
Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Chapter 6: Synchronization
Tools

6.2Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Chapter 6: Synchronization Tools

 Background
 The Critical-Section Problem
 Software Solution: Peterson’s Solution
 Hardware Support for Synchronization
 Mutex Locks
 Semaphores
 Monitors
 Liveness

6.3Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Objectives

 Describe the critical-section problem and illustrate a race
condition

 Illustrate hardware solutions to the critical-section problem
using memory barriers, compare-and-swap operations, and
atomic variables

 Demonstrate how mutex locks, semaphores, monitors, and
condition variables can be used to solve the critical section
problem

6.4Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

The Problem

 Processes can execute concurrently
 May be interrupted at any time, partially completing

execution
 Concurrent access to shared data may result in data

inconsistency – two processes holding different values of same
data object, such as a shared counter

 Maintaining data consistency requires mechanisms to ensure
the controlled execution of cooperating processes

 Illustration of the problem:
Suppose that we wanted to provide a solution to the consumer-
producer problem (from Chapter 4) that fills all the buffers. We
can do so by having an integer counter that keeps track of the
number of full buffers. Initially, counter is set to 0. It is
incremented by the producer after it produces a new buffer and
is decremented by the consumer after it consumes a buffer.

6.5Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Producer

while (true) {
/* produce an item in next produced */

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

6.6Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

 counter--;

/* consume the item in next consumed */

}

6.7Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Race Condition

 counter++ could be implemented as

 register1 = counter
 register1 = register1 + 1
 counter = register1

 counter-- could be implemented as

 register2 = counter
 register2 = register2 - 1
 counter = register2

 Consider this execution interleaving with “count = 5” initially:
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

6.8Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Race Condition Example 2

 Processes P0 and P1 are creating child processs using the fork() system
call

 Race condition on kernel variable next_available_pid which represents
the next available process identifier (pid)

 Unless there is mutual exclusion, the same pid could be assigned to two
different processes!

6.9Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Critical Section Problem

 Consider system of n processes {p0, p1, … pn-1}
 Each process has critical section segment of code

 Process may be changing common variables, updating
table, writing file, etc

 When one process in critical section, no other may be in its
critical section

 Critical section problem is to design protocol to solve this
 Each process must ask permission to enter critical section in

entry section, may follow critical section with exit section,
then remainder section

6.10Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Critical Section

 General structure of process Pi

6.11Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its critical
section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical
section and before that request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the n

processes

6.12Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Critical-Section Handling in OS

 Two approaches depending on if kernel is preemptive or non-
preemptive
 Preemptive – allows preemption of process when running

in kernel mode
 Non-preemptive – runs until exits kernel mode, blocks, or

voluntarily yields CPU
Essentially free of race conditions in kernel mode

6.13Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Peterson’s Solution

 Not guaranteed to work on modern architectures! (But good
algorithmic description of solving the problem)

 Two process solution
 Assume that the load and store machine-language

instructions are atomic; that is, cannot be interrupted
 The two processes share two variables:

 int turn;
 boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical
section

 The flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that process Pi is
ready!

6.14Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Algorithm for Process Pi

while (true){
flag[i] = true;
turn = j;
while (flag[j] && turn = = j)

;

/* critical section */

flag[i] = false;

/* remainder section */

}

6.15Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Peterson’s Solution (3)

 Provable that the three CS requirement are met:
 1. Mutual exclusion is preserved
 Pi enters CS only if:
 either flag[j] = false or turn = i
 2. Progress requirement is satisfied
 3. Bounded-waiting requirement is met

6.16Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Peterson’s Solution (4)

 Although useful for demonstrating an algorithm, Peterson’s Solution is not
guaranteed to work on modern architectures.

 Understanding why it will not work is also useful for better understanding
race conditions.

 To improve performance, processors and/or compilers may reorder
operations that have no dependencies.

 For single-threaded this is ok as the result will always be the same.
 For multithreaded the reordering may produce inconsistent or unexpected

results!

6.17Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Peterson’s Solution (5)

 Two threads share the data:

boolean flag = false;
int x = 0;

 Thread 1 performs

while (!flag)
;

print x

 Thread 2 performs

x = 100;
flag = true

 What is the expected output?

6.18Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Peterson’s Solution (6)

 100 is the expected output.
 However, the operations for Thread 2 may be reordered:

flag = true;
x = 100;

 If this occurs, the output may be 0!
 The effects of instruction reordering in Peterson’s Solution

 This allows both processes to be in their critical section at the same time!

6.19Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Synchronization Hardware

 Many systems provide hardware support for implementing the
critical section code.

 Uniprocessors – could disable interrupts
 Currently running code would execute without preemption
 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable
 We will look at three forms of hardware support:

1. Memory barriers

2. Hardware instructions

3. Atomic variables

6.20Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Memory Barriers

 Memory model are the memory guarantees a computer architecture makes
to application programs.

 Memory models may be either:

 Strongly ordered – where a memory modification of one processor is
immediately visible to all other processors.

 Weakly ordered – where a memory modification of one processor may not
be immediately visible to all other processors.

 A memory barrier is an instruction that forces any change in memory to be
propagated (made visible) to all other processors.

6.21Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Memory Barrier

 We could add a memory barrier to the following instructions to ensure
Thread 1 outputs 100:

 Thread 1 now performs

while (!flag)
memory_barrier();

print x

 Thread 2 now performs

x = 100;
memory_barrier();
flag = true

6.22Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Hardware Instructions

 Special hardware instructions that allow us to either test-and-modify the
content of a word, or two swap the contents of two words atomically
(uninterruptibly.)

 Test-and-Set instruction
 Compare-and-Swap instruction

6.23Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

test_and_set Instruction

 Definition:
 boolean test_and_set (boolean *target)
 {

 boolean rv = *target;

 *target = true;

 return rv:

 }

1. Executed atomically
2. Returns the original value of passed parameter
3. Set the new value of passed parameter to true

6.24Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Solution using test_and_set()

 Shared boolean variable lock, initialized to false
 Solution:
 do {

 while (test_and_set(&lock))

 ; /* do nothing */

 /* critical section */

 lock = false;

 /* remainder section */

 } while (true);

6.25Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

compare_and_swap Instruction

Definition:
 int compare _and_swap(int *value, int expected, int new_value) {

 int temp = *value;

 if (*value == expected)

 *value = new_value;

 return temp;

 }

1. Executed atomically
2. Returns the original value of passed parameter value
3. Set the variable value the value of the passed parameter new_value

but only if *value == expected is true. That is, the swap takes place
only under this condition.

6.26Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Solution using compare_and_swap

 Shared integer lock initialized to 0;
 Solution:
 while (true){

 while (compare_and_swap(&lock, 0, 1) != 0)

 ; /* do nothing */

 /* critical section */

 lock = 0;

 /* remainder section */

 }

6.27Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Bounded-waiting Mutual Exclusion
with compare-and-swap

while (true) {
 waiting[i] = true;
 key = 1;
 while (waiting[i] && key == 1)

 key = compare_and_swap(&lock,0,1);

 waiting[i] = false;

 /* critical section */

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = 0;

 else

 waiting[j] = false;

 /* remainder section */

}

6.28Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Atomic Variables

 Typically, instructions such as compare-and-swap are used as building
blocks for other synchronization tools.

 One tool is an atomic variable that provides atomic (uninterruptible)
updates on basic data types such as integers and booleans.

 For example, the increment() operation on the atomic variable
sequence ensures sequence is incremented without interruption:

increment(&sequence);

6.29Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Atomic Variables (2)

 The increment() function can be implemented as follows:

void increment(atomic_int *v)
{

int temp;

do {
temp = *v;

}
while (temp != (compare_and_swap(v,temp,temp+1));

}

6.30Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Mutex Locks

 Previous solutions are complicated and generally inaccessible
to application programmers

 OS designers build software tools to solve critical section
problem

 Simplest is mutex lock
 Protect a critical section by first acquire() a lock then

release() the lock
 Boolean variable indicating if lock is available or not

 Calls to acquire() and release() must be atomic
 Usually implemented via hardware atomic instructions

such as compare-and-swap.

 But this solution requires busy waiting
 This lock therefore called a spinlock

6.31Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Solution to Critical-section Problem Using Locks

while (true) {
acquire lock

critical section

release lock

remainder section
}

6.32Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Mutex Lock Definitions

 acquire() {
 while (!available)

 ; /* busy wait */

 available = false;;

 }

 release() {

 available = true;

 }

These two functions must be implemented atomically.
Both test-and-set and compare-and-swap can be
used to implement these functions.

6.33Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Semaphore

 Synchronization tool that provides more sophisticated ways (than Mutex locks) for
process to synchronize their activities.

 Semaphore S – integer variable
 Can only be accessed via two indivisible (atomic) operations

 wait() and signal()
 (Originally called P() and V())

 Definition of the wait() operation
wait(S) {
 while (S <= 0)

 ; // busy wait

 S--;

}

 Definition of the signal() operation
signal(S) {
 S++;

}

6.34Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Semaphore Usage

 Counting semaphore – integer value can range over an unrestricted
domain

 Binary semaphore – integer value can range only between 0 and 1
 Same as a mutex lock

 Can solve various synchronization problems
 Consider P1 and P2 that require S1 to happen before S2

 Create a semaphore “synch” initialized to 0
P1:

 S1;

 signal(synch);

P2:

 wait(synch);

 S2;

 Can implement a counting semaphore S as a binary semaphore

6.35Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Semaphore Implementation

 Must guarantee that no two processes can execute the wait()
and signal() on the same semaphore at the same time

 Thus, the implementation becomes the critical section problem
where the wait and signal code are placed in the critical
section
 Could now have busy waiting in critical section

implementation
 But implementation code is short
 Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections
and therefore this is not a good solution

6.36Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue
 Each entry in a waiting queue has two data items:

 value (of type integer)
 pointer to next record in the list

 Two operations:
 block – place the process invoking the operation on the appropriate

waiting queue
 wakeup – remove one of processes in the waiting queue and place it in

the ready queue
 typedef struct {

 int value;

 struct process *list;

 } semaphore;

6.37Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Implementation with no Busy waiting (Cont.)

wait(semaphore *S) {

 S->value--;

 if (S->value < 0) {
 add this process to S->list;

 block();

 }

}

signal(semaphore *S) {

 S->value++;

 if (S->value <= 0) {
 remove a process P from S->list;

 wakeup(P);

 }

}

6.38Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Problems with Semaphores

 Incorrect use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting of wait (mutex) and/or signal (mutex)

 These – and others – are examples of what can occur when
sempahores and other synchronization tools are used
incorrectly.

6.39Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Monitors

 A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

 Abstract data type, internal variables only accessible by code within the
procedure

 Only one process may be active within the monitor at a time
 Pseudocode syntax of a monitor:

monitor monitor-name
{
// shared variable declarations
function P1 (…) { …. }

function P2 (…) { …. }

function Pn (…) {……}

 initialization code (…) { … }
}

6.40Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Schematic view of a Monitor

6.41Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Condition Variables

 condition x, y;
 Two operations are allowed on a condition variable:

 x.wait() – a process that invokes the operation is
suspended until x.signal()

 x.signal() – resumes one of processes (if any) that
invoked x.wait()
 If no x.wait() on the variable, then it has no effect on

the variable

6.42Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

 Monitor with Condition Variables

6.43Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Condition Variables Choices

 If process P invokes x.signal(), and process Q is suspended in
x.wait(), what should happen next?
 Both Q and P cannot execute in paralel. If Q is resumed, then P must

wait
 Options include

 Signal and wait – P waits until Q either leaves the monitor or it waits
for another condition

 Signal and continue – Q waits until P either leaves the monitor or it
waits for another condition

 Both have pros and cons – language implementer can decide
 Monitors implemented in Concurrent Pascal compromise

 P executing signal immediately leaves the monitor, Q is resumed
 Implemented in other languages including Mesa, C#, Java

6.44Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Resuming Processes within a Monitor

 If several processes queued on condition variable x, and
x.signal() is executed, which process should be
resumed?

 FCFS frequently not adequate
 conditional-wait construct of the form x.wait(c)

 Where c is priority number
 Process with lowest number (highest priority) is

scheduled next

6.45Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

 Allocate a single resource among competing processes using
priority numbers that specify the maximum time a process
plans to use the resource

 R.acquire(t);
 ...
 access the resurce;
 ...

 R.release;

 Where R is an instance of type ResourceAllocator

Monitor Application:
Single Resource Allocation

6.46Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

A Monitor to Allocate Single Resource

monitor ResourceAllocator
{

boolean busy;
condition x;
void acquire(int p) {
 if (busy)
 x.wait(p);
 busy = true;
}
void release() {
 busy = false;
 x.signal();
}

 initialization code() {
 busy = false;
}

}

6.47Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Liveness

 Processes may have to wait indefinitely while trying to acquire a
synchronization tool such as a mutex lock or semaphore.

 Waiting indefinitely violates the progress and bounded-waiting criteria
discussed at the beginning of this chapter.

 Liveness refers to a set of properties that a system must satisfy to ensure
processes make progress.

 Indefinite waiting is an example of a liveness failure.

6.48Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Liveness

 Deadlock – The state in which two or more processes are waiting
indefinitely for an event that can be caused only by one of the waiting
processes

 Let S and Q be two semaphores initialized to 1
 P0 P1

 wait(S); wait(Q);

 wait(Q); wait(S);

 signal(S); signal(Q);

 signal(Q); signal(S);

 Consider if P0 executes wait(S) and P1 wait(Q). When P0 executes
wait(Q), it must wait until P1 executes signal(Q)

 However, P1 is waiting until P0 execute signal(S).
 Since these signal() operations will never be executed, P0 and P1 are

deadlocked.

6.49Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Liveness

 Other forms of deadlock:
 Starvation – indefinite blocking

 A process may never be removed from the semaphore queue in which it is
suspended

 Priority Inversion – Scheduling problem when lower-priority process
holds a lock needed by higher-priority process

 Solved via priority-inheritance protocol

6.50Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

Priority Inheritance Protocol

 Consider the scenario with three processes P1, P2, and P3. P1 has
the highest priority, P2 the next highest, and P3 the lowest. Assume a
process P3 is currently using a resource R that P1 wants. Thus, P1
must wait for P3 to finish using the resource. However, P2 becomes
runnable and preempts P3. What has happened is that P2 - a process
with a lower priority than P1 - has indirectly prevented P3 from gaining
access to the resource.

 To prevent this from occurring, a priority inheritance protocol is
used:
 All processes that are accessing resources needed by a higher-

priority process inherit the higher priority until they are finished with
the resources in question.

 When they are finished, their priorities revert to their original
values.

 Thus, the current owner of the resource is assigned the priority of
the highest priority thread wishing to acquire the resource.

Operating System Concepts – 10th Edition Silberschatz, Galvin and Gagne ©2018, revised by S. Weiss 2020

End of Chapter 6

	Chapter 6: Synchronization Tools
	Chapter 6: Synchronization Tools
	Objectives
	The Problem
	Producer
	Consumer
	Race Condition
	Race Condition Example 2
	Critical Section Problem
	Critical Section
	Solution to Critical-Section Problem
	Critical-Section Handling in OS
	Peterson’s Solution
	Algorithm for Process Pi
	Peterson’s Solution (3)
	Peterson’s Solution (4)
	Peterson’s Solution (5)
	Peterson’s Solution (6)
	Synchronization Hardware
	Memory Barriers
	Memory Barrier
	Hardware Instructions
	test_and_set Instruction
	Solution using test_and_set()
	compare_and_swap Instruction
	Solution using compare_and_swap
	Bounded-waiting Mutual Exclusion with compare-and-swap
	Atomic Variables
	Atomic Variables (2)
	Mutex Locks
	Solution to Critical-section Problem Using Locks
	Mutex Lock Definitions
	Semaphore
	Semaphore Usage
	Semaphore Implementation
	Semaphore Implementation with no Busy waiting
	Implementation with no Busy waiting (Cont.)
	Problems with Semaphores
	Monitors
	Schematic view of a Monitor
	Condition Variables
	Monitor with Condition Variables
	Condition Variables Choices
	Resuming Processes within a Monitor
	PowerPoint Presentation
	A Monitor to Allocate Single Resource
	Liveness
	Liveness (2)
	Liveness (3)
	Priority Inheritance Protocol
	End of Chapter 6

