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Chapter 6: Synchronization Tools

 Background
 The Critical-Section Problem
 Software Solution: Peterson’s Solution
 Hardware Support for Synchronization
 Mutex Locks
 Semaphores
 Monitors
 Liveness
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Objectives

 Describe the critical-section problem and illustrate a race 
condition

 Illustrate hardware solutions to the critical-section problem 
using memory barriers, compare-and-swap operations, and 
atomic variables

 Demonstrate how mutex locks, semaphores, monitors, and 
condition variables can be used to solve the critical section 
problem
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The Problem

 Processes can execute concurrently
 May be interrupted at any time, partially completing 

execution
 Concurrent access to shared data may result in data 

inconsistency – two processes holding different values of same  
data object, such as  a shared counter

 Maintaining data consistency requires mechanisms to ensure 
the controlled execution of cooperating processes

 Illustration of the problem:
Suppose that we wanted to provide a solution to the consumer-
producer problem (from Chapter 4) that fills all the buffers. We 
can do so by having an integer counter that keeps track of the 
number of full buffers.  Initially, counter is set to 0. It is 
incremented by the producer after it produces a new buffer and 
is decremented by the consumer after it consumes a buffer.
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Producer 

while (true) {
/* produce an item in next produced */ 

while (counter == BUFFER_SIZE)  

; /* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

counter++; 

} 
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Consumer

while (true) {

while (counter == 0) 

; /* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

        counter--; 

/* consume the item in next consumed */ 

} 
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Race Condition

 counter++ could be implemented as

     register1 = counter
     register1 = register1 + 1
     counter = register1

 counter-- could be implemented as

     register2 = counter
     register2 = register2 - 1
     counter = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter         {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter        {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}
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Race Condition Example 2

 Processes P0 and P1 are creating child processs using the fork() system 
call

 Race condition on kernel variable next_available_pid which represents 
the next available process identifier (pid)

 Unless there is mutual exclusion, the same pid could be assigned to two 
different processes!
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Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}
 Each process has critical section segment of code

 Process may be changing common variables, updating 
table, writing file, etc

 When one process in critical section, no other may be in its 
critical section

 Critical section problem is to design protocol to solve this
 Each process must ask permission to enter critical section in 

entry section, may follow critical section with exit section, 
then remainder section
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Critical Section

 General structure of process Pi  
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Solution to Critical-Section Problem

1.   Mutual Exclusion - If process Pi is executing in its critical 
section, then no other processes can be executing in their 
critical sections

2.   Progress - If no process is executing in its critical section and 
there exist some processes that wish to enter their critical 
section, then the selection of the processes that will enter the 
critical section next cannot be postponed indefinitely

3.  Bounded Waiting -  A bound must exist on the number of 
times that other processes are allowed to enter their critical 
sections after a process has made a request to enter its critical 
section and before that request is granted
 Assume that each process executes at a nonzero speed 
 No assumption concerning relative speed of the n 

processes
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Critical-Section Handling in OS 

     Two approaches depending on if kernel is preemptive or non-  
preemptive 
 Preemptive – allows preemption of process when running 

in kernel mode
 Non-preemptive – runs until exits kernel mode, blocks, or 

voluntarily yields CPU
Essentially free of race conditions in kernel mode
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Peterson’s Solution

 Not guaranteed to work on modern architectures! (But good 
algorithmic  description of solving the problem)

 Two process solution
 Assume that the load and store machine-language 

instructions are atomic; that is, cannot be interrupted
 The two processes share two variables:

 int turn; 
 boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical 
section

 The flag array is used to indicate if a process is ready to enter 
the critical section. flag[i] = true  implies that process Pi is 
ready!
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Algorithm for Process Pi

while (true){ 
flag[i] = true; 
turn = j; 
while (flag[j] && turn = = j)

;

/* critical section */
 

flag[i] = false;
 

/* remainder section */
 
}
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Peterson’s Solution (3)

 Provable that the three  CS requirement are met:
        1.   Mutual exclusion is preserved
                Pi enters CS only if:
                      either flag[j] = false or turn = i
        2.   Progress requirement is satisfied
        3.   Bounded-waiting requirement is met
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Peterson’s Solution (4)

 Although useful for demonstrating an algorithm, Peterson’s Solution is not 
guaranteed to work on modern architectures.

 Understanding why it will not work is also useful for better understanding 
race conditions.

 To improve performance, processors and/or compilers may reorder 
operations that have no dependencies.

 For single-threaded this is ok as the result will always be the same.
 For multithreaded the reordering may produce inconsistent or unexpected 

results!
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Peterson’s Solution (5)

 Two threads share the data:

boolean flag = false;
int x = 0;

 Thread 1 performs

while (!flag)
;

print x

 Thread 2 performs

x = 100;
flag = true

 What is the expected output?
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Peterson’s Solution (6)

 100 is the expected output.
 However, the operations for Thread 2 may be reordered:

flag = true;
x = 100;

 If this occurs, the output may be 0!
 The effects of instruction reordering in Peterson’s Solution

 This allows both processes to be in their critical section at the same time!
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Synchronization Hardware

 Many systems provide hardware support for implementing the 
critical section code.

 Uniprocessors – could disable interrupts
 Currently running code would execute without preemption
 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable
 We will look at three forms of hardware support:

1. Memory barriers

2. Hardware instructions

3. Atomic variables
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Memory Barriers

 Memory model are the memory guarantees a computer architecture makes 
to application programs.

 Memory models may be either:

 Strongly ordered – where a memory modification of one processor is 
immediately visible to all other processors.

 Weakly ordered  – where a memory modification of one processor may not 
be immediately visible to all other processors.

 A memory barrier is an instruction that forces any change in memory to be 
propagated (made visible) to all other processors.
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Memory Barrier

 We could add a memory barrier to the following instructions to ensure 
Thread 1 outputs 100:

 Thread 1 now performs

while (!flag)
memory_barrier();

print x

 Thread 2 now performs

x = 100;
memory_barrier();
flag = true
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Hardware Instructions

 Special hardware instructions that allow us to either test-and-modify the 
content of a word, or two swap the contents of two words atomically 
(uninterruptibly.)

 Test-and-Set instruction
 Compare-and-Swap instruction
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test_and_set  Instruction 

   Definition:
       boolean test_and_set (boolean *target)
        {

               boolean rv = *target;

               *target = true;

               return rv:

        }

1. Executed atomically
2. Returns the original value of passed parameter
3. Set the new value of passed parameter to true
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Solution using test_and_set()

 Shared boolean variable lock, initialized to false
 Solution:
       do {

          while (test_and_set(&lock)) 

             ; /* do nothing */ 

                 /* critical section */ 

          lock = false; 

                 /* remainder section */ 

       } while (true); 
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compare_and_swap Instruction

Definition:
     int compare _and_swap(int *value, int expected, int new_value) { 

         int temp = *value; 

         if (*value == expected) 

            *value = new_value; 

      return temp; 

     } 

1. Executed atomically
2. Returns the original value of passed parameter value
3. Set  the variable value the value of the passed parameter new_value 

but only if *value == expected is true. That is, the swap takes place 
only under this condition.
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Solution using compare_and_swap

 Shared integer  lock  initialized to 0; 
 Solution:
      while (true){

    while (compare_and_swap(&lock, 0, 1) != 0) 

            ; /* do nothing */ 

       /* critical section */ 

       lock = 0; 

          /* remainder section */ 

      }  
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Bounded-waiting Mutual Exclusion  
with compare-and-swap

while (true) {
   waiting[i] = true;
   key = 1;
   while (waiting[i] && key == 1) 

      key = compare_and_swap(&lock,0,1); 

   waiting[i] = false; 

   /* critical section */ 

   j = (i + 1) % n; 

   while ((j != i) && !waiting[j]) 

      j = (j + 1) % n; 

   if (j == i) 

      lock = 0; 

   else 

      waiting[j] = false; 

   /* remainder section */ 

}
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Atomic Variables

 Typically, instructions such as compare-and-swap are used as building 
blocks for other synchronization tools.

 One tool is an atomic variable that provides atomic (uninterruptible) 
updates on basic data types such as integers and booleans.

 For example, the increment() operation on the atomic variable 
sequence ensures sequence is incremented without interruption:

increment(&sequence); 
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Atomic Variables (2)

 The increment() function can be implemented as follows:

void increment(atomic_int *v)
{

int temp;

do {
temp = *v;

}
while (temp != (compare_and_swap(v,temp,temp+1));

} 
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Mutex Locks

 Previous solutions are complicated and generally inaccessible 
to application programmers

 OS designers build software tools to solve critical section 
problem

 Simplest is mutex lock
 Protect a critical section  by first acquire() a lock then 

release() the lock
 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic
 Usually implemented via hardware atomic instructions 

such as compare-and-swap.

 But this solution requires busy waiting
 This lock therefore called a spinlock
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Solution to Critical-section Problem Using Locks

while (true) { 
acquire lock 

critical section 

release lock 

remainder section 
} 
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Mutex Lock Definitions

   acquire() {
       while (!available) 

          ; /* busy wait */ 

       available = false;; 

    } 

   release() { 

       available = true; 

    } 

These two functions must be implemented atomically.
Both test-and-set and compare-and-swap can be 
used to implement these functions.
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Semaphore

 Synchronization tool that provides more sophisticated ways (than Mutex locks)  for 
process to synchronize their activities.

 Semaphore S – integer variable
 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()
 (Originally called P() and V())

 Definition of  the wait() operation
wait(S) { 
    while (S <= 0)

       ; // busy wait

    S--;

}

 Definition of  the signal() operation
signal(S) { 
    S++;

}
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Semaphore Usage

 Counting semaphore – integer value can range over an unrestricted 
domain

 Binary semaphore – integer value can range only between 0 and 1
 Same as a mutex lock

 Can solve various synchronization problems
 Consider P1  and P2 that require S1 to happen before S2

       Create a semaphore “synch” initialized to 0 
P1:

   S1;

   signal(synch);

P2:

   wait(synch);

   S2;

 Can implement a counting semaphore S as a binary semaphore
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Semaphore Implementation

 Must guarantee that no two processes can execute  the wait() 
and signal() on the same semaphore at the same time

 Thus, the implementation becomes the critical section problem 
where the wait and signal code are placed in the critical 
section
 Could now have busy waiting in critical section 

implementation
 But implementation code is short
 Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections 
and therefore this is not a good solution
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Semaphore Implementation with no Busy waiting 

 With each semaphore there is an associated waiting queue
 Each entry in a waiting queue has two data items:

  value (of type integer)
  pointer to next record in the list

 Two operations:
 block – place the process invoking the operation on the appropriate 

waiting queue
 wakeup – remove one of processes in the waiting queue and place it in 

the ready queue
 typedef struct { 

   int value; 

   struct process *list; 

   } semaphore; 
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Implementation with no Busy waiting (Cont.)

wait(semaphore *S) { 

   S->value--; 

   if (S->value < 0) {
      add this process to S->list; 

      block(); 

   } 

}

signal(semaphore *S) { 

   S->value++; 

   if (S->value <= 0) {
      remove a process P from S->list; 

      wakeup(P); 

   } 

} 
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Problems with Semaphores

  Incorrect use of semaphore operations:

  signal (mutex)  ….  wait (mutex)

  wait (mutex)  …  wait (mutex)

  Omitting  of wait (mutex) and/or signal (mutex)

 These – and others – are examples of what can occur when 
sempahores and other synchronization tools are used 
incorrectly.
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Monitors

 A high-level abstraction that provides a convenient and effective 
mechanism for process synchronization

 Abstract data type, internal variables only accessible by code within the 
procedure

 Only one process may be active within the monitor at a time
 Pseudocode syntax of a monitor:

monitor monitor-name
{
// shared variable declarations
function P1 (…) { …. }

function P2 (…) { …. }

function Pn (…) {……}

  initialization code (…) { … }
}
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Schematic view of a Monitor
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Condition Variables

 condition x, y;
 Two operations are allowed on a condition variable:

 x.wait() –  a process that invokes the operation is 
suspended until x.signal() 

 x.signal() – resumes one of processes (if any) that  
invoked x.wait()
 If no x.wait() on the variable, then it has no effect on 

the variable
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 Monitor with Condition Variables
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Condition Variables Choices

 If process P invokes x.signal(), and process Q is suspended in 
x.wait(), what should happen next?
 Both Q and P cannot execute in paralel. If Q is resumed, then P must 

wait
 Options include

 Signal and wait – P waits until Q either leaves the monitor or it waits 
for another condition

 Signal and continue – Q waits until P either leaves the monitor or it  
waits for another condition

 Both have pros and cons – language implementer can decide
 Monitors implemented in Concurrent Pascal compromise

 P executing signal immediately leaves the monitor, Q is resumed
 Implemented in other languages including Mesa, C#, Java
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Resuming Processes within a Monitor

 If several processes queued on condition variable x, and 
x.signal() is executed, which process should be 
resumed?

 FCFS frequently not adequate 
 conditional-wait construct of the form x.wait(c)

 Where c is priority number
 Process with lowest number (highest priority) is 

scheduled next
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 Allocate a single resource among competing processes using 
priority numbers that specify the maximum time a process  
plans to use the resource

              R.acquire(t);
                   ...
                access the resurce;
                   ...

               R.release;

 Where R is an instance of  type ResourceAllocator

       

Monitor Application: 
Single Resource Allocation 
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A Monitor to Allocate Single Resource

monitor ResourceAllocator 
{ 

boolean busy; 
condition x; 
void acquire(int p) { 
    if (busy) 
        x.wait(p); 
    busy = true; 
} 
void release() { 
    busy = false; 
    x.signal(); 
} 

   initialization code() {
    busy = false; 
}

}
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Liveness

 Processes may have to wait indefinitely while trying to acquire a 
synchronization tool such as a mutex lock or semaphore.

 Waiting indefinitely violates the progress and bounded-waiting criteria 
discussed at the beginning of this chapter.

 Liveness refers to a set of properties that a system must satisfy to ensure 
processes make progress.

 Indefinite waiting is an example of a liveness failure.
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Liveness

 Deadlock – The state in which two or more processes are waiting 
indefinitely for an event that can be caused only by one of the waiting 
processes

 Let S and Q be two semaphores initialized to 1
                      P0                  P1

          wait(S);               wait(Q);

           wait(Q);               wait(S);

               ...      ...

           signal(S);                 signal(Q);

              signal(Q);                 signal(S);

 Consider if P0 executes wait(S) and P1 wait(Q). When P0 executes 
wait(Q), it must wait until P1 executes signal(Q)

 However, P1 is waiting until P0 execute signal(S).
 Since these signal() operations will never be executed, P0 and P1 are 

deadlocked.
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Liveness

 Other forms of deadlock:
 Starvation – indefinite blocking  

 A process may never be removed from the semaphore queue in which it is 
suspended

 Priority Inversion – Scheduling problem when lower-priority process 
holds a lock needed by higher-priority process

 Solved via priority-inheritance protocol
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Priority Inheritance Protocol

 Consider the scenario with  three processes P1, P2, and P3. P1 has 
the highest priority, P2 the next highest, and P3 the lowest. Assume a 
process P3 is currently using a resource R that P1 wants. Thus, P1 
must wait for P3 to finish using the resource. However, P2 becomes 
runnable and preempts P3. What has happened is that P2 - a process 
with a lower priority than P1 - has indirectly prevented P3 from gaining 
access to the resource.

 To prevent this from occurring, a priority inheritance protocol is 
used:
 All processes that are accessing resources needed by a higher-

priority process inherit the higher priority until they are finished with 
the resources in question.

 When they are finished, their priorities revert to their original 
values. 

 Thus, the current owner of the resource is assigned the priority of 
the highest priority thread wishing to acquire the resource.
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End of Chapter 6
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