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 File Sharing
 Virtual File Systems
 Remote File Systems
 Consistency Semantics
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Objectives

 Delve into the details of file systems and their 
implementation

 Explore booting and file sharing
 Describe remote file systems, using NFS as an example
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File System

 General-purpose computers can have multiple storage devices
 Devices can be sliced into partitions, which hold volumes
 Volumes can span multiple partitions
 Each volume usually formatted into a file system
 # of file systems varies, typically dozens available to choose from

Typical storage device organization:
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Example Mount Points and File Systems - Solaris



15.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Partitions and Mounting

 Partition can be a volume containing a file system (“cooked”) or raw – 
just a sequence of blocks with no file system

 Boot block can point to boot volume or boot loader set of blocks that 
contain enough code to know how to load the kernel from the file 
system
 Or a boot management program for multi-os booting

 Root partition contains the OS, other partitions can hold other Oses, 
other file systems, or be raw
 Mounted at boot time
 Other partitions can mount automatically or manually on mount 

points – location at which they can be accessed
 At mount time, file system consistency checked

 Is all metadata correct?
 If not, fix it, try again
 If yes, add to mount table, allow access
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File Systems and Mounting

(a)Unix-like file 
system directory 
tree

(b)Unmounted file 
system

After mounting (b) 
into the existing 
directory tree



15.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

File Sharing

 Allows multiple users / systems access to the same files
 Permissions / protection must be implement and accurate

 Most systems provide concepts of owner, group member
 Must have a way to apply these between systems
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Virtual File Systems

 Virtual File Systems (VFS) on Unix provide an object-oriented 
way of implementing file systems

 VFS allows the same system call interface (the API) to be used 
for different types of file systems
 Separates file-system generic operations from 

implementation details
 Implementation can be one of many file systems types, or 

network file system
 Implements vnodes which hold inodes or network file 

details
 Then dispatches operation to appropriate file system 

implementation routines
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Virtual File Systems (Cont.)

 The API is to the VFS interface, rather than any specific type of 
file system
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Virtual File System Implementation

 For example, Linux has four object types:
 inode, file, superblock, dentry

 VFS defines set of operations on the objects that must be implemented
 Every object has a pointer to a function table

 Function table has addresses of routines to implement that 
function on that object

 For example:
 • int open(. . .)—Open a file
 • int close(. . .)—Close an already-open file
 • ssize t read(. . .)—Read from a file
 • ssize t write(. . .)—Write to a file
 • int mmap(. . .)—Memory-map a file
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Remote File Systems

 Sharing of files across a network
 First method involved manually sharing each file – programs 

like ftp
 Second method uses a distributed file system (DFS)

 Remote directories visible from local machine
 Third method – World Wide Web

 A bit of a revision to first method
 Use browser to locate file/files and download /upload
 Anonymous access doesn’t require authentication
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Client-Server Model

 Sharing between a server (providing access to a file system 
via a network protocol) and a client (using the protocol to 
access the remote file system)

 Identifying each other via network ID can be spoofed, 
encryption can be performance expensive

 NFS an example
 User auth info on clients and servers must match 

(UserIDs for example)
 Remote file system mounted, file operations sent on 

behalf of user across network to server
 Server checks permissions, file handle returned
 Handle used for reads and writes until file closed
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Distributed Information Systems

 Aka distributed naming services, provide unified access to 
info needed for remote computing

 Domain name system (DNS) provides host-name-to-
network-address translations for the Internet

 Others like network information service (NIS) provide user-
name, password, userID, group information

 Microsoft’s common Internet file system (CIFS) network 
info used with user auth to create network logins that server 
uses to allow to deny access
 Active directory distributed naming service
 Kerberos-derived network authentication protocol

 Industry moving toward lightweight directory-access 
protocol (LDAP) as secure distributed naming mechanism
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Consistency Semantics
 Important criteria for evaluating file sharing-file systems
 Specify how multiple users are to access shared file simultaneously

 When modifications of data will be observed by other users
 Directly related to process synchronization algorithms, but atomicity across a 

network has high overhead (see Andrew File System)
 The series of accesses between file open and closed called file session
 UNIX semantics

 Writes to open file immediately visible to others with file open
 One mode of sharing allows users to share pointer to current I/O location in file
 Single physical image, accessed exclusively, contention causes process 

delays
 Session semantics (Andrew file system (OpenAFS))

 Writes to open file not visible during session, only at close
 Can be several copies, each changed independently 
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The Sun Network File System (NFS)

 An implementation and a specification of a software system 
for accessing remote files across LANs (or WANs)

 The implementation originally part of SunOS operating 
system, now industry standard / very common

 Can use unreliable datagram protocol (UDP/IP) or TCP/IP, 
over Ethernet or other network
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NFS (Cont.)

 Interconnected workstations viewed as a set of independent machines 
with independent file systems, which allows sharing among these file 
systems in a transparent manner
 A remote directory is mounted over a local file system directory

 The mounted directory looks like an integral subtree of the local 
file system, replacing the subtree descending from the local 
directory

 Specification of the remote directory for the mount operation is 
nontransparent; the host name of the remote directory has to be 
provided
 Files in the remote directory can then be accessed in a 

transparent manner
 Subject to access-rights accreditation, potentially any file system 

(or directory within a file system), can be mounted remotely on top 
of any local directory
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NFS (Cont.)

 NFS is designed to operate in a heterogeneous environment of 
different machines, operating systems, and network architectures; 
the NFS specifications independent of these media

 This independence is achieved through the use of RPC primitives 
built on top of an External Data Representation (XDR) protocol used 
between two implementation-independent interfaces

 The NFS specification distinguishes between the services provided 
by a mount mechanism and the actual remote-file-access services 
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Three Independent File Systems
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Mounting in NFS 

Mounts Cascading mounts
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NFS Mount Protocol

 Establishes initial logical connection between server and client
 Mount operation includes name of remote directory to be mounted 

and name of server machine storing it
 Mount request is mapped to corresponding RPC and forwarded 

to mount server running on server machine 
 Export list – specifies local file systems that server exports for 

mounting, along with names of machines that are permitted to 
mount them 

 Following a mount request that conforms to its export list, the 
server returns a file handle—a key for further accesses

 File handle – a file-system identifier, and an inode number to 
identify the mounted directory within the exported file system

 The mount operation changes only the user’s view and does not 
affect the server side 
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NFS Protocol

 Provides a set of remote procedure calls for remote file operations. 
 The procedures support the following operations:
 searching for a file within a directory 
 reading a set of directory entries 
 manipulating links and directories 
 accessing file attributes
 reading and writing files

 NFS servers are stateless; each request has to provide a full set 
of arguments  (NFS V4 is newer, less used – very different, 
stateful)

 Modified data must be committed to the server’s disk before 
results are returned to the client (lose advantages of caching)

 The NFS protocol does not provide concurrency-control 
mechanisms
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Three Major Layers of NFS Architecture 

 UNIX file-system interface (based on the open, read, write, and 
close calls, and file descriptors)

 Virtual File System (VFS) layer – distinguishes local files from 
remote ones, and local files are further distinguished according to 
their file-system types
 The VFS activates file-system-specific operations to handle 

local requests according to their file-system types 
 Calls the NFS protocol procedures for remote requests

 NFS service layer – bottom layer of the architecture
 Implements the NFS protocol
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Schematic View of NFS Architecture 
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NFS Path-Name Translation

 Performed by breaking the path into component names and 
performing a separate NFS lookup call for every pair of 
component name and directory vnode

 To make lookup faster, a directory name lookup cache on the 
client’s side holds the vnodes for remote directory names
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NFS Remote Operations

 Nearly one-to-one correspondence between regular UNIX  system 
calls and the NFS protocol RPCs (except opening and closing 
files)

 NFS adheres to the remote-service paradigm, but employs 
buffering and caching techniques for the sake of performance 

 File-blocks cache – when a file is opened, the kernel checks with 
the remote server whether to fetch or revalidate the cached 
attributes
 Cached file blocks are used only if the corresponding cached 

attributes are up to date
 File-attribute cache – the attribute cache is updated whenever new 

attributes arrive from the server
 Clients do not free delayed-write blocks until the server confirms 

that the data have been written to disk
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End of Chapter 15
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