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The Lower Levels of the Memory Hierarchy: Storage Systems

Overview

We use the term storage system to describe persistent memory, meaning memory devices that 
retain information when power is not applied, such as magnetic disks, magnetic tapes, optical 
disks  of  various  kinds,  and flash  memory  devices.   The  concepts  of  input  and output  have 
traditionally been used to refer to the transfer of data from non-persistent internal stores, i.e., 
memory, and storage systems or devices used to receive data from transient sources (keyboards, 
networks) or to display data on a transient device (monitors and other visual displays). Although 
in theory the transfer of data between levels of a hierarchy can be treated in a uniform way, in 
practice, there are significantly different issues when data has to migrate to or from devices or be 
stored on them.

Because we use storage systems to preserve our data for us, it is of the utmost importance that 
we can depend upon them to do so. This concept of dependability will be made precise shortly.

The standard for dependability is higher for storage systems than it is for computation. It is one 
thing for a processor to hang or even crash, but another if a hard disk fails. A processor crash is 
usually just an inconvenience but a disk failure might mean irreplaceable data loss. Therefore, 
storage systems place greater emphasis on:

• dependability
• cost
• expandability

 

than they  do on performance.  Performance is  more  complex to  analyze  for  storage and I/O 
devices than it is for processors. It depends on several factors, including:
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Figure 1: Typical collection of storage and I/O devices



C SCI 360 Computer Architecture 3 Prof. Stewart Weiss
The Lower Levels of the Memory Hierarchy: Storage Systems

• device physical characteristics, such as mechanical components, electronic components
• type of connection between the device and internal system
• location within the memory hierarchy
• operating system interface to the device

Assessing Performance

Should performance be measured by

• system throughput (jobs completed per unit time), or
• response time?

Throughput can be measured by bandwidth, either

(1) number of completed I/O operations per unit time, or
(2) number of bytes transferred per unit time

Examples.  

1. Transaction  processing  systems  such  as  on-line  commerce  applications  and  on-line 
banking systems have to handle a large number of small transactions, so (1) is a better 
measure than (2).  

2. A  system for delivering streaming video, on the other hand, is better measured by the 
volume  of  bytes  transferred  per  unit  time  (2) than  by  the  number  of  completed 
transactions.

Throughput is not always the best measure. Sometimes response time is more important.  Often 
not just the  mean response time, but  the standard deviation of response times (indicates how 
reliable  the  system  is).   For  single-user  workstations,  response  time  is  typically  the  most 
important performance measure.

Sometimes both are equally important:

3. ATM networks, file servers,  and web servers must have short response times for their 
customers and must also process large amounts of data quickly.

Dependability, Reliability, and Availability

Dependability is the quality of a system such that  reliance can be placed on its service. The 
service delivered by a system is its observed actual behavior as perceived by another system that 
interacts with it. The other system may be a machine, a person, or both.

Dependability is therefore dependent on a reference point, since it may be different to different 
observers. To remove this subjectivity, there needs to be a reference standard, called a  system 
specification, that specifies expected behavior.

When such a specification exists, one can define:

1. Service accomplishment  -- the state during which service is being delivered (meets 
specification).

2. Service interruption --  the state in which the delivered service is different from the 
specified service.  This could mean no service at all, or service that fails to meet the 
specification.
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A failure is a transition from state 1 to state 2. A transition  from state 2 to state 1 is called a 
restoration.

Failures can be permanent or intermittent. Intermittent failures are harder to diagnose.

Reliability is a measure of continuous service accomplishment. Equivalently, it can be measured 
by the mean time to failure (MTTF). (The amount of time it  is available without interruption, 
on average.)

The MTTF is usually an unintuitive measure of the reliability of a device. For example, today's 
disk drives have typical MTTFs larger than 1,000,000 hours.  This translates to more than 114 
years. Does this mean that if you purchased such a drive it would not fail in your lifetime? No, of 
course not,  because the MTTF is a statistic,  not an absolute guarantee.   For this reason, the 
inverse of the MTTF is often used instead. The inverse is the number of failures per unit time 
that can be expected. The typical unit of time is one year – the number of failures that can be 
expected in a single year – and it is called the annual failure rate, or AFR.

The AFR is the average number of failures per year, i.e., the average number of devices, that 
would fail in a year. For example, if the MTTF is 3 months, then the AFR is 4 times per year.  If  
the MTTF is 5 years, then the AFR would be 1/5th of a year, meaning that one fifth of a device 
would fail in a year, which makes no sense!  The way it is interpreted is that it is the fraction of 
devices that fail in a year. If the MTTF is 5 years, and we owned 100 such devices, then we 
would expect 1/5th of them, or 20,  to fail in a year. Since there are 8760 hours in one year, on 
average we would expect a failure every 438 hours, assuming the devices operate continuously.

In  fact,  disk  drive  manufacturers  typically  report  the  AFR for  their  devices  rather  than  the 
MTTF, and  determine the MTTF of a new disk drive from its AFR, which is  estimated based on 
accelerated life and stress tests or based on field data from earlier products1. The MTTF is then 
estimated by dividing the number of available hours per year by the AFR. Usually the AFR is 
less than 1%.

Example.  If a disk drive has a 1,500,000 MTTF, then, recalling that there are 8760 hours in a 
year,  its AFR is 8760/1500000= .00584.   If  a company owns 100,000 such disk drives, then we 
would expect 0.00584*100000=584 disk failures each year, which is more than one disk failing 
every day.

1  G. Cole. Estimating drive reliability in desktop computers and consumer electronics 
systems. TP-338.1. Seagate. 2000.
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Figure 2: Summary of studies of causes of failure, from 
Patterson/Hennessy
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Service interruption is measured by how long a system is unavailable, which is characterized by 
the mean time to repair (MTTR).  Mean time to repair is the average amount of time that it takes 
for a device to be restored to the available state from the unavailable state. Sometimes this can be 
just minutes or hours, but sometimes it can be days, depending on many factors. 

The MTTF alone does not characterize the availability of a device, because if  the interval from 
the moment of failure to the moment at which it is restored is long, the fraction of available time 
is diminished. A more comprehensive characterization is the sum of the MTTF and the MTTR 
and is called the mean time between failures (MTBF). You can think of it as the time to the next 
failure plus the time it takes to repair that failure and bring the system back to the available state. 

Availability is defined as

Availability = MTTF/ (MTTF + MTTR) = MTTF/MTBF

Then 0 <= Availability  <= 1.0.  It  is  the  fraction of  time that  a  system is  achieving service 
accomplishment.

Example

A system's performance is observed over the course of 185 days and the following data was 
recorded:

Day 10 12 92 95 140 145 180 185

Event Failed Restarted Failed Restarted Failed Restarted Failed Restarted

after which it stayed up. Assuming that the events occurred at the ends of the given days, the 
MTTF is 

(10 + (92-12) + (140-95 + (180-145) ) /4  = (10+80+45+35)/4 = 42.5

The MTTR is (2+3+5+5)/4 = 3.75

Availability is 42.5/(42.5+3.75) = 0.92.

When using the formula 

MTTF/ (MTTF + MTTR)

the number of data points in the MTTF and MTTR should be the same, otherwise the formula is 
less accurate than using the average of the mean times between failures obtained directly from 
the in service times themselves.   The degree of inaccuracy will diminish though as the number 
of data points becomes very large (in the hundreds to thousands).

To improve  MTTF,  either  one  improves  the  quality  of  the  components  or  makes  the  entire 
system more fault tolerant. A system is fault tolerant if a failure does not lead to unavailability.

A fault is a failure of a component. 

Hence MTTF can be improved by either:

1. Fault avoidance -- make the components better so that they do not fail as frequently.
2. Fault tolerance -- use redundancy to allow service to continue to meet the specification 

despite the occurrence of faults. RAID is an example of building 
fault tolerance into a storage system.
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3. Fault forecasting -- predicting the presence and creation of faults, both hardware and 
software, to allow for replacing it before the failure occurs.

Fault Tolerance in the Memory Hierarchy

I cnduo't bvleiee taht I culod aulaclty uesdtannrd waht I was rdnaieg. Unisg the  
icndeblire  pweor  of  the  hmuan  mnid,  aocdcrnig  to  rseecrah  at  Cmabrigde  
Uinervtisy,  it  dseno't  mttaer in waht oderr the lterets  in a wrod are,  the olny  
irpoamtnt tihng is taht the frsit and lsat ltteer be in the rhgit pclae. The rset can  
be a taotl mses and you can sitll raed it whoutit a pboerlm. Tihs is bucseae the  
huamn  mnid  deos  not  raed  ervey  ltteer  by  istlef,  but  the  wrod  as  a  wlohe.  
Aaznmig, huh? Yaeh and I awlyas tghhuot slelinpg was ipmorantt! See if yuor  
fdreins can raed tihs too.2

People are able to read this text because they do not read it letter by letter.  We tolerate small “bit 
errors” in text.  Computers do not behave this way. Instead, they use redundancy schemes to 
detect and correct  errors at all levels of the memory hierarchy, including static and dynamic 
RAM, disk devices, and network interfaces.  

Bits are sometimes flipped in transmission, perhaps on a bus, or when being written to memory, 
or being transferred to disk, or when written to disk. It can happen anywhere they are “in flight.”  
For example, the bit sequence 01101001 might get garbled when it is written to memory and 
become 01111001. This is a single bit flip.

In 1968, Richard Hamming invented a redundancy scheme for memory based on the idea of 
parity. (He received the Turing Award for this in 1968.)

Definition: A bit string has odd parity if the number of 1's in the string is odd. A bit string has 
even parity if the number of 1's in the string is even.

A simple redundancy scheme based on parity is to count the 1-bits in the word when it is written 
to memory. An extra bit called a parity bit is stored with the word in memory.  If the word has 
odd parity, the parity bit is set to 1, otherwise it is set to 0. The sum of the parity of the word and  
the parity bit is always even.  When the word is read, the parity bit is read also. If the parity of 
the word and the parity bit is not even, it implies that an odd number of bits were flipped. Since 
the probability that three or more bits were flipped is close to zero, it really implies that a single 
bit was flipped. If two bits get flipped this scheme does not detect it, because the parity will not 
change. (Make sure you convince yourself of this.) Because bit flips have very low probability in 
general, the occurrence of two or more bit flips in a word is a tolerable error event.

This is a form of error detection code (EDC). It can detect the presence of an error but not its 
location, and hence it cannot be used to correct the error. Thus, by itself it is not a method of 
fault tolerance. For fault toleramce we need an error correction code (ECC).

Definition. The Hamming distance between two strings is the least number of bits that must be 
changed in one string to make it identical to the other string. 

Examples. Let d(x,y) be the Hamming distance between bit strings x and y.

d(010101, 000000) = 3

2 http://www.ecenglish.com/learnenglish/lessons/can-you-read
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d(11001100, 00111100) = 4

d(01101, 01001) = 1

Hamming distance is a useful measure and it is the basis of various error correcting codes.  The 
basic idea is that there are correct bit patterns and incorrect bit patterns. Incorrect bit patterns 
correspond to bit strings that have errors, and correct bit patterns are those that are guaranteed to 
be error free.

Suppose that the Hamming distance between any pair of correct bit patterns is 3. Then it takes 
three bit flips to make any correct pattern look like another correct pattern.  Since three bit flips 
are highly improbable, if one could develop a mapping of data into a distance 3 code, then it 
would lead to a method of error correction.

Example.

If we have data that is just two bits long, there are four possible patterns: 00, 01, 10, and 11. 
Suppose that, to transmit a 2-bit data value xy, we send the 5-bit code xypxy, where p is a  parity 
bit for the string xy.  For 2-bit  patterns 00, 01, 10, and 11, the code words respectively are 
00000, 01101, 10110, 11011. You can check that the Hamming distance between any pair of 
these code words is at least 3.  If a bit pattern is received that is not one of these code words, then 
it represents an error. The correction algorithm chooses a code word whose Hamming distance 
from the incorrect pattern is least.  

For example if the pattern 10101 is received, since 

d(10101, 00000) = 3

d(10101, 01101) = 2

d(10101, 10110) = 2

d(10101, 11011) = 3

either 01101 or 10110 could be chosen, since they have the same Hamming distance to the 
received word.

Hamming's ECC for memory that detects and corrects a single bit error is as follows. Prior to 
transmitting or writing the data, we do the following:

1. Start numbering bits with 1 as the leftmost bit (not 0, and not rightmost)

2. Write the bit positions as binary numerals: 1, 10, 11, 100, 101, ... 

3. All bit positions that are powers of 2 are marked as parity bits. Thus, you mark 1, 2, 4, 8, 
16 and so on as parity bits. These are the binary numerals with a single 1-bit.

4. The unmarked bit positions are for the actual data bits. These are 3, 5, 6, 7, 9, 10, 11, 12, 
13, 14, 15, 17, 18, ...

5. The position of each parity bit determines for which data bits it is the parity bit according 
to the rules:

1. Bit 1 checks all  bits whose position number (its address in the string) has a least 
significant bit of 1:  1, 3, 5, 7, 9, 11, and so on/ I.e., all odd numbers.
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2. Bit 2 checks all bits whose position number has a second-least significant bit of 1 (all 
numbers that end in 10 or 11 in the binary representation):  2, 3, 6, 7, 10, 11, 14, 
15, ...

3. Bit 4 checks all bits whose position number has a third-least significant bit of 1 (all 
numbers whose binary representation ends in one of 100, 101, 110, 111): 4, 5, 6, 7, 
12, 13, 14, 15, 20, 21, 22, 23,, ...

4. Bit 8 checks all bits whose position number has a fourth-least significant bit of 1: 8 
through 15, 24 through 31, 40 through 47, and so on.

5. In general each parity bit covers all bits where the bitwise AND of the parity position 
and the bit position is non-zero.

6. Set all of the parity bits to create even parity for each group that they check.

In this scheme, every data bit is checked by at least two parity bits. This is how the location of 
the error can be detected and corrected. The following table illustrates coverage for a byte of 
data.

Bit Position 1 2 3 4 5 6 7 8 9 10 11 12

Encoded data bits p1 p2 d1 p4 d2 d3 d4 p8 d5 d6 d7 d8

Parity 
bit 

coverage

p1 x x x x x x

p2 x x x x x x

p3 x x x x x

p4 x x x x x

The table shows that the 8 data bits are in positions 3,5,6,7,9,10,11,12. If you scan down each of 
these columns, you see at least two x's. Each x marks which data bits the corresponding parity bit 
in that row checks. So d1 is checked by p1 and p2, d2 by p1 and p3, and so on. 

The error correction works as follows. When the transmitted value is received or it is time to read 
the  data  out  of  memory,  the  parity  bits  are  checked  against  the  bits  they  cover,  including 
themselves. Before transmission each group of bits had even parity, so if there are no errors, each 
group should still have even parity.  Therefore, for each parity bit, the parity of its group must be 
computed and the parity bit set to 0 if the sum is even and 1 if odd. If any turned odd, this 
indicates an error that can be corrected.

In the above example, if the computed parities of the 4 parity bit sequence (p8,p4,p2,p1) remains 
even, which means that the sequence is (0,0,0,0), then there is no error. Otherwise the values of 
the recalculated parity bits among (p8,p4,p2,p1) are used to find the position of the error. The 
decimal value of the binary number represented by the sequence (p8,p4,p2,p1) is the position of 
the erroneous bit. For example, if the sequence is 10012 = 910 then bit 9 (d5) is an error and must 
be corrected. Why this works is not justified here, but roughly, each bit that is a 1 is a parity bit 
whose group contains the erroneous bit, and each group consists of positions that have a 1-bit in 
their binary numbers for the given parity bit.

Hamming also developed a single error correction, double error detection code (SEC/DED). 
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Modern  memory technology uses  various  ECC's  in  both SRAM and DRAM. Because  ECC 
slows down a memory, there is a trade-off between reliability and performance. In spite of this, 
many servers use some form of ECC memory chips (some use SEC/DED). In these chips, the 
entire row of data is checked at once. For example, an 8-byte memory block in a single 64-bit 
wide row would be extended with 8 bits to form a 72-bit wide memory.   Some motherboards do  
not  support  ECC  memory  modules  and  some  do.   You  can  check  their  specifications  to 
determine this.

Example

Suppose the byte 10110110 is transmitted and on the way it becomes 10010110, i.e., data bit 3,  
counting from the left starting at 1, is flipped. We show how the Hamming single error ECC 
works.

The 8-bit sequence needs 4 parity bits ate positions 1, 2, 4, and 8. The actual data is therefore 

_ _ 1_011_0110.

1. Position 1 checks positions 1,3,5,7,9,11 which are in bold: _ _ 1_ 011 _ 0110. There are 
three 1's so it is odd parity and position 1 is a 1-bit.

2. Position 2 checks positions 2,3,6,7,10,11, which are in bold: _ _ 1 _ 011 _ 0110. There 
are five 1's, so it is odd parity and position 2 is set to a 1-bit.

3. Position 4 checks positions 4,5,6,7,12 which are in bold: _ _ 1_ 011 _ 0110. There are 
two 1's, so it is even parity and position 4 is set to a 0-bit.

4. Position 8 checks positions 8,9,10,11,12 which are in bold: _ _ 1_ 011 _ 0110. There are 
two 1's, so it is even parity and position 4 is set to a 0-bit.

The  12-bit  sequence  that  is  transmitted  is  therefore  111001100110.  On  receipt  it  is 
101000100110.  The error detection code checks the parity groups:

1. The parity of the group for bit 1 shown in bold   111000100110 is 0. Parity bit 1 stays 0.

2. The parity of the group for bit 2 shown in bold   111000100110 is 1. Parity bit 2 is set to 
1.

3. The parity of the group for bit 4 shown in bold   111000100110 is 1. Parity bit 4 is set to 
1.

4. The parity of the group for bit 8 shown in bold   111000100110 is 0. Parity bit 8 stays 0.

The  sequence  (p8,p4,p2,p1)  is  0110  =  610 so  bit  6,  which  is  data  bit  3,  is  corrected: 
101001100110 and the extracted byte is  10110110.

Disk Storage

Magnetic Disks

All magnetic disks have the following  properties in common:

• One or more rotating platters (they rotate in unison)

• Magnetic coated surface

• Movable read/write head
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• Nonvolatility

• Rotation speed (also called spindle speed these days) from 5400 to 15000 RPM

There is some important terminology to remember regarding the structure of a magnetic disk 
drive:

• A platter is one disk of a set of one or more coaxial disks.

• A surface is one of the two surfaces of any platter. Each surface is divided into a set of 
concentric circles, called tracks.

• A track is one of the concentric rings on a surface on which the data is recorded.

• A sector is the consecutive sequence of bits on a track within a pre-specified arc of the 
circle.  

• A cylinder is the set of all  tracks under the read/write heads, on all  surfaces, at a given 
time

Tracks are not necessarily divided into the same number of sectors. Inner tracks may have fewer 
sectors than outer tracks. The idea is to keep the bits uniformly spaced in each track. This is 
called zone bit recording (ZBR). Early hard disk drives and modern CDs and DVDs write data at 
a constant number of bits per second. They do this by varying the speed of the drive depending 
on which track is being accessed. The result is that all tracks have the same amount of data  
(density) per track. Modern hard drives use ZBR,   increasing the write speed from the inner to 
the outer zone and thereby storing more data per track in the outer zones.

Performance Costs

To perform a read or a write on a disk, three steps must be taken: 

1. The  read/write  heads  must  be  moved  in  or  out  until  they  are  positioned  over  the 
appropriate track. This is called seeking. 

2. The head then waits until the right sector has moved under the head. 

3. The data is transferred to or from the disk.

Each of these steps has an associated cost in terms of time:

• Seek time  The amount of time for the heads to move to the right track

• Rotational latency    The time spent waiting for the right sector to rotate under the 
heads. (Also called rotational delay.)

• Transfer time The time to transfer a block of bits, which depends upon sector 
size, rotation speed, and the recording density of the track.

The  external data transfer rate is the speed of communication 
between  the  system memory  and the  internal  buffer  or  cache 
built into the drive. The internal data transfer rate is the speed 
at which the hard disk can physically write or read data to or 
from the surface of the platter and then transfer it to the internal 
drive  cache  or  read  buffer.  The  internal  data  transfer  rate  is 
influenced by:

• the rate at which the head can read bits from the medium,
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• the rate at which the next head starts reading data in case 
the data is spread across multiple surfaces,

• the  rate  at  which  the  head  can  advance  to  the  next 
cylinder  when  it  finishes  reading  data  in  the  current 
cylinder.

In addition, there is a fourth component to the overall time overhead that is related to the disk 
controller.  The  disk  controller  is  the  disk's  processing  unit  and is  responsible  for  receiving 
instructions and data and controlling the activities of the disk. The controller's execution time is 
another factor in the overhead of disk I/O:

• Controller overhead The time spent by controller to initiate and finalize I/O transfers.

The complication in true performance estimation is that modern controllers come with very large 
caches and do anticipatory caching of sectors. Transfer time from the cache to the processor is 
much smaller  because there  is  no mechanical  operation  involved;  the data  are  read from or 
written to the cache directly. 

Common Measures

Disk manufacturers usually report  minimum seek time, maximum seek time, and average seek 
time.   Average  seek  time depends  upon many  factors  and so  is  not  always  useful.  Typical 
average seek times are between 3 ms and 13 ms.  High-end servers usually have average seek 
times less than 4 ms, desktop computers around 8 to 10 ms, and mobile devices around 12 to 14 
ms.   Manufacturers  often  estimate  average  seek  times  based  on  statistical  usage.  From  a 
theoretical point of view, the average seek time is the time to traverse one-third of the tracks.

Average rotational latency is between

 ½ rotation / minimum rotations per sec = 0.5 /5400 RPM 

                                                                 =  0.5/90  sec = 0.0056 sec = 5.6 ms
and

½ rotation / maximum rotations per sec = 0.5 /15000 RPM  

                                                                = 0.5/250 sec = 0.002 sec = 2.0  ms

Modern disk drives have RPMs in the higher end of that range.

Transfer time depends on sector size, recording density, and rotation speed. Typical transfer 
rates are between 125 MB/sec and 200 MB/sec, but when transfers are measured from the cache, 
they can be as much  as 400 MB/sec.

Example

What is the average time to read or write a 512 byte sector for a disk rotating at 5400 RPM, 
given advertised 

• average seek time = 12 ms 

• transfer rate = 5 MB/sec

• controller overhead = 2 ms
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Time to read a 512 byte sector is

= seek time + rotational latency + transfer time + controller overhead

= 12 ms + 0.5/(5400/60) sec + 512 bytes/(5 MB/sec) + 2 ms

= 12 ms + 5.6 ms + 0.1 ms + 2 ms 

= 19.7 ms

Rotational delay can be the dominating cost if seek time is much less.

Reliability

Disks eventually go bad. The magnetically stored bits gradually change, and information is lost. 
Disk drives are capable of detecting when bits go bad, and therefore the controller includes extra 
data,  known as  an  error  correction  code,  when it  writes  information  to  the disk.  When the 
controller reads back this information, it can detect whether errors have occurred in the data. The 
error correction codes act as redundant information that is used to verify the integrity of the data. 
The most commonly used ECC  is called the Reed-Solomon algorithm3. The better the ECC, the 
more computation time is needed. The number of bits of correction code associated with a sector 
is a design decision that  determines the robustness of the error detection and the overhead as 
well. 

Flash Storage

Flash memory is a type of EEPROM (electrically erasable programmable read-only memory) 
that has grown in popularity because:

• it is durable (resistant to shock) 

• it is compact

• it is power-efficient

• it has much smaller latency than hard disks

In addition, its  capacity is usually large enough for many applications (cameras, phones, media 
players) but is available in small capacities for small devices. Because of these features, it is the 
first technology that is competitive with magnetic disks in the secondary storage market.

There are two types of flash memory: NOR flash and NAND flash. The original technology was 
NOR flash.  NOR flash provided random access memory.  NAND flash provided much more 
storage  capacity  but  could  only  be read  and written  in  blocks.   In  addition  it  is  much less 
expensive  than NOR flash.

The limiting factor is that bits wear out with writes over time.  The table  shows that NAND flash 
will wear out faster than NOR flash. Flash drive controllers reduce the chance of wear-outs by 
trying to distribute writes uniformly across the memory. They do this by moving logical blocks 
that have been written a lot to different physical blocks. This is called level wearing.

3 Based on an article written by Reed and Solomon in 1960, "Polynomial Codes over Certain Finite Fields."
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Characteristics NOR flash NAND flash

Typical use BIOS USB key

Minimum access size (bytes) 512 2048

Read time (msec) 0.08 25

Write time (msec) 10.00 1500 to erase + 250

Read bandwidth (MB/sec) 10 40

Write bandwidth (MB/sec) 0.4 8

Wear-out (writes per cell) 100,000 10,000 to 100,000

Best price/GB (2008) $65 $4

Table 1: NOR versus NAND flash memory comparison (from Paterson & Hennessey).

Connecting Processors, Memory, and I/O Devices

A bus is a shared communication path whose purpose is to allow the transfer of data among the 
devices connected to it.   A bus includes address, control, and data lines as well as lines needed 
to support interrupts and bus arbitration.  Control lines include a read/write line.

A bus protocol is a set of rules that govern the behavior of the bus. Devices connected to the bus 
have to use these rules to transfer data. The rules specify when to place data on the bus, when to 
assert and de-assert control signals, and so on.

Among methods of interconnecting components of a computer system, buses are

• versatile
• low-cost
• a major bottleneck

Bus speed is limited by:
• bus length
• number of attached devices

Buses can be synchronous or asynchronous; synchronous buses use a clock to control transfers, 
whereas asynchronous buses do not. 

Because of clock skew and signal reflection, it is difficult to design buses with many parallel 
wires at  high speed.  Clock skew is the difference in absolute time between when two state 
elements  see  a  clock  edge.  Clock  skew arises  because  the  clock  signal  will  often  use  two 
different paths, with slightly different delays, to reach two different state elements. When the 
length of the wires is long and clock speeds are fast, skew can become a problem. The reflection 
of the clock signal is also a problem as clock speeds get faster.

Buses  are  gradually  being  replaced  by  serial  point-to-point  interconnection  networks  with 
switches. Nonetheless, we begin with a brief overview of buses.

Bus Types

Different kinds of buses are used to connect different parts of a computer system to each other. 
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Processor-Memory Bus

These are sometimes called processor buses. They are short, high speed buses, usually designed 
for a specific memory and processor to maximize bandwidth. They can be used when all devices 
that can be attached are known in advance and have known characteristics. Typically these are 
proprietary buses. Also called a front side bus.

I/O Bus

I/O buses have varying length and usually allow many different kinds of devices with varying 
speeds and data block sizes to be attached. I/O buses may be connected to the processor bus via a 
bridge or a separate controller interface, but usually they are connected to what is often called a 
system, or  backplane, bus, described below.  I/O buses are almost always  standard, off-the-
shelf components. Examples include SCSI, USB, PCI Express, Serial ATA (SATA), and Serial 
attached SCSI (SAS) .

Backplane, or System, Bus

Most modern computers use a single, general-purpose bus to interconnect a variety of internal 
devices, including network interface cards, DMA controllers, and hard disk drives. These buses 
used to be called backplane buses but are now often called system buses. Usually, I/O buses are 
connected to the system bus, which in turn connects to the processor bus via a bridge. 
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The I/O Interconnects of the x86 Processors

The I/O system depicted  in  Figure 3 is  typical  of that  of all  x86 processors.  There are two 
controller  hubs,  called  the  north  bridge and  the  south  bridge.   The  processor  connects  to 
memory and peripheral devices via these hubs. 

The north bridge is the memory controller hub, and connects the processor to the memory, the 
south bridge, and sometimes the graphics card (via a PCIe bus.)  The south bridge is the I/O 
controller hub and connects the processor to all I/O devices, through a number of different kinds 
of attached buses such as the USB, PCI, SATA and so on.

Some processors, such as the AMD Opteron X4, incorporate the north bridge into the processor 
chip instead of its being a separate chip.

Interfacing I/O Devices to the Processor, Memory, and OS

This section answers the following questions:

• How is an I/O request transformed into device-specific commands?
• How is an I/O request actually communicated to the I/O device?
• How is data transferred to or from the memory?
• What are the respective roles of the application level software, the operating system, and 

the hardware?

The answers to these questions will vary depending upon how the computer system is designed 
to be used.  Most modern computers and operating systems support multiprocessing, interactive 
use, and multiple users.  To provide these features, the operating system must perform under the 
following constraints:

• The I/O system is shared among multiple processes.
• If  processes are  allowed to control devices directly, then throughput and response time 

will  not  be under the control  of the operating  system,  and the computer  system will 
perform poorly. 

• If  user  processes are  required  to  issue  I/O  requests  directly  to  devices,  then  the 
programming task becomes much more tedious for the software engineer.

• I/O requests should  be handled by the operating system, and the operating system must 
determine when the requested I/O has completed.

• Because  I/O  is  handled by  the  operating  system,  the  operating  system must  provide 
equitable access to I/O resources and device abstraction.

To satisfy these constraints, the operating system must be able to communicate with devices and 
prevent user programs from communicating with these devices. There are three different types of 
communication:

• Issuing commands to devices (e.g., read, write, seek, start, stop)
• Receiving notifications  when devices  need attention  (e.g.,  I/O completion,  error,  load 

media)
• Transferring data between memory and a device.

14
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The most common paradigm used in operating systems is a multi-layered approach to resources. 
Users  make  requests  for  I/O  to  application  software.  Application  software  translates  these 
requests into calls to the operating system. The device drivers are the operating system’s lowest 
level software; they are really two parts. One part issues I/O commands to the devices. The other 
part responds to signals sent by the device to the processor when they need attention.  Together 
they  maintain  the  queues  needed  to  coordinate  the  requests.  The  operating  system  notifies 
applications when the I/O is completed.

Giving Commands to I/O Devices

In order for the processor to issue a command to an I/O device, it has to be able to address the  
device and it has to be able to deliver one or more commands to it.  There are two different 
methods of addressing devices: memory-mapped I/O and special I/O instructions.

Memory-Mapped I/O

In memory-mapped I/O, parts of the address space are reserved for I/O device ports. Device port 
locations  are  mapped  to  specific  memory  addresses  in  such a  way that  when the  processor 
accesses these locations, it is really accessing the device ports. Ordinary instructions are written 
to these addresses in order to perform I/O as if they were data. When the processor references an 
address in this  special  part  of the address space,  the memory controller  ignores the address; 
instead  the hardware translates this to the corresponding I/O device register. The I/O device 
controller receives the  data and interprets it as a command which it can then carry out. 

Certain addresses are used for specific commands. For example, one address might be for reads 
from the device and another, for writes. In the Intel IA-32 instruction set, the identifiers DATAIN 
and  DATAOUT are  mnemonic  names  for  memory  addresses  that  are  mapped  to  I/O  device 
registers. The ordinary MOV machine instruction

    MOV AL, DATAIN

moves a character from the device register into register AL and the instruction

     MOV DATAOUT,AL 

moves a character from register AL to the device register.  An example of an IA-32 I/O program 
to read from the keyboard and echo the characters on the screen is shown below. IA-32 is a 32-
bit Intel instruction format.

Example (Intel IA-32 instructions)

In  the  Intel-32  instruction  set,   there  are  two  device  status  registers,  INSTATUS  and 
OUTSTATUS. The following program assumes that the keyboard synchronization flag is stored 
in bit 3 of INSTATUS and the display synchronization flag is stored in bit 3 of OUTSTATUS.

LEA   EBP,LOC      # Register EBP points to LOC, the memory area 
READ: BT    INSTATUS,3   # INSTATUS bit 3 is set if there is data in 

JNC   READ         # DATAIN; this loops waiting for data
MOV   AL,DATAIN    # Transfer char into register AL
MOV   [EBP],AL     # Transfer AL contents to address in EBP
INC   EBP          # and increment EBP pointer

ECHO: BT    OUTSTATUS,3  # Wait for display to be ready
JNC   ECHO

15
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MOV   DATAOUT,AL   # Send char to display
CMP   AL,CR        # If not carriage return,
JNE   READ         #  read more chars 

Notes.

• LEA reg, addr is an instruction to load the address addr into the pointer register reg. 
• BT is a bit-test instruction. It loads the value in bit 3 of the specified register into the 

carry bit; JNC will branch if the carry bit is 0.

Figure 4 illustrates the basic structure of the connections when memory-mapped I/O is used. The 
four bus lines are for data, addresses, a read signal, and a write signal.  Figure 5, in contrast, 
shows the structure when special I/O instructions are used. In this case there are separate control 
lines from the CPU to memory and from the CPU to the I/O devices. 

Figure 4: Lines used in memory-mapped I/O

Communicating Via Special I/O Instructions

In isolated I/O, or I/O-mapped I/O, the processor has special instructions that perform I/O and 
a separate address space for the I/O devices.  In isolated I/O, the same address lines are used to 
address memory and the I/O devices; the processor asserts a control line to indicate that the I/O 
devices should read the address lines. All I/O devices read the address but only one responds. For 
example, in the IA-32 instruction format,

IN REGISTER,DEVICE_ADDR

and 

OUT DEVICE_ADDR,REGISTER

are  the  input  and  output  instructions  respectively.  DEVICE_ADDR is  an  8-bit  address,  and 
REGISTER is  either  AL or  EAX.   Some  instruction  sets,  such  as  the  IA-32,  support  both 
memory-mapped and isolated I/O.
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In Figure 5 the separate physical lines for communicating with the I/O devices and memory are 
labeled  READIO and  WRITEIO to symbolize that special  commands would be issued to use 
these lines.

Figure 5: Isolated I/O (using special I/O instructions)

Methods of Controlling I/O

There are three basic methods of controlling I/O and interacting with devices: polling, interrupt-
driven I/O, and direct memory access (DMA). These are described in turn.

Polling (Program-controlled I/O)

The program above that reads from the keyboard and echos the characters to the screen is an 
example of  polling.  In polling, every byte of data is transferred under the control of the CPU. 
An I/O program issues instructions to the I/O device to transfer the data. The data is transferred 
to or from memory by the program.  On a read, for example, the program must request the input  
operation and then repeatedly test the status of a bit or register to see if the input is available. It  
does this in a “busy-waiting” loop in which it “polls” the device to see if it is ready. In effect, it 
is the nagging child on the long trip, “are we there yet, are we there yet, are we there yet,…” 
until at long last we have arrived. This method is appropriate if the performance requirements are 
not great and the hardware does not support the other methods.  In general,  it  is wasteful of 
computing cycles. 

In  certain  situations,  polling  is  a  good  solution,  such  as  when  I/O  rates  are  completely 
predetermined. In this case, the processor knows exactly when the data will be ready, so the 
overhead  is  predictable.   The  disadvantage  of  polling  is  that  the  processor  is  completely 
consumed with the I/O, spinning in idle cycles waiting for the I/O device to finish, which is a 
waste of valuable CPU cycles,  especially if the frequency of polling is great. The following 
example demonstrates this.

Example.

Assume that a computer has a 500 MHz clock, and that the instructions in the operating system 
that are executed to perform the polling operation use 400 clock cycles. What is the overhead to 
poll each of the following three devices, with the stated characteristics?
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1. Mouse: can produce an event 30 times per second.
2. Floppy disk: can transfer 2-byte blocks at a rate of 50KB/second.
3. Hard disk: can transfer 4-word blocks at a rate of 4MB/second.

Solution.

The operating system uses 400 2ns clock cycles per polling operation, or 800 ns. 

Mouse: 30*800 ns /second = 0.000024 or 0.0024%.

Floppy Disk:  50KBytes/sec at 2 bytes per transfer implies that it performs 25,000 transfers per 
second.  The overhead is 25,000*800 ns/second = 0.02 or 2%.

Hard Disk: 4MB/second at 4 words per transfer implies that it transfers 250,000 times per 
second. The overhead is 250,000*800 ns/ second  = 0.2 or 20%.

This shows that the faster the device, the more overhead is involved in polling as a means of 
controlling I/O.

Interrupt-driven I/O

An alternative to programmed I/O is In interrupt-driven I/O.  In interrupt-driven I/O, a program 
running on the processor issues an I/O command to a device and then goes into a waiting state. 
Another process is run on the processor while the I/O is carried out. When the I/O completes, the 
I/O device sends a signal, called an interrupt,  to the processor.  This signal is like an exception 
except that it is asynchronous.

This requires adding more signals to the bus and more logic to the I/O devices to allow them to 
notify the CPU when the device is ready for a new I/O operation, or when an I/O operation is  
complete. There are various ways to arrange this, some more complex and flexible than others.  
Regardless  of  the  method,  it  has  to  provide  a  means  of  deciding  which  device  caused  the 
interrupt.

Figure 6: Interrupts with a single interrupt request line

The simplest scheme is a single control line on the bus, usually denoted INTR. All devices share 
this line. The line is the logical OR of the interrupt requests of the attached devices. If any device 
has issued an interrupt, the processor receives the signal.  The processor then has to determine 
which device issued the request, which it does by polling the status registers of the devices. Once 
it has determined which device issued the request, it can initiate the transfer of data.
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If interrupts arrive at the same time, the processor has to decide which to accept. Generally, it 
does this by assigning priorities to the devices.  With a single interrupt line,  priorities can be 
assigned by using a daisy chain scheme like the kind used for bus arbitration. In a daisy chain, 
the devices are arranged in a sequence such that each device is connected to the next one and 
passes messages down the line if they are not addressed to it. That is the purpose of the INTA 
line  in   Figure  6,  which  runs  through  the  devices.    The  processor  sends  an  Interrupt 
Acknowledge signal through the line. The closest device that has an outstanding interrupt request 
intercepts the signal.

Another  solution  is  to  use  a  multiple-line  interrupt  system.  In  this  case  each  device  has  a 
dedicated  INTR line  and a  dedicated  INTA line.  This  makes  it  easy to  decide  which  device 
caused the interrupt. The lines run into a priority arbitration circuit in the CPU. The CPU chooses 
the highest priority interrupt.

Handling Interrupts 

When an interrupt occurs, the CPU needs to execute the subroutine that handles, or services, the 
interrupt. To do this, the contents of some of its registers must be saved.  Modern processors 
typically  allow two types of interrupts,  one that  forces a save of the entire  register  set,  and 
another that saves only a minimal set of registers. The latter is the more efficient solution since 
only a few registers are saved, and the subroutine can choose to save whatever other registers it 
needs to in order to execute. This is faster than saving all registers, and avoids unnecessary work 
if there is no need to save them. The registers may be saved in special dedicated storage, or put 
on the system stack.  The interrupt service routine (ISR) runs, saves whatever CPU state it must, 
and on completion,  either the previous instruction sequence is resumed, or the scheduler is run 
to pick a different process to run.

How does the operating system know which ISR to execute? The answer is that once it knows 
which device caused the interrupt it knows which subroutine to run.  In vectored interrupts, there 
is a portion of memory that contains an array, i.e., a vector, each of whose cells is the starting 
address of an interrupt service routine (ISR). Each device has an entry in this vector.  When an 
interrupt occurs, the address of the device is used as an index into this array, and the starting 
address of the interrupt  service routine is  automatically  loaded, once the registers have been 
saved.

There are other issues related to interrupts. They include:

1. Should interrupts be disabled while an interrupt service routine is running? If so, is the 
interrupt lost, or is it just that the response is delayed?

2. If not disabled, what happens if an interrupt occurs while an interrupt service routine is 
running?  

There are various answers to these questions, depending on the complexity of the system. There 
are  usually  two  registers,  a  Cause  Register and  a  Status  Register,  used  to  solve  the  first 
question.  The Cause Register has a bit for each different interrupt. If an interrupt occurs, the bit  
is set to 1, otherwise it is  0. The  Status Register bits are used as an  interrupt mask. If an 
interrupt is enabled, there must be a 1-bit in the corresponding position in the Status Register. 
AND-ing the two registers gives the set of enabled interrupts that have occurred.

19



C SCI 360 Computer Architecture 3 Prof. Stewart Weiss
The Lower Levels of the Memory Hierarchy: Storage Systems

The mask can be used to set the interrupt priority level of the processor by a left-to-right ordering 
of the mask bits. If an interrupt occurs whose bit is to the left  of another one, it  has higher  
priority. By turning off all bits to the right of a given bit, the processor masks all lower level 
interrupts than a given level. If an interrupt occurs that is lower priority than the current priority 
level, it is ignored. If one occurs that is a higher or equal priority, the currently running process is 
preempted in favor of the interrupt service routine that handles the new interrupt, regardless of 
what it was doing. Each device has an associated priority level, and the ISR for that device runs 
at  that  priority  level.   For  example,  the  power  supply  can  send an interrupt  if  it  senses  an 
impending loss of power. This is the highest priority level on many machines. The system timer 
is also very high priority; it must keep accurate time and uses very little CPU time when it runs, 
so it is reasonable to allow it to run whenever it needs to, which is on the order of 60 times per 
second. 

Overhead

The overhead of interrupts is much lower than that of program-controlled I/O.  To illustrate, 
consider the hard disk from the preceding example, which could transfer 4-word blocks at a rate 
of 4 MB/second.  Suppose that the operating system needs 500 clock cycles of processing time to 
handle an interrupt and that the disk is only busy 5% of the time. 

For each of the 250,000 transfers per second that the disk could generate, the interrupt service 
routine, uses 500 clocks * 2 ns/clock = 1000 ns. But since it is busy only 5% of the time,  the 
overhead is 5% of 250,000 transfers * 1000 ns per transfer per second = 0.05 * 250,000,000 ns 
per second = 12,500,000 ns/second , which is 1.25%. Recall that polling used 20% of the CPU 
time, so this is 93.75% reduction in overhead (1.25/20 = 0.0625, so 1.25% is 6.25% of 20%.) 
The difference is that in polling, the polling program must run whether or not there is a transfer  
to be done, whereas with interrupts, the ISR runs only when there is actually a transfer to be 
made.
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Direct Memory Access (DMA)

Direct Memory Access (DMA) is a method of transferring data at a very high bandwidth with 
low overhead. The processor, under program control, effectively authorizes  a special device to 
take charge of the I/O transfers to memory, allowing it to be the bus master until the I/O is 
completed. A  device with this capability is called a DMA controller.

Figure 7: Circuitry for DMA interface

DMA significantly reduces the involvement of the processor in data transfers between memory 
and I/O devices.  A  DMA controller is  an I/O processor that  has the ability  to communicate 
directly with memory, transferring large blocks of data between memory and the I/O devices to 
which it is attached.  It achieves this because it is attached to the processor-memory bus on one 
side, and either an I/O bus or a dedicated device on the other, and it can be bus master on the  
memory  bus.  Typically,  a  single  DMA controller  will  service  multiple  I/O devices.  Certain 
devices, usually high-speed devices such as hard disks, CD-ROM drives, or network interfaces, 
may be equipped with DMA controllers. For example, a SCSI bus controller will have a DMA 
controller in its interface,  making it possible for all devices on the SCSI bus to transfer data 
directly to or from memory with little CPU involvement.

A program running on the CPU will give the DMA controller a memory address,  the number of 
bytes to transfer, and a flag indicating whether it is a read or a write. It will also give it the  
address of the I/O device involved in the I/O. The DMA controller becomes the bus master on 
the memory bus. If it is an input operation, the device will then start sending data to the DMA 
controller, which will buffer the data, and store it in successive memory locations as it becomes 
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available. If it is an output operation, it buffers the data from memory and sends it to the I/O 
device as it becomes ready to receive it.  In effect, it does what the CPU would do, but the CPU 
is free to  do other  things  in the meanwhile.   Error:  Reference  source not  found depicts  the 
circuitry in a typical DMA controller interface.

The sequence just described is usually known as burst mode. The typical sequence of operations 
in a burst mode  input transfer would be:

1. The CPU executes two instructions to load the DMA controller's IOAR and  Data Counter. 
The  IOAR gets  the start  address  in  memory of  the first  byte  to  be stored and the  Data 
Counter gets a count of the number of bytes to be transferred.

2. When the DMA controller is ready, it activates the DMA request signal4. This tells the CPU 
that it wants to use the bus.

3. The CPU  relinquishes control of the bus and activates DMA Acknowledge5 as part of the 
handshake. This tells the DMA controller that it can use the bus.

4. The DMA controller begins the transfer of data to memory using a hardware loop to update 
the IOAR and Data Counter.

5. If  the  I/O  device  is  not ready,  but  the  transfer  is  not  complete,  the  DMA  controller 
relinquishes the bus so that the processor can use it.

6. If the I/O device was not ready and it becomes ready, the DMA controller re-acquires the bus 
in the same way it did in step 2  above. 

7. When the Data Counter reaches 0,  the DMA controller  releases the bus and sends an 
interrupt to the CPU. 

Because the DMA controller owns the bus during a transfer, the CPU will not be able to access 
memory. If the CPU or the cache controller needs to access memory, it will be delayed.  For 
small data transfers this may be acceptable, but not for large transfers, because it defeats the 
purpose of using DMA in the first place. Therefore, DMA controllers usually operate in two 
modes, one for small transfers and one for larger transfers, in which "cycle-stealing" is allowed.

Cycle-stealing mode is a compromise between the burst mode just described and a programmed 
I/O mode. In cycle stealing, the DMA controller relinquishes the bus after each byte or word of 
data, giving the processor the chance to use the bus. If the processor needs the bus, it uses it. If  
not,  the CPU sends the  DMA Acknowledge back to  the DMA controller.  The CPU is  not 
interrupted to do this. The CPU and DMA controller are basically handshaking using the DMA 
Request and Acknowledge signals.

DMA Overhead Example

Suppose that a system uses DMA for its hard disk.  The system characteristics are:

1. System Clock: 500 MHz  (2 ns per cycle)

2. Hard Disk can transfer at 4MB/second using an 8KB block size. 

3. 1000 clock cycles  are  used in  the  CPU to setup the I/O and 500 clock cycles  are  used 
afterwards in the CPU.  What is the overhead of DMA transfers?

4 Also called the Bus Request (BR) line.
5 Also called the Bus Grant (BG) line.
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Each transfer takes 8KB / ( 4MB/ second) = 0.002 seconds (2 ms). Thus there are 
1.0 / 0.002 = 500 transfers per second.

If the disk is busy then it takes (1000 + 500) * 2 ns per transfer, which is 3000 ns per transfer.  
Since there are  as many as 500 transfers per  second,  the total  overhead is  500*3000 ns per 
second, or 1.5 ms per second, which is 0.15%.

DMA and Virtual Memory

In a system with virtual memory, DMA poses a problem – should the DMA controller use virtual 
or physical addresses? If it uses physical addresses, then it cannot perform reads or writes that 
cross page boundaries. To see this, imagine that pages are each 1 KB. If the DMA controller tries 
to write 3KB of data, then it will write into 3 or 4 physical pages. These pages may not belong to  
the same process, and may not be logically adjacent, and should be placed in the logically correct 
memory locations.  On the other hand, if it uses virtual addresses, it will need to translate every 
address, slowing things down considerably and requiring a large RAM of its own.  One solution 
is for the DMA controller to keep a cache of translations in its memory and update it using a 
replacement strategy such as LRU.  

This is still inadequate because the page translations it has may go stale if the processor updates 
the page tables independently.  For DMA to work properly, the processor must be prevented 
from changing the page tables during a DMA transfer.

DMA and Cache

DMA also creates problems with the cache. If the DMA controller is reading data directly from 
the disk into memory, then cache blocks may become stale, because the cache blocks will not be 
consistent with their corresponding memory blocks, which are newer. This is called the  stale  
data  problem.   Similarly,  the  DMA controller  might  read  from memory  and  get  stale  data 
because the system has a write-update cache that has not yet been flushed to memory.  There are 
a few solutions:

• Route all I/O through the cache.
• Flush the cache for I/O writes and invalidate it for I/O reads.

To make this efficient, special hardware is provided for flushing the cache. regardless, there is 
overhead added because of the time needed to invalidate the cache or route the I/O through it.

In some systems, there is no special hardware and the operating system must provide the cache 
coherence by ensuring that the cache blocks are flushed before an outgoing DMA transfer is 
started  and  invalidated  before  a  memory  range  affected  by  an  incoming  DMA  transfer  is 
accessed.  This solution introduces adds software overhead to the DMA operation.

Example  of Impact of I/O on System Performance

We illustrate the impact of I/O performance on overall system performance. Suppose that a 
benchmark program executes in 100 seconds of elapsed time in which 90% of the time is spent 
in the CPU and 10% is in waiting for I/O. Suppose that the number of processors doubles 
every two years, but they remain the same speed, and the I/O time does not change. How 
much faster will the program run at the end of six years?
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Elapsed  time  is  CPU  time  plus  I/O  time.   The  CPU  time  is  divided  by  the  number  of 
processors, but the I/O time remains the same. The following table illustrates the changes in 
elapsed time and CPU time over the 6-year period of the problem.

Years 
elapsed 

CPU Time (seconds) I/O 
Time

Elapsed Time % I/O Time

0 90 10 100 10

2 90/2 = 45 10 55 18

4 45/2 = 22.5 10 32.5 31

6 22.5/2 = 11.25 10 21.25 48

After six years, the elapsed time is 11 seconds; the speed increase is 100/21.25 = 4.7 (470%) 
even though there are 8 times as many processors.  The theoretical improvement, had I/O kept 
pace with CPU improvements would be 800%.

Redundant Arrays of Inexpensive Disks (RAID)

RAID was originally invented to improve I/O performance. The idea was to replace a few large 
disks  by  many  smaller  disks.  This  would  result  in  more  read  heads,  fewer  seeks,  more 
independent  simultaneous  accesses,  reduced  power  consumption,  and  smaller  space 
requirements.  It  was  also  believed  that  smaller  disks  were  less  reliable,  so  to  compensate, 
redundancy was added in the form of additional disks. The result was RAID. RAID is now used 
primarily as a means of increasing reliability and dependability, not performance.

Summary of RAID

RAID is categorized by the RAID level, an integer from 0 to 6. The different levels differ by 
how much redundancy there is and how errors are checked.  RAID 1 and RAID 5 are the most  
widely used. The following is a brief synopsis.

RAID 0  - There is no redundancy; it is designed to improve performance by the use of striping.  
Striping is the distribution of consecutive blocks of data across multiple disk drives. Striping 
combines several disk drives into a single logical volume. In many cases, this is done through the 
use of hardware controllers.  The advantage of striping is that several different devices can be 
performing the I/O simultaneously,  making the I/O faster. But it is no more reliable than an 
ordinary non-RAID disk.
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Figure 8: RAID 0. 6

RAID 1 - This uses  mirroring, which is a technique in which the disks are doubled and each 
write is replicated on a second disk. Mirrors are usually used to guard against data loss due to 
drive failure. Each drive in a mirror contains an identical copy of the data. When an individual 
drive fails, the mirror continues to work, providing data from the drives that are still functioning. 
The computer keeps running, and the administrator has time to replace the failed drive without 
user interruption.

RAID  2  -  This  uses  error  detecting  and  correcting  code  (bit-level  striping  with  dedicated 
Hamming-code parity). A RAID 2 system would normally have as many data disks as the word 
size of the computer, e.g., 32 or 64.  RAID 2 requires the use of extra disks to store an error-
correcting code for redundancy. With 32 data disks, a RAID 2 system would require 7 additional 
disks for a Hamming-code ECC. 

For various reasons,  RAID 2 is not used in practice, having been replaced by higher level RAID 
schemes. 

Figure 9: RAID 2

RAID  3  -  This  uses  bit-interleaved  parity;  improves  on  RAID  1  by  adding  only  enough 
redundant data to the secondary disks to be able to restore the lost data on the primary. Parity is a 
simple example of RAID 3 -- for a group of N disks there will be an extra disk, which stores the 
parity sum of the data from those disks. If a disk fails, it can be reconstructed by adding the other  
disks and subtracting from the parity disk. If two go bad, this fails. RAID 3 is not used very 
much in practice any longer. Like RAID 2, the number of disks should be equal to the word size  
of the machine.

6 The figures depicting RAID are from http://www.ecs.umass.edu/ece/koren/architecture/Raid/basicRAID.html.
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Figure 10: RAID 3

RAID 4 -  This  is  similar  to  RAID 3,  but  it  uses  block-interleaved  parity instead,  and data 
accesses  occur  differently.  The  block-interleaved,  parity  disk  array  is  similar  to  the  bit-
interleaved, parity disk array except that data is interleaved across disks in blocks rather than in 
bits. The size of these blocks is called the striping unit. 

Figure 11: RAID 4

RAID 5 -  This uses a distributed block-interleaved parity, which is an enhancement of RAID 4. 
The problem with RAID 4 is that the parity disk must be updated on every write. In RAID 5, the 
parity information is distributed across all of the disks and requires that all drives but one be 
present  to  operate.  The array  is  not  destroyed by a  single  drive  failure,  but  performance is 
degraded.

RAID 6 - Uses P+Q redundancy, which is a method of error correction that allows the disks to 
recover from two simultaneous failures. The P+Q redundant disk arrays are structurally very 
similar to the block-interleaved distributed-parity disk arrays of RAID 5.  RAID 6 provides fault 
tolerance up to two failed drives Using Reed-Solomon codes.) This makes larger RAID groups 
more practical,  especially  for high-availability  systems.   Like RAID 5,  a single drive failure 
results in reduced performance of the entire array until the failed drive has been replaced and the 
associated data rebuilt.

RAID 10 – This is a relatively new RAID scheme, essentially combining the striping of RAID 0 
and the mirroring of RAID 1.
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