
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 15:  File System 
Internals



15.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

 Chapter 15: File System Internals

 File Systems
 File-System Mounting
 Partitions and Mounting
 File Sharing
 Virtual File Systems
 Remote File Systems
 Consistency Semantics
 NFS



15.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

 Delve into the details of file systems and their 
implementation

 Explore booting and file sharing
 Describe remote file systems, using NFS as an example



15.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

File System

 General-purpose computers can have multiple storage devices
 Devices can be sliced into partitions, which hold volumes
 Volumes can span multiple partitions
 Each volume usually formatted into a file system
 # of file systems varies, typically dozens available to choose from

Typical storage device organization:



15.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Example Mount Points and File Systems - Solaris



15.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Partitions and Mounting

 Partition can be a volume containing a file system (“cooked”) or raw – 
just a sequence of blocks with no file system

 Boot block can point to boot volume or boot loader set of blocks that 
contain enough code to know how to load the kernel from the file 
system
 Or a boot management program for multi-os booting

 Root partition contains the OS, other partitions can hold other Oses, 
other file systems, or be raw
 Mounted at boot time
 Other partitions can mount automatically or manually on mount 

points – location at which they can be accessed
 At mount time, file system consistency checked

 Is all metadata correct?
 If not, fix it, try again
 If yes, add to mount table, allow access



15.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

File Systems and Mounting

(a)Unix-like file 
system directory 
tree

(b)Unmounted file 
system

After mounting (b) 
into the existing 
directory tree



15.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

File Sharing

 Allows multiple users / systems access to the same files
 Permissions / protection must be implement and accurate

 Most systems provide concepts of owner, group member
 Must have a way to apply these between systems



15.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual File Systems

 Virtual File Systems (VFS) on Unix provide an object-oriented 
way of implementing file systems

 VFS allows the same system call interface (the API) to be used 
for different types of file systems
 Separates file-system generic operations from 

implementation details
 Implementation can be one of many file systems types, or 

network file system
 Implements vnodes which hold inodes or network file 

details
 Then dispatches operation to appropriate file system 

implementation routines



15.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual File Systems (Cont.)

 The API is to the VFS interface, rather than any specific type of 
file system



15.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Virtual File System Implementation

 For example, Linux has four object types:
 inode, file, superblock, dentry

 VFS defines set of operations on the objects that must be implemented
 Every object has a pointer to a function table

 Function table has addresses of routines to implement that 
function on that object

 For example:
 • int open(. . .)—Open a file
 • int close(. . .)—Close an already-open file
 • ssize t read(. . .)—Read from a file
 • ssize t write(. . .)—Write to a file
 • int mmap(. . .)—Memory-map a file



15.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Remote File Systems

 Sharing of files across a network
 First method involved manually sharing each file – programs 

like ftp
 Second method uses a distributed file system (DFS)

 Remote directories visible from local machine
 Third method – World Wide Web

 A bit of a revision to first method
 Use browser to locate file/files and download /upload
 Anonymous access doesn’t require authentication



15.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Client-Server Model

 Sharing between a server (providing access to a file system 
via a network protocol) and a client (using the protocol to 
access the remote file system)

 Identifying each other via network ID can be spoofed, 
encryption can be performance expensive

 NFS an example
 User auth info on clients and servers must match 

(UserIDs for example)
 Remote file system mounted, file operations sent on 

behalf of user across network to server
 Server checks permissions, file handle returned
 Handle used for reads and writes until file closed



15.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Distributed Information Systems

 Aka distributed naming services, provide unified access to 
info needed for remote computing

 Domain name system (DNS) provides host-name-to-
network-address translations for the Internet

 Others like network information service (NIS) provide user-
name, password, userID, group information

 Microsoft’s common Internet file system (CIFS) network 
info used with user auth to create network logins that server 
uses to allow to deny access
 Active directory distributed naming service
 Kerberos-derived network authentication protocol

 Industry moving toward lightweight directory-access 
protocol (LDAP) as secure distributed naming mechanism



15.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Consistency Semantics
 Important criteria for evaluating file sharing-file systems
 Specify how multiple users are to access shared file simultaneously

 When modifications of data will be observed by other users
 Directly related to process synchronization algorithms, but atomicity across a 

network has high overhead (see Andrew File System)
 The series of accesses between file open and closed called file session
 UNIX semantics

 Writes to open file immediately visible to others with file open
 One mode of sharing allows users to share pointer to current I/O location in file
 Single physical image, accessed exclusively, contention causes process 

delays
 Session semantics (Andrew file system (OpenAFS))

 Writes to open file not visible during session, only at close
 Can be several copies, each changed independently 



15.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

The Sun Network File System (NFS)

 An implementation and a specification of a software system 
for accessing remote files across LANs (or WANs)

 The implementation originally part of SunOS operating 
system, now industry standard / very common

 Can use unreliable datagram protocol (UDP/IP) or TCP/IP, 
over Ethernet or other network



15.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS (Cont.)

 Interconnected workstations viewed as a set of independent machines 
with independent file systems, which allows sharing among these file 
systems in a transparent manner
 A remote directory is mounted over a local file system directory

 The mounted directory looks like an integral subtree of the local 
file system, replacing the subtree descending from the local 
directory

 Specification of the remote directory for the mount operation is 
nontransparent; the host name of the remote directory has to be 
provided
 Files in the remote directory can then be accessed in a 

transparent manner
 Subject to access-rights accreditation, potentially any file system 

(or directory within a file system), can be mounted remotely on top 
of any local directory



15.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS (Cont.)

 NFS is designed to operate in a heterogeneous environment of 
different machines, operating systems, and network architectures; 
the NFS specifications independent of these media

 This independence is achieved through the use of RPC primitives 
built on top of an External Data Representation (XDR) protocol used 
between two implementation-independent interfaces

 The NFS specification distinguishes between the services provided 
by a mount mechanism and the actual remote-file-access services 



15.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Three Independent File Systems



15.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Mounting in NFS 

Mounts Cascading mounts



15.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS Mount Protocol

 Establishes initial logical connection between server and client
 Mount operation includes name of remote directory to be mounted 

and name of server machine storing it
 Mount request is mapped to corresponding RPC and forwarded 

to mount server running on server machine 
 Export list – specifies local file systems that server exports for 

mounting, along with names of machines that are permitted to 
mount them 

 Following a mount request that conforms to its export list, the 
server returns a file handle—a key for further accesses

 File handle – a file-system identifier, and an inode number to 
identify the mounted directory within the exported file system

 The mount operation changes only the user’s view and does not 
affect the server side 



15.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS Protocol

 Provides a set of remote procedure calls for remote file operations. 
 The procedures support the following operations:
 searching for a file within a directory 
 reading a set of directory entries 
 manipulating links and directories 
 accessing file attributes
 reading and writing files

 NFS servers are stateless; each request has to provide a full set 
of arguments  (NFS V4 is newer, less used – very different, 
stateful)

 Modified data must be committed to the server’s disk before 
results are returned to the client (lose advantages of caching)

 The NFS protocol does not provide concurrency-control 
mechanisms



15.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Three Major Layers of NFS Architecture 

 UNIX file-system interface (based on the open, read, write, and 
close calls, and file descriptors)

 Virtual File System (VFS) layer – distinguishes local files from 
remote ones, and local files are further distinguished according to 
their file-system types
 The VFS activates file-system-specific operations to handle 

local requests according to their file-system types 
 Calls the NFS protocol procedures for remote requests

 NFS service layer – bottom layer of the architecture
 Implements the NFS protocol



15.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Schematic View of NFS Architecture 



15.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS Path-Name Translation

 Performed by breaking the path into component names and 
performing a separate NFS lookup call for every pair of 
component name and directory vnode

 To make lookup faster, a directory name lookup cache on the 
client’s side holds the vnodes for remote directory names



15.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

NFS Remote Operations

 Nearly one-to-one correspondence between regular UNIX  system 
calls and the NFS protocol RPCs (except opening and closing 
files)

 NFS adheres to the remote-service paradigm, but employs 
buffering and caching techniques for the sake of performance 

 File-blocks cache – when a file is opened, the kernel checks with 
the remote server whether to fetch or revalidate the cached 
attributes
 Cached file blocks are used only if the corresponding cached 

attributes are up to date
 File-attribute cache – the attribute cache is updated whenever new 

attributes arrive from the server
 Clients do not free delayed-write blocks until the server confirms 

that the data have been written to disk



Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 15


	Chapter 15: File System Internals
	Chapter 15: File System Internals
	Objectives
	File System
	Example Mount Points and File Systems - Solaris
	Partitions and Mounting
	File Systems and Mounting
	File Sharing
	Virtual File Systems
	Virtual File Systems (Cont.)
	Virtual File System Implementation
	Remote File Systems
	Client-Server Model
	Distributed Information Systems
	Consistency Semantics
	The Sun Network File System (NFS)
	NFS (Cont.)
	Slide 18
	Three Independent File Systems
	Mounting in NFS
	NFS Mount Protocol
	NFS Protocol
	Three Major Layers of NFS Architecture
	Schematic View of NFS Architecture
	NFS Path-Name Translation
	NFS Remote Operations
	End of Chapter 15

