK TO EDIT MASTER SUBTITLE STYLE
Gk 10 add notes
IMG.0255jpg DSC00208,p9,
| Apoly to Al

Side 1018

Operating System Concepts — 10" Edition

Englsh (United States)

212

Notes W8 Comments

R

+ nax 3

o

o

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

)
L System Calls

Programming interface to the services provided by the OS
Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level
Application Programming Interface (API) rather than
direct system call use

B Three most common APIs are Win32 API for Windows,
POSIX API for POSIX-based systems (including virtually
all versions of UNIX, Linux, and Mac OS X), and Java API
for the Java virtual machine (JVM)

Note that the system-call names used throughout this text are
generic

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Concepts — 10" Edition 2.13

Example of System Calls

B System call sequence to copy the contents of one file to another file

source file »| destination file

4 Example System Call Sequence N

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally Y,

A

SN
Y e N
g !

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Concepts — 10" Edition 214

Example of Standard API

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read () function that is avail-
able in UNIX and Linux systems. The API for this function is obtained from
the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize t read (int fd, void *buf, size t count)
return function parameters
value name

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize_t and size_t data types (among other
things). The parameters passed to read () are as follows:

¢ int fd—the file descriptor to be read
® void *buf —a buffer into which the data will be read
® size_t count—the maximum number of bytes to be read into the

buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Concepts — 10" Edition 2.15

/:\%

g i
«$%7 System Call Implementation

B Typically, a number associated with each system call

® System-call interface maintains a table indexed according to
these numbers

B The system call interface invokes the intended system call in OS
kernel and returns status of the system call and any return values

B The caller need know nothing about how the system call is
implemented

® Just needs to obey API and understand what OS will do as a
result call

® Most details of OS interface hidden from programmer by API

» Managed by run-time support library (set of functions built
into libraries included with compiler)

Operating System Concepts — 10t Edition 2.16 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Y
lL\J e

”;—“3/ AP| — System Call - OS Relationship

user application

open()
user
mode
system call interface
kernel
mode A
I open()
* Implementation
i » of open()
. system call
return

Operating System Concepts — 10" Edition

217 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

g 1
~$%7 System Call Parameter Passing

B Often, more information is required than simply identity of desired
system call

® Exact type and amount of information vary according to OS
and call

B Three general methods used to pass parameters to the OS
® Simplest: pass the parameters in registers
» In some cases, may be more parameters than registers

® Parameters stored in a block, or table, in memory, and address
of block passed as a parameter in a register

» This approach taken by Linux and Solaris

® Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

® Block and stack methods do not limit the number or length of
parameters being passed

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Concepts — 10" Edition 2.18

Parameter Passing via Table

> X
reqgister
X: parameters
for call
™| use parameters code for
load address X PRI e system
system call 13 > £l 4a

user program

operating system

z
N \\‘“\

. ‘; 49 N
Yl

4

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Concepts — 10" Edition 219

Types of System Calls

B Process control

create process, terminate process

end, abort

load, execute

get process attributes, set process attributes

wait for time

wait event, signal event

allocate and free memory

Dump memory if error

Debugger for determining bugs, single step execution

Locks for managing access to shared data between processes

‘1\;\3"

xS S =
A

Operating System Concepts — 10t Edition 2.20 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

_—

<4%7 Types of System Calls (cont.)

u&\;\: :

B File management
® create file, delete file
® open, close file
® read, write, reposition
® get and set file attributes
B Device management
® request device, release device
® read, write, reposition
® get device attributes, set device attributes
® logically attach or detach devices

Operating System Concepts — 10t Edition 2.21 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Types of System Calls (Cont.)

B |nformation maintenance

® get time or date, set time or date

® get system data, set system data

® get and set process, file, or device attributes
B Communications

® create, delete communication connection

® send, receive messages if message passing model to host
name or process hame

» From client to server

® Shared-memory model create and gain access to memory
regions

® transfer status information
attach and detach remote devices

‘1\;\3"

il -
Y
A,{)(l

Operating System Concepts — 10t Edition 2.22 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

=
"
Ll

‘;‘;‘/ Types of System Calls (Cont.)

L&L\Q

B Protection
® Control access to resources
® Get and set permissions
® Allow and deny user access

S

Operating System Concepts — 10 Edition 2.23 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

)’;‘“}5 Examples of Windows and Unix System Calls

L\ s

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

The following illustrates various equivalent system calls for Windows and

UNIX operating systems.
Windows Unix
Process CreateProcess () fork()
control ExitProcess() exit ()
WaitForSingleObject () wait()
File CreateFile() open()
management ReadFile() read()
WriteFile() write()
CloseHandle() close()
Device SetConsoleMode () ioctl()
management ReadConsole () read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
maintenance SetTimer() alarm()
Sleep() sleep()
Communications CreatePipe() pipe)
CreateFileMapping() shm_open ()
MapViewDfFile() mmap ()
Protection SetFileSecurity() chmod ()
InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup() chown()

Operating System Concepts — 10t Edition 2.24 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

’;‘f« Standard C Library Example

‘L\b e

B C program invoking printf() library call, which calls write() system call

THE STANDARD C LIBRARY

The standard C library provides a portion of the system-call interface for
many versions of UNIX and Linux. As an example, let’s assume a C pro-
gram invokes the printf () statement. The C library intercepts this call and
invokes the necessary system call (or calls) in the operating system—in this
instance, the write () system call. The C library takes the value returned by
write() and passes it back to the user program:

#include <stdio.h>
int main()
{
——printf ("Greetings"); |4
return 0;
}
user
mode Y
standard C library
kernel
mode

write()

write()
system call

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Concepts — 10" Edition 2.25

G5 Example: Arduino

B Single-tasking
B No operating system

B Programs (sketch) loaded via
USB into flash memory free memory

B Single memory space

free memory

Boot loader loads program

user
B Program exit -> shell program
reloaded (sketch)
boot loader boot loader
(a) (b)
At system startup running a program

Operating System Concepts — 10t Edition 2.26 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

=

g Example: FreeBSD
B Unix variant
B Multitasking high
B User login -> invoke user’s choice of shell ~ Memory kernel
B Shell executes fork() system call to create
process free memory
® Executes exec() to load program into
process process C
® Shell waits for process to terminate or i e
continues with user commands
B Process exits with:
rocess B
® code = 0-no error :
® code > 0 - error code o
me(r)'nory process D

Operating System Concepts — 10t Edition 2.27 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

/;\%\

T System Services

o\

B System programs provide a convenient environment for program
development and execution. They can be divided into categories:

® File manipulation

Status information sometimes stored in a file
Programming language support

Program loading and execution
Communications

Background services

Application programs

B Most users’ view of the operation system is defined by system
programs, not the actual system calls

Operating System Concepts — 10t Edition 2.28 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

T System Services (cont.)

B Provide a convenient environment for program development and
execution

® Some of them are simply user interfaces to system calls; others
are considerably more complex

B File management - Create, delete, copy, rename, print, dump, list,
and generally manipulate files and directories

B Status information

® Some ask the system for info - date, time, amount of available
memory, disk space, number of users

® Others provide detailed performance, logging, and debugging
information

® Typically, these programs format and print the output to the
terminal or other output devices

® Some systems implement a registry - used to store and
retrieve configuration information

Operating System Concepts — 10t Edition 2.29 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

T System Services (Cont.)

B File modification
® Text editors to create and modify files

® Special commands to search contents of files or perform
transformations of the text

B Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided

B Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language

B Communications - Provide the mechanism for creating virtual
connections among processes, users, and computer systems

® Allow users to send messages to one another’s screens,
browse web pages, send electronic-mail messages, log in
remotely, transfer files from one machine to another

/
/(
S

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Concepts — 10" Edition 2.30

)

@”%’:ﬁ“ System Services (Cont.)

B Background Services
® Launch at boot time
> Some for system startup, then terminate
» Some from system boot to shutdown

® Provide facilities like disk checking, process scheduling, error
logging, printing

® Run in user context not kernel context

® Known as services, subsystems, daemons

B Application programs
® Don’t pertain to system
® Run by users
® Not typically considered part of OS
® Launched by command line, mouse click, finger poke

Operating System Concepts — 10t Edition 2.31 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

- Linkers and Loaders

B Source code compiled into object files designed to be loaded into any physical
memory location — relocatable object file

B Linker combines these into single binary executable file

® Also brings in libraries
B Program resides on secondary storage as binary executable
B Must be brought into memory by loader to be executed

® Relocation assigns final addresses to program parts and adjusts code and
data in program to match those addresses

B Modern general purpose systems don’t link libraries into executables

® Rather, dynamically linked libraries (in Windows, DLLs) are loaded as
needed, shared by all that use the same version of that same library (loaded
once)

B Object, executable files have standard formats, so operating system knows how
to load and start them

Operating System Concepts — 10t Edition 2.32 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

=

8

Y
»*” The Role of the Linker and Loader

({6

source main.c
program

gee —¢ main.c
l generates

main.o

gcc -o main main.o -1m

i generates

main

./main
dynamically
linked
libraries

program

in memory

Operating System Concepts — 10" Edition 2133 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

4

4,

O

k%";ﬁ 'Why Applications are Operating System Specific

B Apps compiled on one system usually not executable on other
operating systems

B Each operating system provides its own unique system calls
® Own file formats, etc
B Apps can be multi-operating system

® Written in interpreted language like Python, Ruby, and
interpreter available on multiple operating systems

® App written in language that includes a VM containing the
running app (like Java)

® Use standard language (like C), compile separately on each
operating system to run on each

B Application Binary Interface (ABI) is architecture equivalent of
API, defines how different components of binary code can interface
for a given operating system on a given architecture, CPU, etc

Operating System Concepts — 10t Edition 2.34 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

/:\%

i«%':l} Operating System Design and Implementation

"l
B N

B Design and Implementation of OS not “solvable”, but some
approaches have proven successful

B [nternal structure of different Operating Systems can vary widely
B Start the design by defining goals and specifications
B Affected by choice of hardware, type of system

B User goals and System goals

® User goals — operating system should be convenient to use,
easy to learn, reliable, safe, and fast

® System goals — operating system should be easy to design,
implement, and maintain, as well as flexible, reliable, error-free,
and efficient

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Concepts — 10" Edition 2.35

I i

j‘%\,} Operating System Design and Implementation (Cont.)

{7)
S\

B [mportant principle to separate

Policy: What will be done?
Mechanism: How to do it?

B Mechanisms determine how to do something, policies decide
what will be done

B The separation of policy from mechanism is a very important
principle, it allows maximum flexibility if policy decisions are to
be changed later (example — timer)

B Specifying and designing an OS is highly creative task of
software engineering

) 4 %ﬁ{
A« P

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Concepts — 10" Edition 2.36

g/“,@m& -
<7 Implementation

B Much variation
® Early OSes in assembly language
® Then system programming languages like Algol, PL/1
® Now C, C++
B Actually usually a mix of languages
® Lowest levels in assembly
® Main body in C

® Systems programs in C, C++, scripting languages like PERL,
Python, shell scripts

B More high-level language easier to port to other hardware
® But slower
B Emulation can allow an OS to run on non-native hardware

Operating System Concepts — 10t Edition 2.37 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

=N
A !

w Operating System Structure

‘L\J !

B General-purpose OS is very large program
B Various ways to structure ones

® Simple structure — MS-DOS
More complex -- UNIX

Layered — an abstrcation
® Microkernel -Mach

Operating System Concepts — 10t Edition 2.38 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

/f‘%\

&«:{;5 Monolithic Structure — Original UNIX

UNIX — limited by hardware functionality, the original UNIX
operating system had limited structuring. The UNIX OS
consists of two separable parts

® Systems programs
® The kernel

» Consists of everything below the system-call interface
and above the physical hardware

* Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

Operating System Concepts — 10t Edition 2.39 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

/:\%

g% Traditional UNIX System Structure

Beyond simple but not fully layered

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

— signals terminal file system CPU scheduling

< handling swapping block I/O page replacement

PUm .

e character I/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

S\
> @
£F ‘l@\ﬁ\)
e
Aﬁa/ uﬁ\\?’; 3

Operating System Concepts — 10t Edition 2.40 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Linux System Structure

Monolithic plus modular design

applications

glibc standard c library

v v

system-call interface

file CPU
systems scheduler
networks memory
(TCP/I1P) manager
block character
devices devices
device drivers

hardware

SN
Y e N
g !

Operating System Concepts — 10t Edition 2. Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

/f‘%\

P
o Layered Approach

L\
o\

B The operating system is divided
into a number of layers (levels),
each built on top of lower
layers. The bottom layer (layer
0), is the hardware; the highest
(layer N) is the user interface.

layer N
user interface

B With modularity, layers are
selected such that each uses
functions (operations) and
services of only lower-level
layers

layer O
hardware

Operating System Concepts — 10t Edition 2.42 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

=

ot Microkernels

B Moves as much from the kernel into user space
B Mach example of microkernel
® Mac OS X kernel (Darwin) partly based on Mach

B Communication takes place between user modules using
message passing

B Benefits:
® Easier to extend a microkernel
® Easier to port the operating system to new architectures
® More reliable (less code is running in kernel mode)
® More secure
B Detriments:

® Performance overhead of user space to kernel space
communication

Operating System Concepts — 10t Edition 2.43 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

n‘ms -
3>/ Microkernel System Structure
application file device user
program system driver mode
S IS S S -
e e 7

CIFY
scheduling

memory
managment

kernel
mode

interprocess
communication

A microkernel £

hardware

e
(L 3

Operating System Concepts — 10t Edition 244 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Modules

B Many modern operating systems implement loadable kernel
modules (LKMs)

Uses object-oriented approach
Each core component is separate
Each talks to the others over known interfaces

Each is loadable as needed within the kernel
B Overall, similar to layers but with more flexible
® Linux, Solaris, etc

Operating System Concepts — 10t Edition 2.45 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

o :
o Hybrid Systems

B Most modern operating systems are actually not one pure model

® Hybrid combines multiple approaches to address performance,
security, usability needs

® Linux and Solaris kernels in kernel address space, so
monolithic, plus modular for dynamic loading of functionality

® Windows mostly monolithic, plus microkernel for different
subsystem personalities

B Apple Mac OS X hybrid, layered, Aqua Ul plus Cocoa
programming environment

® Below is kernel consisting of Mach microkernel and BSD Unix
parts, plus 1/O kit and dynamically loadable modules (called
kernel extensions)

Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Operating System Concepts — 10" Edition 2.46

macOS and 10S Structure

applications

v

user experience

application frameworks

core frameworks

kernel environment (Darwin)

X
Operating System Concepts — 10t Edition 2.47 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

xS S :
A

Darwin

applications
- 7
library interface
7 v
Mach BSD (POSIX)
traps system calls
Y m+emory
scheduling | IPC management
iokit
Mach kernel
kexts

Operating System Concepts — 10* Edition 2.48 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

f I
T Android

B Developed by Open Handset Alliance (mostly Google)
® Open Source

B Similar stack to I0S

B Based on Linux kernel but modified
® Provides process, memory, device-driver management
® Adds power management

B Runtime environment includes core set of libraries and Dalvik
virtual machine

® Apps developed in Java plus Android API

» Java class files compiled to Java bytecode then translated
to executable than runs in Dalvik VM

B Libraries include frameworks for web browser (webkit), database
(SQLite), multimedia, smaller libc

Operating System Concepts — 10t Edition 2.50 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Android Architecture

applications
ART Android
VM frameworks JNI

native libraries

SQLite openGL webkit

surface media
manager SSL| lframework
HAL
Bionic
Linux kernel
hardware

X

i
Operating System Concepts — 10t Edition 2.51 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

xS S :
A

/f‘%\

ey
%y—/ System Boot

B When power initialized on system, execution starts at a fixed memory
location

B Operating system must be made available to hardware so hardware can
start it

® Small piece of code — bootstrap loader, BIOS, stored in ROM or
EEPROM locates the kernel, loads it into memory, and starts it

® Sometimes two-step process where boot block at fixed location loaded
by ROM code, which loads bootstrap loader from disk

® Modern systems replace BIOS with Unified Extensible Firmware
Interface (UEFI)

B Common bootstrap loader, GRUB, allows selection of kernel from multiple
disks, versions, kernel options

B Kernel loads and system is then running
B Boot loaders frequently allow various boot states, such as single user mode

Operating System Concepts — 10t Edition 2.52 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

/;\%\

%”;5 Operating-System Debugging

Debugging is finding and fixing errors, or bugs
Also performance tuning
OS generate log files containing error information

Failure of an application can generate core dump file capturing
memory of the process

Operating system failure can generate crash dump file containing
kernel memory

B Beyond crashes, performance tuning can optimize system performance
® Sometimes using trace listings of activities, recorded for analysis

® Profiling is periodic sampling of instruction pointer to look for
statistical trends

Kernighan's Law: “Debugging is twice as hard as writing the code in the
first place. Therefore, if you write the code as cleverly as possible, you
are, by definition, not smart enough to debug it.”

Operating System Concepts — 10t Edition 2.53 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

=

G5 Performance Tuning

B [Improve performance by removing bottlenecks

B OS must provide means of computing and displaying measures of system
behavior

B For example, “top” program or Windows Task Manager

1 Task Manager
File Options View

Processes | Performance’ App history Startup Users Details Services

CPU

14% 1.65 GHz CPU

! % Utilization
Memory
1.9/3.8 GB (50%)

1w Disk 0 (C:)
[V 28%

Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz

Ethernet
Not connected

gt
WA W 8.0 R: 360 Kbps

Bluetooth
Not connected

Processes Threads Handles
112 1550 49904

Lot
Vi
1

L

Uptime 12 cache:
143:08:39:26 13 cache 30MB

Operating System Concepts — 10" Edition

254 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Tracing

B Collects data for a specific event, such as steps involved in a system
call invocation

B Tools include
B strace — trace system calls invoked by a process
B gdb — source-level debugger
B perf — collection of Linux performance tools
B tcpdump — collects network packets

Operating System Concepts — 10t Edition 2.55 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

=

e i

B Debugging interactions between user-level and kernel code nearly
impossible without toolset that understands both and an instrument
their actions

B BCC (BPF Compiler Collection) is a rich toolkit providing tracing
features for Linux

B See also the original DTrace
B For example, disksnoop.py traces disk I/O activity

TIME(s) T BYTES LAT (ms)
1946.29186700 R 8 0.27
1946.33965000 R 8). 20
1948.34585000 W 8192 0.96
1950.43251000 R 4096 0.56
1951.74121000 R 4096 0.35

B Many other tools (next slide)

Operating System Concepts — 10t Edition 2.56 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Linux bcc/BPF Tracing Tools

Linux bce/BPF Tracing Tools

filetop opensnoop c* java* node* mysqld gslower gethostlatency Other:
filelife fileslower Statsnoop php* python* bashreadline memleak capable
vfscount vfsstat syncsnoop ruby* sslsniff
ucalls uflow syscount
cachestat cachetop ugc uobjnew killsnoop
dcstat dcsnoop ustat uthreads
mountsnoop | execsnoop
o idpersec
£ l Applications l l / £
/ cpudist
trace N\ System Libraries ¥ / runglat runglen
: deadlock detector
:Zg::zznt % ¥ System Call Interface 4 " / N e
funcslower VFS Sockets Scheduler - =
funclatency . offcputime
stackcount f File Systems TCP/UDP ;\ wakeuptime
profile Volume Manager IP Virtual \ offwaketime
Block Device Interface Ethernet Memory ¥ spEEETay
v f 4 Device Drivers oomkill memleak
mdflush I slabratetop
btrfsdist hardirgs ttysnoop
btrfsslower ; DRAM
extddist extdslower keptop: teplife toplrscer
A tcpconnect tcpaccept
fsdist xfssl
:f:di:t :f::lz::; tcpconnlat tcpretrans llcstat —>
' CPU
biotop biosnoop profile —p|

biolatency bitesize

¢

Operating System Concepts — 10t Edition 2.57 Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

&7 =
A
7
/ \
“

End of Chapter 2

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

	Chapter 2: Operating-System Structures
	Operating-System Structures
	Chapter Objectives
	Operating System Services 1
	Operating System Services 2
	Operating System Services 3
	A View of Operating System Services
	User Operating System Interface - CLI
	Bourne Shell Command Interpreter
	User Operating System Interface - GUI
	Touchscreen Interfaces
	The Mac OS X GUI
	System Calls
	Example of System Calls
	Example of Standard API
	System Call Implementation
	API – System Call – OS Relationship
	System Call Parameter Passing
	Parameter Passing via Table
	Types of System Calls
	Types of System Calls (cont.)
	Types of System Calls (Cont.)
	Types of System Calls (Cont. 3)
	Examples of Windows and Unix System Calls
	Standard C Library Example
	Example: Arduino
	Example: FreeBSD
	System Services
	System Services (cont.)
	System Services (Cont.)
	System Services (Cont. 3)
	Linkers and Loaders
	The Role of the Linker and Loader
	Why Applications are Operating System Specific
	Operating System Design and Implementation
	Operating System Design and Implementation (Cont.)
	Implementation
	Operating System Structure
	Monolithic Structure – Original UNIX
	Traditional UNIX System Structure
	Linux System Structure
	Layered Approach
	Microkernels
	Microkernel System Structure
	Modules
	Hybrid Systems
	macOS and iOS Structure
	Darwin
	Android
	Android Architecture
	System Boot
	Operating-System Debugging
	Performance Tuning
	Tracing
	BCC
	Linux bcc/BPF Tracing Tools
	End of Chapter 2

