
Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Chapter 5:  CPU Scheduling



5.2Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Chapter 5:  CPU Scheduling

 Basic Concepts

 Scheduling Criteria 

 Scheduling Algorithms

 Thread Scheduling

 Multi-Processor Scheduling

 Real-Time CPU Scheduling

 Operating Systems Examples

 Algorithm Evaluation



5.3Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Objectives

 Understand difference between different types of scheduling

 Describe various CPU scheduling algorithms

 Assess CPU scheduling algorithms based on scheduling criteria

 Explain the issues related to multiprocessor and multicore 
scheduling

 Describe various real-time scheduling algorithms

 Describe the scheduling algorithms used in the  Linux  operating 
system



5.4Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Medium Term Scheduling

 The medium term scheduler controls the degree of multi-
programming.

 It admits processes into memory to compete for the CPU

 Also called a swapper when it is used to control the process mix 
by removing and restoring processes 

 Goal of medium term scheduler is to keep a good mix of 
processes in memory so that the CPU is always kept busy.



5.5Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Basic Problem

 Objective  of multi-programming is to have some process running at 
all times, to maximize CPU utilization.

 Need to keep many programs in memory

 Process executes on CPU until it executes some instruction for which 
 it has to wait (e.g. I/O)

 Process is removed from CPU and another must be chosen to run

 This is purpose of CPU scheduler: which process should run?



5.6Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Core Concept

 Every process has the same 
cycle of execution, called the 
CPU–I/O Burst Cycle  

– Process executes on CPU 
until it issues I/O, then waits 
for I/O to complete

– The time on CPU is called a 
CPU burst  

– When it issues I/O request it 
is called an  I/O burst

 It repeats this cycle over and over 
 until it terminates.

 Lengths of CPU bursts affect 
decisions about scheduling.



5.7Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Distribution of CPU Burst Times

 The duration of CPU bursts has been measured extensively. 
 Many burst times are short; few are long

 Distribution is generally  exponential or hyperexponential,

  An I/O-bound program has many short CPU bursts. 

 A CPU-bound program has a few long CPU bursts. 



5.8Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

CPU Scheduler

 When the running process is removed from CPU, the OS must 
choose a process to run. This is the role of the CPU scheduler.

 One or more queues of ready-to-run processes are kept in 
memory. These are called ready queues.

 The CPU scheduler selects from among the processes in ready 
queue, and allocates the a CPU core to one of them

 Queue may be ordered in various ways – FIFO, priority 
queue, unordered, etc

 Usually process control blocks or pointers to PCBs are kept 
in queues.



5.9Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Scheduling Decisions

 CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state (e.g. by issuing an I/O 
request)

2. Switches from running to ready state  (e.g., an interrupt 
occurs)

3. Switches from waiting to ready (e.g.,  I/O completes)

4. Terminates

 Condition 3 is called a signal or release event.

 If scheduling only occurs under conditions 1 and 4 it is called 
nonpreemptive scheduling

 If it occurs under any of the conditions it is called  preemptive 
scheduling



5.10Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Preemption 

 Without preemption, process runs until it terminates or issues 
some request that causes it to wait such as I/O or other system 
call.

 Results in poor response time for other processes.

 Preemptive scheduling is the norm for modern operating 
systems. 

 But preemptive scheduling causes  other problems:

 Consider two processes that access  shared data

 Consider preemption while in kernel mode – kernel data 
structures can become corrupted if kernel is not designed 
carefully

 Consider interrupts occurring during crucial OS activities



5.11Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Non-Preemptive Kernel 

 During the processing of a system call, the kernel may be busy 
with an activity on behalf of a process. 

 This can involve changing  a kernel data structure.

 If it is interrupted or preempted, the data structure can become 
corrupted.

 A non-preemptive kernel  waits for a system call to complete or 
for a process to block while waiting for I/O to complete to take 
place before doing a context switch. 

 Makes the kernel structure  simple, since the kernel will not 
preempt a process while the kernel data structures are in an 
inconsistent state. 

 But very inefficient and does not work for real-time operating 
systems.



5.12Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Preemptive Kernels

 Kernel is allowed to be interrupted almost any time because they 
might be important and  cannot  be ignored by the kernel.

 The kernel needs to handle these interrupts otherwise, input 
might be lost or output overwritten. 

 Solution: disable interrupts at entry and re-enable interrupts at 
exit of sections of code that handle them.

 Code sections must be very short.



5.13Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Dispatcher

 Dispatcher is the component of the kernel that  
gives control of the CPU to the process 
selected by the short-term scheduler

 This involves:

 switching context

 switching to user mode

 jumping to the proper location in the user 
program to restart that program (loading its 
PC)

 Dispatch latency – time it takes for the 
dispatcher to stop one process and start 
another running

 Need dispatcher to be very fast to minimize 
latency.



5.14Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

CPU Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per 
time unit 

 Turnaround time – amount of time to execute a particular 
process, including wait time 

 Waiting time – amount of time a process has been waiting in the 
ready queue  

 Response time – amount of time it takes from when a request 
was submitted until the first response is produced, not output  (for 
time-sharing environment)



5.15Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Scheduling Algorithm Objectives

 Maximize  CPU utilization

 Maximize throughput

 Minimize turnaround time 

 Minimize waiting time 

 Minimize response time

 Cannot accomplish all, so it is an optimization 
problem.



5.16Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Nuances of Optimization

 Do we optimize the maximum, minimum, or average measure of the 
property. For example,

– do we optimize design so that maximum response time is minimal 
or average response time is minimal?

– do we minimize maximum waiting time or average waiting time?

 In time-sharing systems, reliability is important, so minimizing 
variance in response time is often the objective rather than mean 
response time.

 For simple analysis, to assess scheduling algorithms, we can model 
processes by the lengths of CPU bursts and their average wait times.



5.17Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Scheduling Algorithms

 We look at a few common scheduling algorithms. 

 Each is classified as preemptive or non-preemptive. 

 An algorithm that is non-preemptive is only used for non-preemptive 
scheduling; a preemptive algorithm is used for preemptive scheduling.

 We will use Gantt charts to analyze the algorithms.

 A Gantt chart is a horizontal bar chart in which the x-axis is time. A 
Gantt chart represents the order in which processes are scheduled 
and how much time each spends in the CPU. 

 Example:

– The chart below represents 3 processes, P1, P2, P3, scheduled 
at times 0, 26, and 27 respectively. P1 ran 26 units, P2, 1 unit, 
P3, 3 units.

P P P1 2 3

0 24 3027



5.18Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

First-Come-First-Served Scheduling

 The first is first-come-first-served (FCFS) which is a non-
preemptive algorithm.

 In first-come-first-served scheduling, processes arrive and are 
placed at the rear of a FIFO queue. 

 The process at the front of the queue is scheduled next.
 If a process issues a wait, it is placed at the rear of the queue again.



5.19Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

FCFS Example

Process Burst Time

 P1 24

 P2 3

 P3  3 

 Suppose that the processes arrive in the order: P1 , P2 , P3  

The Gantt Chart for the schedule is:

 Waiting time for P1  = 0; P2  = 24; P3 = 27
 Average waiting time:  (0 + 24 + 27)/3 = 17

P P P1 2 3

0 24 3027



5.20Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

FCFS Example (Cont.)

Suppose that the processes arrive in the order:

 P2 , P3 , P1 

 The Gantt chart for the schedule is:

 Waiting time for P1 = 6; P2 = 0; P3 = 3

 Average waiting time:   (6 + 0 + 3)/3 = 3

 Much better than previous case

 Performance is affected by order of arrivals

P 1

0 3 6 30

P 2 P 3



5.21Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Convoy Effect

 Convoy effect - short process behind long process

 Consider one CPU-bound and many I/O-bound processes

 CPU bound process runs, takes long time and short I/O bound 
processes wait.

 They all run quickly, issue I/O requests and wait again for long 
CPU bound process. Their I/O is satisfied and they all move to 
ready queue, but they have to wait and wait and wait...

 I/O devices are poorly utilized and response times are poor.



5.22Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst

  Use these lengths to schedule the process with the shortest 
time

 SJF is optimal – gives minimum average waiting time for a given 
set of processes

 The difficulty is knowing the length of the next CPU request

 Could ask the user



5.23Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Example of SJF

 Assume all processes arrive at time 0 and that CPU burst times are known 
and as shown below.

                      ProcessArriva l Time Burst Time

                         P1 0.0 6

                         P2 2.0 8

                         P3 4.0 7

                        P4 5.0 3

 SJF scheduling chart

 Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P 3

0 3 24

P 4 P 1

169

P 2



5.24Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Predicting Length of Next CPU Burst

 Can only estimate the length of next burst – should be similar to the 
previous one, or the the most recent ones.

 Then pick process with shortest predicted next CPU burst

 Can be done by using the length of previous CPU bursts, using 
exponential averaging:

 Initally, first guess τ0  is any value.

 When α=0, guess never changes. When α = 1, guess is always 
last burst length.  (upcoming slides illustrate )  Typically α is set to 
½

 Preemptive version called shortest-remaining-time-first

1.   tn=actual  length of nth  CPU  burst

2 .   τ n+1=  predicted value for the next CPU  burst

3 .   For any α , 0≤α≤1
4.   define: τ n=1=αtn+ (1−α ) τ n .



5.25Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Prediction of the Length of the Next CPU Burst

(This graph is for α=0.5.)



5.26Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Examples of Exponential Averaging

  =0
 n+1 = n

 Recent history does not count
  =1

  n+1 =  tn

 Only the actual last CPU burst counts
 If we expand the formula, we get:

n+1 =  tn+(1 - ) tn -1 + …

            +(1 -  )j  tn -j + …

            +(1 -  )n +1 0

 Since both  and (1 - ) are less than or equal to 1, each 
successive term has less weight than its predecessor



5.27Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Example of Shortest-Remaining-Time-First

 When SJF is preemptive it is called Shortest Remaining Time First, 
so SRTF = Preemptive SJF 

 A process runs, gets preempted and is moved to back of ready 
queue. Its new predicted burst time is the previous one minus the 
time it just spent on the CPU.

 This is why it is shortest remaining time first, because predicted burst 
is what is remaining.



5.28Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Example of SRTF

 Now we add the concepts of varying arrival times and preemption to 
the analysis

         ProcessA     Arrival TimeT  Burst Time

    P1      0                8

 P2 1  4

 P3 2  9

 P4 3  5

 To create a Gantt Chart, you need to simulate the scheduler.

 Scheduler needs to run when a new process arrives, and it picks 
shortest burst time remaining process.



5.29Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

SRTF Worked Example

    ProcessA     Arrival TimeT  Burst Time

    P1      0                8

 P2 1  4

 P3 2  9

 P4 3  5

 Time 0: P1 runs for 1 msec. P2 arrives and has shorter time so it is 
scheduled. P1 has 7 msec remaining time now.

 Time 1: P2 runs. P3 and P4 arrive at times 2 and 3, but both have 
longer times, so P2 stays on CPU until it finishes at time 5 (1+4)

 Time 5:  P4 has shortest remaining time (5 msec) so it gets CPU and 
runs to finish at time 10.

 Time 10: P1 has shorter time than P3, so P1 runs and finishes at time 
17, then P3 runs.



5.30Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Example of Shortest-Remaining-Time-First

 SRTF Gantt Chart for this set of processes:

 What is the average waiting time?

P 4

0 1 26

P 1 P 2

10

P 3P 1

5 17



5.31Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Waiting Time for SRTF

 Waiting time for each process is 

(time it finishes) – (burst length) – (arrival time)

–

–

–

ProcessA     Arrival TimeT  Burst Time   End Time

 P1      0                8 17

P2 1  4 5

 P3 2  9 26

 P4 3  5 10

 Average waiting time =

–  ((17-8-0) +(5-4-1) + (26-9-2) + (10-5-3))/4 =  

– (9+0+15+2)/4 =  6.5

P 4

0 1 26

P 1 P 2

10

P 3P 1

5 17



5.32Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum q), 
usually 10-100 milliseconds.  After this time has elapsed, the 
process is preempted and added to the end of the ready queue. 
This is a scheduled event.

 If there are n processes in the ready queue and the time quantum 
is q, then each process gets 1/n of the CPU time in chunks of at 
most q time units at once.  No process waits more than (n-1)q 
time units to run again. 

 Might be less if processes issue I/O requests.

 Timer interrupts at end of quantum to schedule next process

 Performance

 q large  FIFO

 q small  q must be large with respect to context switch, 
otherwise overhead is too high



5.33Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Example of RR with Time Quantum = 4

Process Burst Time

 P1 24

 P2  3

 P3 3
 The Gantt chart is: 

 Turnaround time average here = ( 30 + 10 + 7 )/3 = 15.7
 If using SJF, turnaround would be (30 + 6 + 3)/3 = 13
 Typically, higher average turnaround than SJF, but better 

response time
 q should be large compared to context switch time; q usually 10ms 

to 100ms, context switch < 10 usec

P P P1 1 1

0 18 3026144 7 10 22

P 2 P 3 P 1 P 1 P 1



5.34Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Time Quantum and Context Switch Time



5.35Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Turnaround Time Varies With The Time Quantum

Rule of thumb for 
choosing quantum size:

80% of CPU bursts should be 
shorter than q



5.36Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority 
(smallest integer  highest priority)

 Can be either

 Preemptive   - high priority arriving process preempts lower one

 Nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted 
next CPU burst time

 Problem  Starvation – (also called indefinite blocking)

–  low priority processes may never execute

 Solution  Aging – as time progresses increase the priority of the 
process



5.37Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Example of Priority Scheduling

         ProcessA arri Burst TimeT Priority

 P1 10 3

 P2 1 1

 P3 2 4

 P4 1 5

P5 5 2

 Priority scheduling Gantt Chart

 Average waiting time = 8.2 msec



5.38Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Priority Scheduling w/ Round-Robin
         ProcessA arri Burst TimeT Priority

 P1 4 3

 P2 5 2

 P3 8 2

 P4 7 1

P5 3 3

 Run the process with the highest priority. Processes with the same priority 
run round-robin

 Gantt Chart with 2 ms time quantum



5.39Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multilevel Queue

 With priority scheduling, have separate queues for each priority.

 Schedule the process in the highest-priority queue!



5.40Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multilevel Queues

 Prioritization based upon process type



5.41Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multilevel Feedback Queue

 A process can move between the various queues; aging can be 
implemented this way

 Multilevel-feedback-queue scheduler defined by the following 
parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter 
when that process needs service



5.42Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Example of Multilevel Feedback Queue

 Three queues: 
 Q0 – RR with time quantum 8 

milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling
 A new job enters queue Q0 which is 

served RR with q= 8

 When it gains CPU, job receives 8 
milliseconds

 If it does not finish in 8 
milliseconds, job is moved to 
queue Q1

 At Q1 job is again served RR with q=16 
and receives 16 additional milliseconds

 If it still does not complete, it is 
preempted and moved to queue Q2



5.43Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

      
     Thread Scheduling: Contention Scope

 User-level and kernel-level threads are scheduled differently.

 When threads are supported by the kernel,  threads are scheduled, 
not processes.

 Remember – user threads are mapped to kernel threads.

 Question – do all threads of all processes compete for CPUs equally, 
or do the threads of each process compete against each other for the 
CPU, with each process being given a share of CPU time?

 This is the question of thread contention scope – which  threads 
does a thread contend with (i.e., compete against) for the CPU?

 Two types: process-contention and system-contention scopes.



5.44Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Process Contention Scope

 With the many-to-one and many-to-many models, the thread library 
schedules user-level threads to run on LWPs.

 Implies that all threads in a single process get scheduled onto 
fixed set of LWPs, which in turn get scheduled onto CPUs.

 So threads within a process compete for LWPs.

 Known as process-contention scope (PCS) since scheduling 
competition is within the process. 

 Typically done via priority set by programmer



5.45Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

System Contention Scope

 Kernel threads are scheduled onto available CPUs, so all kernel 
threads compete with each other across the entire system.

 This is called system-contention scope (SCS) – competition among 
all threads in the system.

 The one-to-one thread model (used by Windows and Linux) uses SCS 
only.



5.46Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Pthread Scheduling

 The Pthread API allows specifying either PCS or SCS during 
thread creation

 PTHREAD_SCOPE_PROCESS schedules threads using PCS 
scheduling

 PTHREAD_SCOPE_SYSTEM schedules threads using SCS 
scheduling

 Although the API allows the choice, can be overridden by OS – 
Linux and macOS only allow PTHREAD_SCOPE_SYSTEM



5.47Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Pthread Scheduling API Example
#include <pthread.h> 

#include <stdio.h> 

#define NUM_THREADS 5 

int main(int argc, char *argv[]) { 

   int i, scope;
   pthread_t tid[NUM THREADS]; 

   pthread_attr_t attr;    

   pthread_attr_init(&attr); /* apply  default attributes */

   /* inquire about the current scope */
   if (pthread_attr_getscope(&attr, &scope) != 0) 

       fprintf(stderr, "Unable to get scheduling scope\n"); 

   else { 

      if (scope == PTHREAD_SCOPE_PROCESS) 

          printf("thread has PTHREAD_SCOPE_PROCESS"); 

      else if (scope == PTHREAD_SCOPE_SYSTEM) 

          printf("thread has PTHREAD_SCOPE_SYSTEM"); 

      else
          fprintf(stderr, "Illegal scope value.\n"); 

   } 



5.48Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Pthread Scheduling API

   /* set the scheduling algorithm to PCS */ 

   pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM); 

   /* create the threads */
   for (i = 0; i < NUM_THREADS; i++) 

       pthread_create(&tid[i],&attr,runner,NULL); 

   /* now join on each thread */
   for (i = 0; i < NUM_THREADS; i++) 

       pthread_join(tid[i], NULL); 

} 

/* Each thread will begin control in this function */ 

void *runner(void *param)
{ 

    /* do some work ... */ 

    pthread_exit(0); 

} 



5.49Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are 
available

 A multiprocessor may be any one of the following architectures:

 Multi-core processor

 Multi-threaded cores

 A multi-core processor with multi-threaded cores

 NUMA systems

 Heterogeneous multiprocessing



5.50Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multiple-Processor Scheduling (2)

 Symmetric multiprocessing (SMP) is where each processor is self 
scheduling. Two scheduling models:

 All threads may be in a shared ready queue (a)

 Each processor may have its own private queue of threads (b)

 Shared queue has race condition and needs synchronization/locking



5.51Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multi-core Processors

 Multiple processor cores on same physical chip

 Faster and consumes less power

 Multiple threads per core also growing

 Sometimes called hyperthreading

 Takes advantage of memory stall to make progress on 
another thread while memory retrieve happens

 



5.52Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multi-threaded Multi-core System

Each core has > 1 hardware threads. 

If one thread has a memory stall, switch to another thread!



5.53Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multi-threaded Multi-core System

 Chip-multithreading (CMT) 
assigns each core multiple 
hardware threads. (Intel refers 
to this as hyperthreading.)

 On a quad-core system with 2 
hardware threads per core, the 
operating system sees 8 logical 
processors.



5.54Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multi-threaded Multi-core System

 Two levels of scheduling:

1. The operating system 
deciding which software 
thread to run on a logical 
CPU

2. How each core decides 
which hardware thread to run 
on the physical core.



5.55Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multiple-Processor Scheduling – Load Balancing

 If SMP, need to keep all CPUs loaded for efficiency

 Load balancing attempts to keep workload evenly distributed

 Two paradigms:

 Push migration – periodic task checks load on each 
processor, and if found pushes task from overloaded CPU 
to other CPUs

 Pull migration – idle processors pull waiting task from busy 
processor

 Both can be used in combination (Linux CFS does)



5.56Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Multiple-Processor Scheduling – Processor Affinity

 When a thread has been running on one processor, the cache 
contents of that processor stores the memory accesses by that 
thread.

 We refer to this as a thread having affinity for a processor (i.e. 
“processor affinity”)

 Load balancing may affect processor affinity as a thread may be 
moved from one processor to another to balance loads, yet that 
thread loses the contents of what it had in the cache of the 
processor it was moved off of.

 Soft affinity – the operating system attempts to keep a thread 
running on the same processor, but no guarantees.

 Hard affinity – allows a thread to specify a set of processors it 
may run on.



5.57Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

NUMA and CPU Scheduling

If the operating system is NUMA-aware, it will assign 
memory closes to the CPU the thread is running on. 



5.58Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Real-Time CPU Scheduling

 Can present obvious challenges

 Soft real-time systems – Critical real-time tasks have the 
highest priority, but no guarantee as to when tasks will be 
scheduled

 Hard real-time systems – task must be serviced by its 
deadline

 We will not cover real-time scheduling in this class

 



5.59Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Linux Scheduling Through Version 2.5

 Prior to kernel version 2.5, ran variation of standard UNIX 
scheduling algorithm

 Version 2.5 moved to constant order O(1) scheduling time
 Preemptive, priority based
 Two priority ranges: time-sharing and real-time
 Real-time range from 0 to 99 and nice value from 100 to 140
 Map into  global priority with numerically lower values indicating higher 

priority
 Higher priority gets larger q
 Task run-able as long as time left in time slice (active)
 If no time left (expired), not run-able until all other tasks use their slices
 All run-able tasks tracked in per-CPU runqueue data structure

 Two priority arrays (active, expired)
 Tasks indexed by priority
 When no more active, arrays are exchanged

 Worked well, but poor response times for interactive processes



5.60Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Linux Scheduling in Version 2.6.23 +

 Completely Fair Scheduler (CFS)
 Scheduling classes

 Each has specific priority
 Scheduler picks highest priority task in highest scheduling class
 Rather than quantum based on fixed time allotments, based on proportion of CPU 

time
 2 scheduling classes included, others can be added

1. default

2. real-time

 Quantum calculated based on nice value from -20 to +19
 Lower value is higher priority
 Calculates target latency – interval of time during which task should run at least 

once
 Target latency can increase if say number of active tasks increases

 CFS scheduler maintains per task virtual run time in variable vruntime
 Associated with decay factor based on priority of task – lower priority is higher 

decay rate
 Normal default priority yields virtual run time = actual run time

 To decide next task to run, scheduler picks task with lowest virtual run time



5.61Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

CFS Performance



5.62Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Linux Scheduling (Cont.)

 Real-time scheduling according to POSIX.1b

 Real-time tasks have static priorities

 Real-time plus normal map into global priority scheme

 Nice value of -20 maps to global priority 100

 Nice value of +19 maps to priority 139



5.63Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Linux Scheduling (Cont.)

 Linux supports load balancing, but is also NUMA-aware.

 Scheduling domain is a set of CPU cores that can be balanced 
against one another. 

 Domains are organized by what they share (i.e. cache memory.) Goal is 
to keep threads from migrating between domains.


	CPU Scheduling
	Overview
	Objectives
	Medium Term Scheduling
	Basic Problem
	Core Concept
	Distribution of CPU Burst Times
	CPU Scheduler
	Scheduling Decisions
	Preemption
	Non-Preemptive Kernel
	Preemptive Kernels
	Dispatcher
	Scheduling Criteria
	Scheduling Algorithm Objectives
	Nuances of Optimization
	Scheduling Algorithms
	First-Come-First-Served Scheduling
	FCFS Example
	FCFS Example Continued
	Convoy Effect
	Shortest-Job-First Scheduling
	SJF Example
	Predicting Next CPU Burst Length
	Graphic Example of Exponential Averaging
	Influence of Parameter Value
	Shortest Remaing Time First (SRTF)
	SRTF Example
	SRTF Worked Example
	SRTF Example Continued
	Calculating Waiting Time for SRTF
	Round-Robin Scheduling
	Round Robin Example
	Quantum Size and Context Switch Overhead
	Turnaround Time versus Quantum'
	Priority Scheduling Overview
	Priority Scheduling Example
	Priority Scheduling w/ Round-Robin
	Multilevel Queue
	Multilevel Queues
	Multilevel Feedback Queue
	Example of Multilevel Feedback Queue
	Thread Scheduling: Contention Scope
	Process Contention Scope
	System Contention Scope
	Pthread Scheduling
	Pthread Scheduling API (1)
	Pthread Scheduling API (2)
	Multiple-Processor Scheduling
	Multiple-Processor Scheduling (2)
	Multi-core Processors
	Multi-threaded Multicore System
	Multi-threaded Multicore System (2)
	Multi-threaded Multi-core System (3)
	Multiple-Processor Scheduling – Load Balancing
	Multiple-Processor Scheduling – Processor Affinity
	NUMA and CPU Scheduling
	Real-Time CPU Scheduling
	Linux Scheduling Through Version 2.5
	Linux Scheduling in Version 2.6.23 +
	CFS Performance
	Linux Scheduling (Cont.)
	Linux Scheduling (Cont. 3)

