

CUDA Programming Guide Version 1.1 67

Chapter 6.
Example of Matrix Multiplication

6.1 Overview

The task of computing the product C of two matrices A and B of dimensions
(wA, hA) and (wB, wA) respectively, is split among several threads in the following
way:

 Each thread block is responsible for computing one square sub-matrix Csub of C;

 Each thread within the block is responsible for computing one element of Csub.

The dimension block_size of Csub is chosen equal to 16, so that the number of threads
per block is a multiple of the warp size (Section 5.2) and remains below the
maximum number of threads per block (Appendix A).

As illustrated in Figure 6-1, Csub is equal to the product of two rectangular matrices:
the sub-matrix of A of dimension (wA, block_size) that has the same line indices as
Csub, and the sub-matrix of B of dimension (block_size, wA) that has the same column
indices as Csub. In order to fit into the device’s resources, these two rectangular
matrices are divided into as many square matrices of dimension block_size as
necessary and Csub is computed as the sum of the products of these square matrices.
Each of these products is performed by first loading the two corresponding square
matrices from global memory to shared memory with one thread loading one
element of each matrix, and then by having each thread compute one element of the
product. Each thread accumulates the result of each of these products into a register
and once done writes the result to global memory.

By blocking the computation this way, we take advantage of fast shared memory
and save a lot of global memory bandwidth since A and B are read from global
memory only (wA / block_size) times.

Nonetheless, this example has been written for clarity of exposition to illustrate
various CUDA programming principles, not with the goal of providing a
high-performance kernel for generic matrix multiplication and should not be
construed as such.

Chapter 6. Example of Matrix Multiplication

A

B

C

Csub
hA

BLOCK_SIZE
wBwA

BLOCK_SIZEBLOCK_SIZE

wA

BL
OC

K_
SI

ZE
BL

OC
K_

SI
ZE

BL
OC

K_
SI

ZE

Each thread block computes one sub-matrix Csub of C. Each thread within the block
computes one element of Csub.

Figure 6-1. Matrix Multiplication

68 CUDA Programming Guide Version 1.1

 Chapter 6. Example of Matrix Multiplication

6.2 Source Code Listing

// Thread block size

#define BLOCK_SIZE 16

// Forward declaration of the device multiplication function

__global__ void Muld(float*, float*, int, int, float*);

// Host multiplication function

// Compute C = A * B

// hA is the height of A

// wA is the width of A

// wB is the width of B

void Mul(const float* A, const float* B, int hA, int wA, int wB,

float* C)

{

int size;

 // Load A and B to the device

float* Ad;

 size = hA * wA * sizeof(float);

 cudaMalloc((void**)&Ad, size);

 cudaMemcpy(Ad, A, size, cudaMemcpyHostToDevice);

float* Bd;

 size = wA * wB * sizeof(float);

 cudaMalloc((void**)&Bd, size);

 cudaMemcpy(Bd, B, size, cudaMemcpyHostToDevice);

 // Allocate C on the device

float* Cd;

 size = hA * wB * sizeof(float);

 cudaMalloc((void**)&Cd, size);

 // Compute the execution configuration assuming

 // the matrix dimensions are multiples of BLOCK_SIZE

 dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);

 dim3 dimGrid(wB / dimBlock.x, hA / dimBlock.y);

 // Launch the device computation

 Muld<<<dimGrid, dimBlock>>>(Ad, Bd, wA, wB, Cd);

 // Read C from the device

 cudaMemcpy(C, Cd, size, cudaMemcpyDeviceToHost);

 // Free device memory

 cudaFree(Ad);

 cudaFree(Bd);

 cudaFree(Cd);

}

CUDA Programming Guide Version 1.1 69

Chapter 6. Example of Matrix Multiplication

// Device multiplication function called by Mul()

// Compute C = A * B

// wA is the width of A

// wB is the width of B

__global__ void Muld(float* A, float* B, int wA, int wB, float* C)

{

 // Block index

int bx = blockIdx.x;

int by = blockIdx.y;

 // Thread index

int tx = threadIdx.x;

int ty = threadIdx.y;

 // Index of the first sub-matrix of A processed by the block

int aBegin = wA * BLOCK_SIZE * by;

 // Index of the last sub-matrix of A processed by the block

int aEnd = aBegin + wA - 1;

 // Step size used to iterate through the sub-matrices of A

int aStep = BLOCK_SIZE;

 // Index of the first sub-matrix of B processed by the block

int bBegin = BLOCK_SIZE * bx;

 // Step size used to iterate through the sub-matrices of B

int bStep = BLOCK_SIZE * wB;

 // The element of the block sub-matrix that is computed

 // by the thread

float Csub = 0;

 // Loop over all the sub-matrices of A and B required to

 // compute the block sub-matrix

for (int a = aBegin, b = bBegin;

 a <= aEnd;

 a += aStep, b += bStep) {

 // Shared memory for the sub-matrix of A

__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

 // Shared memory for the sub-matrix of B

__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

 // Load the matrices from global memory to shared memory;

 // each thread loads one element of each matrix

 As[ty][tx] = A[a + wA * ty + tx];

 Bs[ty][tx] = B[b + wB * ty + tx];

 // Synchronize to make sure the matrices are loaded

 __syncthreads();

 // Multiply the two matrices together;

 // each thread computes one element

 // of the block sub-matrix

for (int k = 0; k < BLOCK_SIZE; ++k)

70 CUDA Programming Guide Version 1.1

 Chapter 6. Example of Matrix Multiplication

 Csub += As[ty][k] * Bs[k][tx];

 // Synchronize to make sure that the preceding

 // computation is done before loading two new

 // sub-matrices of A and B in the next iteration

 __syncthreads();

 }

 // Write the block sub-matrix to global memory;

 // each thread writes one element

int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;

 C[c + wB * ty + tx] = Csub;

}

6.3 Source Code Walkthrough

The source code contains two functions:

 Mul(), a host function serving as a wrapper to Muld();

 Muld(), a kernel that executes the matrix multiplication on the device.

6.3.1 Mul()

Mul() takes as input:

 Two pointers to host memory that point to the elements of A and B,

 The height and width of A and the width of B,

 A pointer to host memory that points where C should be written.

Mul() performs the following operations:

 It allocates enough global memory to store A, B, and C using cudaMalloc();

 It copies A and B from host memory to global memory using cudaMemcpy();

 It calls Muld() to compute C on the device;

 It copies C from global memory to host memory using cudaMemcpy();

 It frees the global memory allocated for A, B, and C using cudaFree().

6.3.2 Muld()

Muld() has the same input as Mul(), except that pointers point to device memory
instead of host memory.

For each block, Muld()iterates through all the sub-matrices of A and B required to
compute Csub. At each iteration:

 It loads one sub-matrix of A and one sub-matrix of B from global memory to
shared memory;

 It synchronizes to make sure that both sub-matrices are fully loaded by all the
threads within the block;

 It computes the product of the two sub-matrices and adds it to the product
obtained during the previous iteration;

CUDA Programming Guide Version 1.1 71

Chapter 6. Example of Matrix Multiplication

 It synchronizes again to make sure that the product of the two sub-matrices is
done before starting the next iteration.

Once all sub-matrices have been handled, Csub is fully computed and Muld() writes
it to global memory.

Muld() is written to maximize memory performance according to Section 5.1.2.1
and 5.1.2.4.

Indeed, assuming that wA and wB are multiples of 16 as suggested in Section 5.1.2.1,
global memory coalescing is ensured because a, b, and c are all multiples of
BLOCK_SIZE, which is equal to 16.

There is also no shared memory bank conflict since for each half-warp, ty and k are
the same for all threads and tx varies from 0 to 15, so each thread accesses a
different bank for the memory accesses As[ty][tx], Bs[ty][tx], and
Bs[k][tx] and the same bank for the memory access As[ty][k].

72 CUDA Programming Guide Version 1.1

