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Introduction

Scientific  advancement  requires  computational  modeling  to  test  hypotheses.  Often  it  is 
impossible,  too  difficult,  or  too  time-consuming  to  do  actual  physical  experiments.  Instead 
computer simulations are done. Some problems are so complex that they take too long to solve 
using ordinary computers.  These have been called the "grand challenges" of science  (Levin 
1989) as described in the so-called 'blue book' (NSF, 1991).  Ten Grand Challenge problems 
were defined in the blue book, falling into the following categories:

• Ocean circulation
• Climate modelling
• Fluid Turbulence
• Pollution dispersion
• Human genome (completed in 2003)
• Quantum chromodynamics
• Semiconductor modeling
• Superconductor modeling
• Combustion systems
• Vision and cognition

Most scientific problems such as these must be solved numerically.  A numerical solution is  one 
that solves a problem by  numerical approximation,  which is an algorithm that computes an 
approximate answer by numerical means.

Simple equations often have analytical solutions. An analytical solution is one that expresses the 
variables  whose  value  is  to  be  determined  as  a  function  of  its  independent  variables.  For 
example, the area of a circle can be found if the radius is known, using the formula  a=π*r2. 
More often than not, there is no analytical solution to a problem.  For example, the indefinite 
integral  of  the function e^(-x^2) has no analytical  solution.  It  must be solved by numerical 
approximation.    A simple  example  of  numeric  approximation  is  the  trapezoidal  method of 
integration, in which the range of the integral is divided into equal width trapezoids and the areas 
of these trapezoids are computed  and summed.

Example: The Primitive-Equation Numerical Ocean Circulation Model

Global ocean circulation is too complex to solve analytically, even with gross simplifications. 
The  laws  of  thermodynamics  and  fluid  dynamics  govern  the  motion  of  the  water,  but  the 
equations, taking into consideration all of the coastal formations, are far too complex to solve. 
The  Grand  Challenge  problem  instead  asked  scientists  to  divide  the  ocean  into  a  three-
dimensional grid and solve the problem numerically on that grid.  

To illustrate, suppose that the  ocean were coarsely divided into 50 million 3-dimensional cells 
(4,096 latitudes by 1,024 longitudes by 12 layers deep).  At any instant of time,  each cell  is 
characterized by a small set of physical properties such as its temperature, density,  and direction 
of  flow  of  current.   A  numerical  approximation  of  the  "primitive  equations"  using  finite 
difference methods can be used to compute the physical properties of each cell in the next time 
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instant from the properties of the cell and its adjacent cells. If time is broken into ten minute 
steps, then to compute the new values of the cells' states from the old values for all cells in the  
ocean, for a single ten minute step, would require about 30 billion floating-point operations (30 
gigaflops.) Since the goal of the experiment is to understand changes in ocean circulation that 
will affect global warming over the next fifty or more years, it is necessary to run the simulation 
for that many years of simulated time.  One year's circulation would require about 1,576 trillion 
floating-point operations, and fifty years, 78,800 trillion flops. To perform a fifty year simulation 
on a conventional microprocessor capable of 10 megaflops (per second) at peak performance 
would require about 250,500 years! Even if the processor were 1000 times faster, it would take 
250.5 years!

The Required Computational Power

What  distinguishes  Grand  Challenge  problems   from  other  problems  is  that  they  require 
computational power in excess of 1 teraflops  (one trillion floating point operations per second) 
running for extremely long periods of time (weeks or months to solve small parts of them.)  

The  "El  Dorado"  of  computer  architecture  is  a  machine  created  by  connecting  many  small 
processors to form a single powerful large one, with performance increases proportional to the 
number of processors.  Such a machine would be useful for these Grand Challenge problems. In 
this chapter we explore the possibilities with and limitations of so-called supercomputers and 
large-scale multiprocessors.  We start with some definitions.

Definition.  A multiprocessor is a computer system with at least two processors.

Definition. A supercomputer is a computer with thousands of processors.

The term supercomputer originated around 1976, referring to the Cray-1 computer, which was a 
pipelined vector processor1. When it was introduced, it was capable of more than 100 million 
floating-point operations per second.  It had a single CPU.

Definition.  Job-level parallelism or process-level parallelism is a form of processing in which 
independent programs are run simultaneously on multiple processors.

In other words, when different programs run on different processors, this is job-level parallelism.

Definition.  A  parallel  processing program in  one  that  runs  on  multiple  processors 
simultaneously.

When a single program is coded in such a way that different parts of it can run at the same time 
on different processors, this is a parallel processing program.

Definition.  A  multicore  microprocessor is  a  microprocessor  containing  multiple  processors 
(called "cores") in a single integrated circuit.

1 This will be explained later.
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Software that is decomposed into independent threads of control that can run simultaneously and 
communicate with each other by one means or another is called concurrent software. Software 
that runs on a parallel machine is often called parallel software, regardless of whether or not it is 
sequential or concurrent. This is misleading.

Algorithms that are designed to run on parallel machines are usually called parallel algorithms. 
The  term  "concurrent  program"  is  usually  used  interchangeably  with  "parallel  program". 
Concurrency implies the use of shared resources with respect to which the independent threads 
of  control  must  synchronize  their  accesses.  Parallel  programs  do  not  necessarily  have  any 
concurrency or inter-process communication.

Software

Sequential Concurrent

Hardware

Serial Matrix  multiplication  written  in 
C++  running  on  a  single  chip 
processor such as a Pentium 4

Windows Vista Operating System 
running on a Pentium 4

Parallel Matrix  multiplication  written  in 
C++  running  on  a  multicore 
processor such as a Xeon 

Windows Vista Operating System 
running on a Xeon

Table 1: Examples of applications of both serial and concurrent software on both serial and  
parallel hardware

Parallel Processing Software

It  is  a  programming  challenge  to  develop  parallel  programs  to  solve  problems  efficiently. 
Parallel programs are difficult to understand, even more difficult to create, more difficult to test, 
and even more difficult to debug.  These are the principal reasons that they have not become 
widespread.  Writing programs in which several simultaneous tasks have to synchronize and 
exchange data with each other is intellectually daunting.  

Example

Suppose that you have ten thousand ballots, each with a ballot number, on separate pieces of 
paper. They are completely out of order and lying in a big box. You have one hundred volunteers 
who are going to place these ballots in sorted order, one behind the other, in a long, narrow 
container  large enough to hold them all. The container does not have slots -- the ballots are 
placed one behind another in order, so they cannot just be put into specific positions. In other 
words, one cannot simply put ballot #32 into an entry labeled 32. It must be placed after ballot  
#31 and before ballot #33. Only one person at a time can put a ballot into the box, although the 
people can sort their piles outside of the box simultaneously.

Try to write up instructions for each volunteer to follow so that all volunteers can sort these 
ballots into the container simultaneously. How will each person know where to put the ballots? 
Should one person be in charge of putting ballots into the box, or can this effort be divided 
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amongst the team? How will you prove that your algorithm is correct? Is it the best possible in 
terms of time? How can you prove it if it is?□

This  exercise, which in itself is challenging, is just the tip of a large iceberg of challenges. Even 
when parallel programs are written, they do not necessarily take full advantage of the parallelism 
inherent  in  the  hardware.  And  if  all  of  this  isn't  discouraging  enough,  as  the  number  of 
processors increases, there is no guarantee that the performance gain will match the increase in 
the number of processors. This limitation is a consequence of Amdahl's Law.

Amdahl's Law

Definition. The speedup of a parallel algorithm running on p processors is the running time of 
the  fastest  known serial  algorithm running on a  single  processor  of  a  p-processor  computer 
divided by the running time of the parallel algorithm running on the same p-processor computer 
using all p processors.

For example, if a particular parallel algorithm takes 10 seconds running on a computer using all  
of its 20 processors, and the fastest known serial algorithm that solves this same problem takes 
150 seconds when run on one of these processors, the speedup of the algorithm is 150/10 = 15.

Definition. The efficiency of a parallel algorithm running on p processors is the speed-up  of the 
algorithm divided by the number of processors, p.

In  the preceding example,  the efficiency of the algorithm is  15/20 = 0.75,  because it  had a 
speedup of 15 and it used 20 processors to achieve it. Efficiency is always a number between 0 
and 1.0.

Efficiency is a measure of how much a parallel algorithm takes advantage of the parallelism of 
the problem, as well as how well it utilizes the processors to decrease running time. For example, 
if a particular parallel algorithm has a speedup of  0.5p with p processors, then its efficiency is  
0.5.

Gene Amdahl is a computer scientist who, among his many other accomplishments,  formulated 
a law that puts limits on just how much speedup is possible for any given problem. It is called 
Amdahl's Law:

Let f  be the fraction of operations in a computation that must be performed sequentially, 
where 0  ≤ f  ≤ 1.   The maximum speedup Smax(p) achievable by a parallel computer with p 
processors for this computation is 

 
Smax(p) = 1/(  f + (1-f)/p )

Notice that, as p approaches infinity, the maximum speedup approaches 1/f. 

Most problems have input and output, for example. These are usually  sequential operations, as 
the media they access are linear in nature.
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Example 1

Twenty percent of the instructions in a particular parallel algorithm are inherently sequential.  An 
implementation of it is run on a parallel computer with 20 processors. What is the maximum 
possible speed-up? What is the maximum possible efficiency? Do the same with p = 100.

Solution.

In this case, f = 0.2 and p = 20, so the maximum speed-up is 1/(0.2 + 0.8/20) = 1/0.24 = 4.17. 
The maximum efficiency would be 4.17/20 = 0.2085.  When p = 100, the maximum speedup is 
1/(0.2 + 0.8/100) = 1/0.208 = 4.808.  The maximum efficiency would be 4.808/100 = 0.048.

Exercise

The  maximum  possible  speedup  in  the  preceding  problem  cannot  exceed  5.0.   An  inverse 
problem is to ask how many processors would be needed to obtain a speedup of 4.9? For this 
many processors, what is the efficiency?

Example 2

An algorithm must compute the sum of two 1000 by 1000 matrices, after which it must print the 
diagonal elements of the resulting sum matrix. Since printing is inherently a serial operation and 
there are 1000 diagonal elements, the printing requires 1000 =  103 sequential operations. The 
sum of two n by n matrices, on the other hand, requires O(n2) operations using a brute force 
sequential algorithm. Thus, the summation would require 106 operations.  These operations are 
independent and could be performed completely in parallel if we had 106 processors ( ignoring an 
issue called communication overhead, which we will discuss elsewhere.) With one processor, the 
algorithm requires 106 + 103 sequential operations, of which 103 are inherently sequential. What 
is the maximum speed-up for a parallel computer with 100 processors.  What about for 1000 
processors?

Solution.

In this case, f =  and p = 100, so the maximum speedup with 100 
processors is .
With 1000 processors it is  .
Even though we increased the number of processors by a factor of 10, from 100 to 1000, the 
speedup increased by a factor of 5.5, roughly, from 90.99 to 500.25.

Example 3

What if we increase the matrix size to 10,000 in Example 2? What will the speed-up be with 100 
and 1000 processors? 

Solution.
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In this case the sequential part takes 104 steps and the parallel part, 108 steps. Thus,  f =  104 / 
(104 + 108 ) = 0.0001. With p = 100,  the maximum speedup with 100 processors is 1/(0.0001 + 
0.9999/100) = 1/0.010099 =  99.01.

With 1000 processors it is 1/(0.0001 + 0.9999/1000) = 1/0.0010999 =  909.17.
In this case, when we increase the number of processors from 100 to 1000, the increase in 
speedup is roughly 9.2, from 99 to 909.

So  with the  larger  size  matrix,  the  speedup  is  much  greater  for  the  machine  with  more 
processors.  In  fact,  the  speedup  increase  is  almost  equal  to  the  increase  in  the  number  of 
processors.

The Amdahl Effect 

The preceding two examples show an interesting phenomenon. In each case, as the size of the 
problem was increased, the fraction of the computation that was serial became smaller, which in 
turn meant that the maximum speedup possible for that problem increased.  For many types of 
problems, as the problem size increases, the fraction of operations that are  inherently sequential 
decreases2.  In  the  case  of  the  matrix  summation  problem for  a  10N by 10N  the  fraction  of 
inherently sequential operations is approximately 10-N,  so the fraction decreases exponentially. 
Amdahl's  law  puts  an  upper  bound  on  potential  speed-up,  Smax.  based  upon  this  fraction. 
Therefore,  as  problem  size  increases  for  these  types  of  problems,  for  a  fixed  number  of 
processors, the maximum possible speed-up increases. This is an example of the Amdahl effect. 
The Amdahl effect is that,  as problem size increases, the fraction of sequential operations in a 
problem may decrease, and hence the speed-up increases for a fixed number of processors. One 
way to see this is that small instances of problems do not enjoy the speedup on large parallel  
machines as well as large instances do.

Since parallel machines are often created not to decrease running time of a fixed size problem, 
but to increase the size of the problem that can be solved in a fixed amount of time, the Amdahl 
effect shows that this can often be accomplished. 

Scaling

The preceding examples also showed that getting good speedup while keeping the problem size 
fixed and increasing the number of processors is harder than getting good speedup by increasing 
problem size while the number of processors remains fixed. What about increasing problem size 
and increasing the number of processors?  Is it possible to keep the same level of efficiency as 
we increase both?

Let us use the term parallel system to mean a particular parallel algorithm running on a particular 
parallel computer system.  We can informally define the  scalability of a parallel system by the 
way in which its efficiency changes  as the problem size  and the size of the parallel system 

2  Although we have not yet discussed this, the fraction of the execution time in a parallel program in which the 
independent processes communicate with each other also tends to decrease in many cases as problem size 
increases.
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increase. (A precise definition of the scalability of a parallel system is outside of the scope of this 
course.)

We explain the concept informally. Suppose that a problem has size n. Let the memory  required 
to solve a problem of size n be denoted M(n). The memory M' available in a parallel processor  is 
proportional to p, the number of processors, because each processor has a fixed and constant 
amount of memory.  As p increases, M' increases linearly with it.  The problem size n cannot be 
increased more than the available memory M', i.e., M(n) <= M', because the space to solve the 
problem  has  to  be  available  in  physical  memory.  (Even  with  virtual  memory,  the  physical 
memory imposes a limit on how big the problem can be.)  Therefore, the size of the problem that 
can be solved as the number of processors increases depends on the function M(n).  For example, 
if  the amount  of memory needed to solve a problem of size n is  O(n2),  then the number of 
processors would have to grow  quadratically  to accommodate the larger problem size in the 
limit.

The scalability  of  the  parallel  system,  i.e.,   its  ability  to  remain  efficient  as  the  number  of 
processors is increased, depends on the function M(n), as well as on other factors which include 
the inherently sequential fraction  of the computation and the communication overhead.  The 
exact mathematical relationship is known as the isoefficiency metric. We do not cover it in this 
course.    

Load   Balancing  

Load balancing refers to the distribution of the workload to the processors in the multiprocessor. 
The preceding examples assumed that the workload was always uniformly distributed. This is 
not always possible. When the load is imbalanced, the speed-up may not be as great. 

Example

Suppose the problem is to perform two sums: a matrix sum of two 100 by 100 matrices, followed 
by computation of the trace of the result  matrix,  which is  the sum of its  diagonal  elements. 
Suppose that an addition takes t time steps. The matrix addition takes 10000t steps sequentially, 
and  the  sum of  the  diagonal  elements,  100t  steps  (actually  99t),  so  the  optimal  sequential 
algorithm takes 10100t steps.  

Suppose now that the problem is solved on a machine with 100 processors. Suppose the problem 
is distributed by giving each processor an equal size piece of the matrix summation, after which 
one of them will perform the addition of the 100 diagonal elements sequentially3, i.e., in 100t 
steps.  The matrix sum will take 10000t/100 = 100t steps followed by the scalar sum, another  
100t steps, so the total time is 200t. The speedup is therefore 10100t/200t = 50.5.  

Suppose one processor does 2% of the matrix summation work and the remaining processors do 
98% of the work. Then the processor that does 2% of the 10000 additions, does 0.02*10000 = 
200 additions, which implies that it takes 200t steps. The remaining 99 processors divide the 
9800 additions among themselves as evenly as possible, but it should be clear that the one with 
200 additions takes the longest, so the total amount of time to do the matrix addition is 200t and 

3 It is possible to distribute it, but the gain will be negligible.
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the  scalar  addition  remains  at  100t.  Assume the  scalar  addition  is  performed  on  this  same 
processor. The total time is now 300t, and the speedup in this case is 10100t/300t = 33.7.  The 
speedup dropped from 50.5 to 33.7.

If one processor gets 5% of the load, the speedup is even worse. In this case, one processor does 
500 additions while the remaining 99 do 9500. Suppose we shift the diagonal summation to one 
of the other processors, so that it can be done while the one with the larger load works.  The total  
time is 500t+100t, and the speedup is 10100t/600t = 16.83.

This shows how an imbalanced workload can reduce the speedup significantly.

Type of Multiprocessors

Early Development

Parallelism has existed in computers for many decades, at various levels of design. For example, 
bit-parallel  memory has been around since the early 1970s, and simultaneous I/O processing 
(using channels) has been used since the 1960s.  Other forms of parallelism include bit-parallel  
arithmetic  in  the  Arithmetic-Logic  Unit   (ALU),  instruction  look-ahead in  the  Control  Unit, 
direct memory access (DMA), and some other less well-known techniques such as data pipe-
lining and instruction pipe lining.   

By a parallel computer, though, we mean something quite different: a machine with parallelism 
at a much higher level, such as one containing multiple CPUs. This level of parallelism only 
began  to  take  hold  in  the  commercial  market  in  the  last  thirty  years,  mostly  because 
microprocessor  technology advances  such as  Very Large Scale  Integration  (VLSI)  that  took 
place in the late 1970's made it possible to build parallel computers much more economically, 
and  increases  in  performance  of  microprocessor-based  parallel  machines  outpaced  those  of 
mainframes  and  supercomputers.   This  does  not  mean  they  perform  better  than  all  such 
machines, but only that the rate of increase has been greater.  Machines such as the Intel Paragon 
XP/S™ and the Thinking Machines CM-5™ (now an orphan) could outperform super computers 
such as the Cray Y/MP™.  

In  the  1980's  companies  such  as  Intel,  Bolt,  Berenek,  and  Newman  (BBN),  and  Thinking 
Machines Corporation developed and sold parallel computers with different architectures. By the 
1990's, many of the leading computer makers were selling parallel computers as well. But a great 
influence on the parallel  computer market was a strategy adopted at NASA's Goddard Space 
Center, where, in 1994, they built a computer out of off-the-shelf hardware and free software, 
which  they  named  Beowulf.  Beowulf  ran  Linux  on  16  Intel  DX4 processors  connected  by 
Ethernet links.  This strategy of using commodity hardware took hold.

Vector Processors and Processor Arrays

There  are  two  essentially  different  models  of  parallel  computers:  vector  processors  and 
multiprocessors.   A  vector  processor,  is  simply  a  machine  that  has  an  instruction  that  can 
operate on a vector. A pipelined vector processor is a vector processor that can issue a vector 
instruction  that  operates  on  all  of  the  elements  of  the  vector  in  parallel   by  sending  those 
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elements  through a highly pipelined functional unit with a fast clock. A  processor array is a 
vector processor that achieves the parallelism by having a collection of identical, synchronized 
processing elements (PE), each of which executes the same instruction on different data, which 
are controlled by a single control unit. Every PE has a unique identifier, its processor id, which 
can be used during the computation.   The control  unit,  which might be a full-fledged CPU, 
broadcasts the instruction to be executed to the processing elements, which execute it on data 
from a memory that is usually local to each, and can store the result in their local memories, or 
can return global results back to the CPU.  A global result line is usually a separate, parallel bus 
that allows each PE to transmit values back to the CPU to be combined by a parallel,  global 
operation,  such as a logical-and or a logical-or, depending upon the hardware support in the 
CPU.

Because all PEs execute the same instruction at the same time, this type of architecture is suited 
to problems with data parallelism.  Data parallelism is a type of parallelism that is characterized 
by  the ability to perform the same operation on different data simultaneously. For example, a 
loop of the form

9

Figure 1: Processor array architecture.
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for i = 0 to N-1 do
    a[i] = a[i] + 1;

has data parallelism because the updates to the distinct array elements a[i] are independent of 
each other and may be performed in parallel, whereas the loop

for i = 1 to N-1 do
    a[i] = a[i-1] + 1;

has no data parallelism because the update to a[i] cannot be performed until the update to a[i-1]. 
If the value of N is smaller than the number of processing elements, the entire loop takes the 
same amount of time as a single processor takes to perform the increment on a scalar variable. If  
the value of N is larger, then the work has to be distributed to the PEs so that they each update  
the values of several array elements. This may be handled by the hardware, by a runtime library, 
or by the programmer, depending on the particular architecture and software. 

Data parallelism exists in many application areas, including all of the grand challenge problems 
mentioned earlier and most scientific problems in general.  Commercial applications with a large 
degree of data parallelism also include image processing and high-end graphics.

Array processor hardware also has to handle what PEs do when they do not need to participate in 
a computation. For example, when N is smaller than the number of PEs in the above loop, then 
some PEs will have to be de-activated, or masked, during the computation. The PEs usually have 
the capability to mask themselves, which they would do conditionally depending on the value of 
their PE identifier.

The PEs are usually connected to each other through an interconnection network, which can take 
on many forms. Interconnection networks are covered later in this chapter.

Processor Array Disadvantages

• Not all problems are data parallel and therefore do not benefit from a processor array's 
architecture.

• When code has many branches and conditionally executed code, many PEs are inactive 
and the efficiency of the computation diminishes.

• Processor arrays are not suited to multiprogramming; only a single job can run well on 
them because  to  allow multiple  programs to  be  scheduled  on  the  PEs  requires  local 
memory partitioning  as well as special hardware.

• They cannot be scaled down to smaller sizes and still be cost-efficient.

• They  tend  to  be  built  with  custom chips  rather  than  off-the-shelf  hardware  and  are 
therefore not competitive with processors containing many commodity processors.
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Multiprocessors

All parallel computers are called multiprocessors in the textbook.  The term multiprocessor can 
have a different meaning in other sources. Some people use the term to mean a particular type of 
parallel computer characterized by more autonomy among the separate processors. Here, we will 
use "multiprocessor" only to mean a computer with multiple CPUs.

Multiprocessors are divided into two types. One in which the processors share a physical address 
space is called a shared memory multiprocessor (SMP), and one in which the processors have 
private, non-shared address spaces, is called a private memory multiprocessor. 

Shared Memory Multiprocessors

Shared memory multiprocessors are divided into two types: those in which all processors have 
equal access to the physical memory, called  uniform memory access (UMA)  multiprocessors, 
and  those  in  which  memory  access  is  non-uniform,  called  non-uniform  memory  access  
(NUMA)  multiprocessors.   NUMA  machines  have  physically  separate  memories,  attached 
locally to each processor. It is much harder to write code for a NUMA multiprocessor than for a 
UMA multiprocessor. A UMA multiprocessor  may also be called a symmetric multiprocessor, 
or SMP.  Figure 2 shows a typical SMP design for a four-processor machine.  Figure 3 shows a 
typical NUMA architecture.  Note that in both cases, the processors have caches.

 

Figure 2 UMA or SMP design

Generally  speaking,  SMP  architectures  are  appropriate  for  small  servers  and  fast  desktop 
systems. NUMA systems can scale to larger machines.  

The interconnection between the processors in the NUMA case, or between the processors and 
memory in the UMA case, may be a simple bus, or a more complex interconnection network. 
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Buses are limiting because they are shared links; only one communication can be active at a 
time. Bus-based systems cannot have more than several dozen processors without degrading. 
Interconnection networks, such as butterfly  or Omega networks,  or crossbar networks,  allow 
much larger numbers of processors, but are costlier to implement.

For both types of shared memory multiprocessors, the processors will be running tasks that share 
data. This data resides in the memory and therefore processes that share it must use some form of 
synchronization to prevent race conditions.

Figure 3 NUMA design

Clusters and Message-Passing Multiprocessors

Clusters are a form of private memory multiprocessor; they are individual processors with their 
own private memories attached by a network. They are message-passing systems. Because each 
processor has a private memory, no other processor can access its data directly. Instead, if a 
process on one processor needs data from another processor’s memory, it has to send a message 
requesting the data, hence the name. The hardware in a message passing system is much simpler, 
since the machines do not have to access a shared memory.   They  look like the NUMA design, 
except that the memories are not connected to the network. Message passing systems rely on the 
operating system's having support for sending and receiving messages. Typically there is support 
for some form of  send()  and receive() instructions.

Message-passing increases communication overhead and delays. A process that needs access to 
data in a remote memory must send the request for that data and wait for the data to be sent. 
Because of this, applications with little need for the exchange of data perform much better on 
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this type of parallel computer system than those that have large communication demands. In the 
past, many attempts were made to build high-performance, special-purpose computers with built-
in message passing, but it turned out to be much less expensive to use off-the-shelf computers 
attached by standard network switches and cables. Such a system is called a cluster.

Clusters have much higher administrative overhead than a single machine,  because there are 
multiple copies of the operating system and replicated hardware. This weakness led to the use of 
virtual machines in the clusters. The most efficient use of virtual machine technology puts a 
virtual  machine  on  every  physical  node  in  such  a  way  that  each  is  managed  by  a  single, 
centralized cluster manager. The cluster manager can migrate one machine to another in case of 
hardware failures.

Comparison of Memory Availability Between Cluster and UMA

Suppose that a single, UMA processor with 5 processors has 20GB of main memory and the 
operating system uses 1 GB of that memory. Suppose also that in a cluster of 5 computers, each 
has 4 GB and the operating system uses 1 GB in each. How much more memory is available in 
the UMA machine?

The shared memory machine has 19 GB of available memory. The cluster only has 5*3 GB = 15 
GB of available  memory. Thus, the shared memory machine has 4/15 more memory, or 27% 
more memory.

Flynn's Taxonomy

In  the  1966,  Michael  Flynn4 proposed  a  categorization  of  parallel  hardware  based  upon  a 
classification scheme with two orthogonal parameters: the instruction stream and the data stream. 
In his taxonomy (naming scheme),   a machine was classified by whether  it  has a single or 
multiple instruction streams, and whether it had single or multiple data streams.  An instruction 
stream is  a  sequence  of  instructions  that  flow through a  processor,  and a  data  stream is  a 
sequence of data items that are computed on by a processor. For example, the ordinary single-
processor computer has a single instruction stream and a single data stream. 

This scheme leads to four acronyms:

SISD single instruction, single data;  i.e., a conventional uni-processor
SIMD single instruction, multiple data;  like MMX or SSE instructions in the x86 processor 

series, processor arrays and pipelined vector processors
MISD multiple instruction, single data;  very rare but one example is the U.S. Space Shuttle 

flight controller
MIMD multiple instruction, multiple data;  SMPs, clusters. This is the most common 

multiprocessor 

4 Flynn, M., Some Computer Organizations and Their Effectiveness, IEEE Trans. Comput., Vol. C-21, pp. 948, 
1972.
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SIMD  Multiprocessors

SIMD  multiprocessors  issue  a  single  instruction  that  operates  on  multiple  data  items 
simultaneously. Vector processors are SIMD multiprocessors, which means that processor arrays 
and   pipelined  vector  processors  are  also  SIMD machines.  The  Cray  X-MP and Thinking 
Machines CM-1 or CM-2 are  examples of SIMD machines.. The CM-2 could execute the same 
instruction on an array of 64,000 data items simultaneously. 

MIMD  Multiprocessors

MIMD  multiprocessors are more complex and expensive, and so the number of processors tends 
to  be smaller  than in SIMD machines.  Today's  multiprocessors  are  found on desktops,  with 
anywhere from 2 to 16 processors. Larger systems are still  being manufactured,  but they are 
expensive machines and thus have a limited market. 

SPMD Programming

In  addition  to  the  above  four  classifications,  people  have  used  the  acronym  SPMD,  single 
program,  multiple  data  stream,  to  describe  a  process  architecture,   typically  run  on 
multicomputers  with  tightly-coupled  architectures  and  either  private  memories  or  shared 
memories, in which the same program is run by identical processes on separate processors, either 
accessing a shared memory or private memories. 

Multiprocessor Network Topologies

Networks are used to connect processors to processors, processors to memories and processor-
memory nodes to each other.  The way that  these entities  are  connected  to each other  has a 
significant effect on the cost, applicability, scalability, reliability, and performance of the parallel 
computer. In general, the things that are connected to each other will be called nodes, whether 
they are processors, memories, or processor-memory elements. The set of connections between 
nodes is called an interconnection network. 

An interconnection network may be classified as  shared or  switched.  A  shared network can 
have at most one message on it at any time. A bus is a shared network, as is Ethernet. In contrast, 
a switched network allows point-to-point messages among pairs of nodes and therefore supports 
the transfer of multiple concurrent messages.

Interconnection networks may also be classified as  static or  dynamic.  A network is static if 
communication links between pairs of processors are "permanent": they can only be changed by 
physically reconfiguring the network.  Static networks are usually constructed by point-to-point 
connections between processors.  A network is dynamic if links are established by dynamically 
configuring  switches  to  establish paths  between processors  and other  processors  or  memory 
modules.  There are three types of dynamic networks:

• crossbar switching networks, 
• single-stage networks, and 
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• multi-stage networks. 

Buses have been classified as both static  and dynamic.  They are static  in the sense that  the 
physical communication links are permanent and fixed, if one ignores the ability to dynamically 
add devices to them. They are dynamic if devices can attach and detach themselves from the bus 
dynamically.  Some  authors  claim  that  they  are  dynamic  because  the  logical  links  change 
dynamically on the bus, but this is not consistent with the definition of  static given above.

Static networks are usually used in highly parallel multiprocessors to connect processors to each 
other, whereas dynamic networks are usually used in multiprocessors to connect processors to 
memory  nodes  or  other  processors.  Figure  4 is  one  way  to  classify  the  various  types  of 
interconnection networks.

In the figure, static networks are classified as either regular or irregular. This has to do with their 
topologies, which we will discuss below. Regular static networks can have shared or dedicated 
paths. Most of the static networks we examine have dedicated paths.
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In mathematics, a topology is a set together with an adjacency relation on the set. Topologies do 
not  have  to  be  finite  sets  for  mathematicians,  but  for  computer  scientists,  the  practical 
applications of topologies are finite sets.   If you have already learned about  graphs, then you 
know about topologies.  Your mental picture of a topology should be a "tinker-toy" – a set of 
nodes  connected  by  edges.  In  topologies,  distance  does  not  exist;  when distance  exists,  the 
topology becomes a metric space.  A graph is the same thing as a finite topology.

Networks can be characterized by their topologies. For example, a bus is a single line segment to 
which each node is attached, whereas a ring is like a bus in which the ends of the line segment 
are attached to each other, forming a cycle. Buses and rings have bidirectional links.

Although buses and rings are similar from a topological point of view, they are very different in 
their performance. In a bus, there is only a single link, and only one message at a time can be in 

the network; it is a shared link. Each host checks to see if the message is addressed to it, and if 
not it ignores it.  In contrast, in a ring, each host is attached to the network via a switch, and these 
switches act to separate the links. Thus, if there are n hosts, there are n links, and there can be n 
simultaneous messages on the network. Messages hop from one switch to another until  they 
arrive at their destination address.  These are just two very simple topologies. There are other, 
more complex topologies with interesting properties.. 

Network Performance Metrics

Network costs  in general include the number of switches, the number of links per switch that 
connect  to  the  network,  the number of bits  per link,  and the lengths of the links.  Network 
performance may be measured by 

• latency to send and receive a message when the network is unloaded
• throughput as measured by the number of messages per unit time
• delays caused by contention for portions of the network that are highly shared
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For each of  these metrics,  both  the mean and the  standard  deviation  are  important,  as  high 
standard deviation implies  less predictability.  Another important  factor is fault  tolerance,  the 
degree to which the network will remain functional when some part of it fails.

There are various other metrics that can be used to evaluate the performance of networks. One 
popular one is the total network bandwidth, which is the bandwidth of each link multiplied by 
the number of links. This represents the total number of messages that can be en route at any 
given instant of time.  Network bandwidth usually refers to the peak bandwidth, but it can also 
mean  the  bandwidth  of  a  single  link.  It  is  an  ambiguous  term.  Bisection  bandwidth,  is 
informally, the sum of the bandwidths of the links that sever the network into two equal halves. 
It will be defined more precisely below.

Network Topology Evaluation Criteria

A network will be viewed as a graph. The edges might be directed or undirected, depending upon 
the  particular  design.   Unless  otherwise  stated,  the  edges  are  undirected.   By  the  distance 
between a pair of nodes, we mean the least number of edges that must be traversed to get from 
one node to the other. For example, in Figure 7, the distance between nodes 1 and 5 is 2, and the 
distance between nodes 4 and 6 is 4. 

Figure 7 A network topology

Diameter. The  diameter of a network is the largest distance between any pair of nodes in the 
network.  The diameter of the network in Figure 7 is 4,  since the distance between nodes 4 and 6 
is 4, and there is no pair of nodes whose distance is 5.  Diameter is  important because if an 
arbitrary pair of processors might communicate, then the diameter determines a lower bound on 
the communication time.  (Note that it is a lower bound and not an upper bound; if a particular 
algorithm requires, for example, that all pairs of nodes send each other data before the next step 
of a computation, then the diameter determines how much time will elapse before that step can 
begin.) 

Bisection width. The bisection width (not the bisection bandwidth)  is the smallest number of 
edges that must be deleted to severe the set of nodes into two sets of equal size, or size differing  
by at most one node.  In Figure 7, edges (2,6), (2,5), (3,5), and (3,4) can be deleted to split the set 
of nodes into two sets {1,2,3} and {4,5,6}.  Thus, 4 edges are removed to split the node set.  Is 
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the bisection width 4?  No. A smaller edge set that also splits the node set is {(1,3), (2,5)}. This 
splits  the  nodes  into  sets  {1,2,6}  and  {3,4,5}.   The  bisection  width  of  this  network  is  2.  
Bisection  width  is  important  because  it  can  determine  the  total  communication  time.   Low 
bisection width is bad, and high is good.  Consider the extreme case, in which a network can be 
split by removing one edge.  This means that all data that flows from one half to the other must 
pass through this edge. This edge is a bottleneck through which all data must pass sequentially,  
like a one-lane bridge in the middle of a four-lane highway.   In contrast, if the bisection width  is 
high,  then many edges must be removed to split the node set.  This means that there are many 
paths from one side of the set to the other, and data can flow in a high degree of parallelism from 
any one half of the nodes to the other.   

Bisection bandwidth. This is the sum of the bandwidths of the links that must be removed to 
bisect  the graph, as described above. If  we assume that  the number of messages per  link is 
uniform and constant, then we can equate the bisection bandwidth and the bisection width, since 
we can take 1 to be the number of messages per link.

Maximum edges per node. The maximum number of edges per node can affect how well the 
network scales as the number of processors increases, because of physical limitations on how the 
network is constructed. In the network of Figure 7, the maximum number of edges per node is 3 
(nodes 2 and 3 each have 3 incident edges.) For some networks, the number of edges per node is 
a constant independent of network size.  This is good, because the physical  design need not 
change to accommodate the increase in number of processors.  In contrast,  suppose that the 
number of edges increases with the number of processors.  This means that as the network gets 
larger, more connections need to be made to each processor.  Given that processors have a fixed 
pin-out, this implies that the connections between processors must be implemented by a complex 
fan-out of the wires, a very expensive and potentially slow mechanism.

Maximum edge length. Maximum edge length  is important because the communication time is 
a function of how long the signals must travel.  It is best if the network can be laid out in three-
dimensional space so that the maximum edge length is a constant, independent of network size. 
If not, and the edge length increases with the number of processors, then communication time 
increases as the network grows. This implies that expanding the network to accommodate more 
processors can slow down communication time.  In the network in  Figure 7, the nodes can be 
laid out with constant edge length.  

Static Topologies

There  are  many different  network  topologies.  Some have been proposed but  never  realized. 
Others have found their way into commercial parallel computers. We will look at the most viable 
and the most interesting topologies.

Fully-Connected Network

In a  fully-connected network, every node is connected to every other node, as in  Figure 8. If 
there are  n nodes, there will  be  n(n-1)/2 links.   Suppose n is even. Then there are n/2 even 
numbered nodes and n/2 odd numbered nodes.  If we remove every edge that connect an even 
node to an odd node, then the even nodes will form a fully-connected network and so will the 
odd nodes, but the two sets will be disjoint. There are (n/2) edges from each even node to every 
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odd node, so there are (n/2)2 edges that connect these two sets. Not removing any one of them 
fails to disconnect the two sets, so this is the minimum number. Therefore, the bisection width 
(and bandwidth)  is (n/2)2.   The diameter is 1, since there is a direct link to any node from every 
node. The maximum edges per node is proportional to n, so this network does not scale well. 
Lastly, the maximum edge length will increase as the network grows, under the assumption that 
nodes take fixed amount of space. (Think of the nodes as lying on the surface of a sphere, and 
the edges as chords connecting them.)

Figure 8: Fully-connected network with 8 nodes.

Mesh networks

In a mesh network,  nodes are arranged in a q-dimensional lattice.  A 2-dimensional lattice with 
36 nodes is illustrated in Figure 9.  In general, there are k2 nodes in a 2-dimensional mesh. A 3-
dimensional lattice is the logical extension of a 2-dimensional one. It is not hard to imagine a 3-
dimensional  lattice.   It  consists  of  the  lattice  points  in  a  3-dimensional  grid,  with  edges 
connecting adjacent points.  A 3-dimensional mesh must have k3 nodes, for k = 1,2,3,...., like 
three-dimensional graph paper.  While we cannot visually depict q-dimensional mesh networks 
when q > 3, we can describe their properties.  A q-dimensional mesh network has kq nodes.  k is 
the  number  of  nodes  in  a  single  dimension  of  the  mesh.   Henceforth  we  let  q  denote  the 
dimension of the mesh, and d, the number of nodes in a single dimension.

Communication is allowed only between neighboring nodes.  The neighbors of a node are the 
nodes to which it is directly connected.  The interior nodes of a mesh are connected to 2q other  
processors.  (In the 2d case, they are connected to 4  processors; in the 3d case, to 6.)  Non-
interior nodes have fewer neighbors, depending upon their exact position. For example,  "corner" 
nodes are connected to q processors.
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Figure 9 Two-dimensional mesh of size 36

We can evaluate the mesh network according to the criteria stated above.  The diameter of a q-
dimensional mesh network with kq nodes is q(k - 1).  The first step in understanding this is 
realizing that the farthest distance between nodes is from one corner to the diagonally opposite 
one. A recursive argument should convince you that the diameter is correct.  In a 2-dimensional 
lattice with k2 nodes, you have to travel (k - 1) edges along the bottom row, then (k - 1) edges 
along the extreme column to get to the opposite corner. Thus you travel 2(k - 1) edges.  Suppose 
we have a mesh of dimension q - 1.  By assumption its diameter is (q-1)(k - 1).  A mesh of one 
higher dimension has (k - 1) copies of the  (q - 1)-dimensional mesh, side by side.  To get from 
one corner to the opposite one, you have to travel to the corner of the (q - 1)-dimensional mesh 
first. That requires crossing (q - 1)(k - 1) edges, by hypothesis.  Then we have to get to the kth  
copy of the mesh in the new dimension. We have to cross (k - 1) more edges. Thus we travel a  
total of 

(q - 1)(k - 1) + (k - 1) = q(k - 1)
edges.  The result is proved. 

The diameter of a mesh increases as a linear function of the dimensionality of the mesh and the 
length of the side of the mesh; this can be a problem for many algorithms that require a lot of 
data movement,  because data must be routed through many processors in the worst case.

If k is an even number, the bisection width of a q-dimensional mesh network with kq nodes is 
kq-1.  Consider the 2d mesh of  Figure 9. To split it into two halves, you can delete 6 = 61 edges. 
Imagine the 3d mesh with 216 nodes.  To split it into two halves, you can delete the 36 = 62 

vertical edges connecting the 36 nodes in the third and fourth planes.  In general, one can delete 
the edges that connect adjacent copies of the (q-1)-dimensional lattices in the middle of the q-
dimensional lattice. There are kq-1 such edges.  This is a very high bisection width. One can 

prove by an induction argument that the bisection width when k is odd is  
∑0

q−1
k i

.
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The maximum number of edges per node in a mesh is fixed for each given q: it is always 2q. 
The maximum edge length is also a constant, independent of the mesh size, for two- and three-
dimensional meshes.  For higher dimensional meshes, it is not constant.  

The  two-dimensional  mesh  is  a  popular  topology  for  processor  arrays.  It  was  used  in  the 
Goodyear Aerospace MPP™, the AMT DAP™, and the MasPar MP-1™.  The Intel Paragon 

XP/S™ multi-computer used a two-dimensional mesh to connect its processors.

An extension of a mesh is a torus.  A torus, the 2-dimensional version of which is illustrated in 
Figure 10, is an extension of a mesh by the inclusion of edges between the exterior nodes in each 
row and those in each column. In higher dimensions,  it  includes  edges between the exterior 
nodes in each dimension.  It is called a torus because the surface that would be formed if it were 
wrapped around the nodes and edges with a thin film would be a mathematical torus, i.e.,  a 
doughnut.

Binary Tree Networks 

In a binary tree network the 2k -1 nodes are arranged into a complete binary tree of depth k-1. 
(See Figure 11)  Recall that the depth of a binary tree is the maximum number of edges from the 
root to a leaf node.  Each interior node is connected to two children, and each node other than the 
root is connected to its parent.  Thus  the maximum number of edges per node is three.  The 
diameter of a binary tree network with  2k -1 nodes is only 2(k - 1), because the longest path in 
the tree is any path from a leaf node up to the root and then down to a different leaf node.  If we 
let n = 2k -1 then 2(k-1) is approximately 2log2 n;  i.e., the diameter of a binary tree network with 
n nodes is a logarithmic function of network size,  which is very low.  
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The bisection width is low, which means it is poor.  It is possible to split the tree into two sets 
differing by at most one node in size by deleting either edge incident to the root;  the bisection 
width is one.  Maximum edge length is an increasing function of the number of nodes, assuming 
that there is a lower bound on the physical size of each processor.  As technology advances, the 
size of processors has diminished.  It is reasonable to assume that there is a lower bound on that 
size, i.e., that they cannot shrink ad infinitum.  If we try to lay out successively larger complete 
binary trees, the edge lengths must increase because the deepest layer of the tree determines the 
width of the tree and therefore the length of the edges between higher layers.

Figure 11 Binary tree network of depth 3 and size 15

Hypertree Networks (optional)

The  problem with  binary  trees  is  their  poor  bisection  width.   Their  advantage  is  their  low 
diameter.  A hypertree network is a modification of a binary tree with high bisection width but 
low diameter.  The degree of a hypertree is the number of children per node. The degree of a 
hypertree must be a power of 2, i.e., 2, 4, 8, and so on, so we can have 2-ary, 4-ary, 8-ary 16-ary 
hypertrees  etc.  Unlike a  binary tree,  each node in  a  hypertree below the root level  has  two 
parents (just like people.) The best way to visualize a hypertree of degree k and depth d is to  
view it  three dimensionally,  using front and side views.  In the frontal  view, a hypertree of 
degree k and depth d looks like a k-ary tree of depth d, as shown in Figure 12.  From the side, a 
hypertree looks like an upside down binary tree of depth d. 

Figure 12 A 4-ary hypertree of depth 2 (front and side views)
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Hypercube (Cube-Connected) Networks 

A  cube-connected network  is  a  network  with  2k nodes  arranged  as  the  vertices  of  a  k-
dimensional cube, also called a  hypercube.  A square  with edge length d is a 2D hypercube, 
consisting of the 4=22 vertices (0,0), (0,d), (d,d), and (d,0).  A cube  with edge length d is a 3D 
hypercube, consisting of the 8=23 vertices (0,0,0), (0,0,d), (0,d,d), (0,d,0), (d,0,0), (d,0,d), (d,d,d), 
and (d,d,0).  This topology can be generalized to higher dimensions if we do not try to associate 
a picture with it.  For simplicity assume that d=1,  i.e., that the edge length is 1.  A hypercube 
with unit length is called a unit hypercube, or simply a hypercube.  The 4D hypercube consists of 
the 16 vertices

Node Label
(0,0,0,0) 0
(0,0,0,1) 1
(0,0,1,1) 3
(0,0,1,0) 2
(0,1,1,0) 6
(0,1,1,1) 7
(0,1,0,1) 5
(0,1,0,0) 4
(1,1,0,0) 12
(1,1,0,1) 13
(1,1,1,1) 15
(1,1,1,0) 14
(1,0,1,0) 10
(1,0,1,1) 11
(1,0,0,1) 9
(1,0,0,0) 8

If we could draw things in four dimensions, this would look like a cube of unit length in four  
dimensions.  Notice  that  the  coordinates  of  the  points  can  be  thought  of  as  4-bit  binary 
representations of integers.  The numbers adjacent to the vertices in the column to the right are 
the corresponding numbers. The integer representation of a node is called its label.  

Notice too that the sequence of bit strings above has the property that each string differs from the 
adjacent ones by a change of exactly one bit,  considering the first string as following the last as 
if in a circular list. Two  nodes are  adjacent  if their labels differ in exactly one bit position. 
Adjacent  nodes  are  connected  by  edges.   In  a  k-dimensional   hypercube,   each  node  is 
represented by k bits.  Each of these bits can be inverted (0->1 or 1->0),  so each node has 
exactly k incident edges.  In the 4D hypercube, for example,   each node has 4 neighbors.

While it is hard to visualize a k-dimensional hypercube as a cube in k dimensions, it is not hard 
to lay out its nodes in the plane.  In Figure 13, a planar layout of the 4D hypercube is illustrated.

Notice that one can traverse all nodes in the hypercube by following the sequence of labels in the 
above table.  
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Figure 13: A four-dimensional hypercube.

The diameter  of  a  k-dimensional  hypercube is  k.   To see  this,  observe that  a  given integer 
represented with k bits can be transformed to any other k-bit integer by changing at most k bits, 
one bit at a time. This corresponds to a walk across k edges in a hypercube from the first to the 
second label.  The bisection width of a k-dimensional hypercube is 2k-1.   One way to see this is 
to realize that all nodes can be thought of as lying in one of two planes: the nodes with first bit =  
0 are in one plane, and those with first bit = 1 are in the other.  To split the network into two sets  
of nodes, one in each plane,  one has to delete the edges connecting the two planes.  Every node 
in the 0-plane is attached to exactly one node in the 1-plane by one edge.  There are 2k-1 such 
pairs of nodes, and hence 2k-1 edges.  No smaller set of edges can be cut to split the node set. 

The bisection width is very high (one half the number of nodes),  and the diameter is low.  This 
makes the hypercube an attractive organization.  Its primary drawbacks are that (1) the number 
of edges per node, k,  is a (logarithmic) function of network size,  making it difficult to scale up, 
and  the  maximum  edge  length  increases  as  network  size  increases.   This  is  also  a  serious 
impediment to using it for massively parallel designs.

In spite of these drawbacks, the hypercube was the most popular processor organization for first- 
and second-generation  multicomputers,   and it  is  still  used  today in  nCUBE machines.  The 
processing element clusters on the CM-200 processor array are connected in a hypercube.

Crossbar Switching Networks

A crossbar matrix is an example of a  dynamic network because the switches can be changed 
dynamically.  Given  p  processors and  m memory  modules,  a  crossbar  matrix consists  of  a 
rectangular grid of p*m  switches, as illustrated in Figure 14.  In the figure, each Mi is a memory 
module and each Pj is a processor.  

Switches  are  placed  at  the   intersections  of  the  horizontal  and  vertical  lines  in  the  matrix. 
Although the crossbar matrix in  Figure 14 connects processors to memory modules, in general a 
crossbar connects input lines, which are the horizontal  lines in the matrix,  with output lines, 
which are the vertical lines; the inputs and outputs do not have to connect to processors and 
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memories in general. Figure 15 shows how this same crossbar matrix could be used to connect 
the processors back to themselves.

25

Figure 14: Crossbar network (4 by 4)
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Figure 15: Crossbar switch used to connect  
processors to processors
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Each switch in a crossbar matrix has 2 input lines and 2 output lines and can be in one of two 
states: pass-through or cross-over:

The switches depicted above are schematic only. In the diagram of the cross-bar in Figure 14, the 
inputs come from the left and the bottom, and the outputs exit from the top and the right. We call 
a switch with two inputs and two outputs,  a c22 switch5.  A crossbar matrix can be constructed 
by connecting the inputs and outputs of adjacent switches.  

A crossbar network is a  non-blocking network: access to one memory module by a processor 
does not prevent  another processor from accessing a different memory module.  More formally, 

5 The designation c22 is called Lenfant's terminology.
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Figure 16: C22  switch states

Cross-overPass-through

Figure 17: An implementation of a 2 by 2 crossover switch
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Definition.  A network is non-blocking if, for all sets of connections that can be established,  all 
inactive input lines have access to all inactive output lines.  

In  Figure 18, there are two inputs connected to two different outputs: P3 is connected to M2 
while P2 is connected to M4.  

It is assumed that p <= m, since otherwise there could be processors without memory modules to 
access.   The disadvantage of using crossbar  networks  is  that  to connect   p processors  to  m 
memory modules requires Ω(pm) switches, or to interconnect p processors as in Figure 15, Ω(p2) 
switches. This makes them costly to construct.  Crossbars are used in the Cray Y-MP and Fujitsu 
VPP 500. The VPP uses a crossbar of size 224 x 224.

Multistage Networks

Certain network topologies are more suitable to be used in multistage networks. In a multistage  
network, instead of having a processor at each node, there is a switch at the node. The switches 
are  less  expensive and  smaller and can be packed very densely.  They are  called  multistage 
because  a  message  travels  from  one  switch  to  another  in  stages.  Two  common  multistage 
networks are butterfly networks and omega networks.

Multistage  networks  are  a  compromise  between  buses  and  crossbars  in  terms  of  cost  and 
performance -- they are less costly (Ω(p log p)  switches versus Ω(pm)   switches) than crossbars 
and slower than them,  but faster than buses and more costly than them. A network with p 
processors will usually have log p stages. Messages travel from a processor to a memory module 
or  other  processor  in  successive  stages  across  the  network.  These  networks  are  generally 
blocking networks;  two processors attempting to access different memory modules may not both 
be able to do so. This will be evident soon.
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Figure 18: Crossbar  matrix showing two 
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Butterfly Networks

A  butterfly  network represents a very different approach than the preceding ones. Butterfly 
networks are often used as multistage networks. A butterfly network consists of (k + 1)2k nodes 
arranged in k + 1  ranks, each containing n = 2k nodes.  The ranks are labeled 0 through k. 
Sometimes ranks 0 and k are combined. Figure 19 depicts a butterfly network with 8 processor 
nodes. In the figure, the ranks are vertical.  The rank 0 nodes would be connected to processors, 
and the rank 3 nodes could be connected either to processor nodes or to memory nodes, if the 
network were being used to implement a SMP machine. In a butterfly network, there is a path of 
length k from any node in rank 0 to any node in rank k+1. Since k is log n +1, where n is the 
number of inputs, this is a log n stage network.

Each switch in a butterfly network has two inputs and two outputs. The inputs come from two 
nodes in the preceding rank, and the outputs, to two nodes in the following rank. Which nodes 
depends upon the switch's position in the network.

An easy way to understand the butterfly network is as a recursive network. The base case is a 2 
by 2 network, one with 2 inputs and 2 outputs. This is when k=1:

Suppose that we have constructed a butterfly for degree k=n.  A butterfly of degree n has 2n 

inputs and 2n outputs.  To construct one for degree k=n+1, we replicate  the butterfly of  degree n 

28

Figure 19: A butterfly network with 32 nodes.
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and place tit under  the original. This will have 2n+1 inputs and 2n+1 outputs.  If we think of the 
inputs as being written in binary, then the original inputs had n bits and the new inputs will have 
n+1 bits.  The way the new inputs are connected to the butterfly of  degree n+1 is that the inputs 
whose low order n bits are the same are connected to the same inputs of the switches. In other  
words, input i and 2n + i are connected to the same switches;  the outputs do not change. The 
construction for k=2 is illustrated below.

This can be stated mathematically as well. We will call the line of nodes perpendicular to a rank, 
a "chain". Let node[i,j] refer to the node in rank i and chain j, where 0 ≤ i ≤ k  and 0 ≤ j < 2k.  If i 
> 0 then node[i,j] is connected to node[i-1, j] and node[i-1,m], where m is the integer obtained by 
inverting the ith most significant bit in the binary representation of j. It is assumed that the binary 
representation has k bits.  For example,  in the butterfly network with k = 3, as shown in the  
figure,   there  are  4  ranks  and  8  chains.   Node[3,5]  would  be  connected  to  node[2,5]  and 
node[2,4] because inverting the 3rd most significant bit of 5 (101) yields (100), which is 4. Note 
that  by  symmetry  node[i,j]  is  also  connected  to  node[i+1,j]   if  i  <  k+1,  and if  node[i,j]  is 
connected to node[i-1,m]  then node[i,m] is connected to node[i-1,j] because j is the integer 
obtained by inverting the ith most significant bit in the binary representation of m. For example, 
node[3,5]  is  also  connected  to  node[4,5]   and  node[3,4]  is  connected  to  node[2,5].   This 
symmetry results in a "butterfly" pattern.  For small values of i, the most significant bits are 
inverted.  This  means  that  the  nodes  are  connected  to  chains  that  are  very  far  away.  As  i  
increases,  i.e.,  as  we move to nodes  of  higher  rank in  the  network,  less  significant  bits  are 
inverted, so the connections are shorter.  The nodes in the highest rank are connected to nodes in 
the adjacent one.. 

This last observation shows that the maximum edge length increases as the size of the network 
increases, since chains get further apart.  The number of edges per node is constant though; it is 
at most four, independent of network size.

The diameter of a butterfly network with (k + 1)2k nodes is k, if the output nods are connected 
back to the input nodes on the left side of the network.  If not, and the network is two-sided, then 
the diameter is 2k. It can be shown that the nodes that are farthest apart are  the first and last 
nodes in rank 0.  To travel from one to the other requires traveling up the first chain to the last  
node, and then along a chain of diagonal edges to the first row again.  This is a total of 2k edges. 
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Figure 20: Butterfly network of degree 2.
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The bisection width is 2k.  To split the network requires deleting all edges that cross between 
chains 2k-1 -1 and 2k-1.Only the nodes in row 1 have connections that cross this divide, because 
only inverting the most significant bit results in a number that is on the other side of this dividing 
line.  There are 2k nodes in row 1, and one edge from each to a node on the other side of the line.

Routing in the butterfly network is easy to understand from the recursive definition given above. 
In the base case, a network of degree 1, if the output is the "0" output, the message travels to the  
top output, and if it is the "1" or bottom output, it travels down to the bottom of the switch. This  
idea applies recursively. Suppose that we want to route the message from an input switch to an 
output switch in the degree n+1 network.  If the output switch is in the lower half, i.e., the  copy 
that was duplicated from the degree n network and placed below the original, then the first step 
in the route is to travel to the copy of the input switch in the bottom copy, not the top copy,  
otherwise to the top copy. This procedure is applied again recursively at the next switch. If the 
output  is in the bottom copy of this degree n network, then the next step is to route the message  
downward, otherwise to the top copy. This shows that the route is unique.

The more mathematical description of the route is as follows. If you write the output switch as a 
binary number, then the route at rank i is determined by the value of the i th most significant bit. If 
that bit is 0, the 0 output of the switch is taken, otherwise the 1 output of the switch is taken.

The butterfly network is a blocking network; a connection between an input and an output can 
prevent a different connection from being established  between a different input and output even 
though neither is in use.  For example, a connection from input 000 to output 111 prevents a 
message from being routed from input 100 to output 100, because the first switch is in a cross-
over  state.   If  the  network  is  two-sided,  meaning  that  messages  can  be  sent  in  the  reverse 
direction as well as the forward direction, then soem of the blocking can be avoided by allowing 
messages to be sent in multiple passes.  In other words, a message may be sent to an output and 
then sent backwards to a different switch to take a path to the given destination.

One last observation:  return to the picture in Figure 19 of a butterfly network.  Imagine taking 
each horizontal row and enclosing it in a single box. Call each box a node. There are now 2k 

nodes. Any edge that was incident to any node within the box is now considered incident to the 
new node (i.e., the box).   The resulting network contains  2k nodes connected in a k-dimensional 
hypercube. This is the relationship between butterfly and hypercube networks. So for example, 
the route in the degree 3 network in  Figure 19 above, to go from input 011 to output 110 would 
take the 1 output followed by the 1 output in the next rank and finally the 0 output in the third 
rank.

A butterfly network is used in the BBN TC2000 multiprocessor to route data from non-local 
memory to processors.

Omega Network

The omega network is very similar to the butterfly6. A three-stage omega network is illustrated 
in Figure 19. The only difference is in how the inputs and outputs of  the switches are arranged. 

6 In fact, by a simple permutation of the switches you can turn one into the other.
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Like the butterfly and the crossbar, the switches are c22 switches. But in the omega network, the 
connections are based on a perfect shuffle network.   A perfect shuffle is what happens to a deck 
of cards when it is split in half and shuffled perfectly. For example, if there are 8 cards numbered 
0 through 7, then the shuffle puts them in the order 0 4 1 5 2 6 3 7.  See Figure 21.

The position that number k ends up in is its shuffle. For example, 1 ends up in position 2, 3 ends  
up in position 6. If you write the numbers in binary, observe that 001 goes to position 010 and 
011 goes  to  position  110.  In fact,  take any number.   Rotate  it  to the left,  moving the most 
significant bit to the 0-bit position. Then the new value is the position of that number in the 
shuffle. Formally,  if  bn-1 bn-2 ...b0  is the  binary representation of a node address, then the shuffle 
function can be described as

shuffle( bn-1 bn-2 ...b0) = ( bn-2  bn-3...b0 bn-1).

The shuffle operation determines where the output line k of switch floor(k/2) is connected. In 
Figure 22, the switch inputs and outputs are numbered from the top down as 000, 001, up to 111. 
Notice that in each stage, the output k is wired to the input whose value is shuffle(k). 

A message is routed as follows: if s is a source and d is destination, the message is routed from s 
to d in log p stages as follows:  at the first switch, if the leftmost bits of s and d are the same,  
pass-through state is used, otherwise crossover is used.  At the next switch this is repeated:  the  
second most significant bits are compared and used, and so on.  This is also equivalent to the 
same routing algorithm used in the butterfly network -- if only the destination bit is used, then at 
switch k, if the kth most significant bit is 0, the upper output is used, otherwise the lower output is 
used.

Omega networks, are blocking networks. Suppose that processor Pk is connected to input line k 
in  general  and that  output  line  m is  connected  to  memory  module  Mm.   If  processor  P2 is 
connected to memory M6 then the switch A3 is configured is cross-over, making it impossible 
for P6 to be connected to memory M4, as shown in Figure 24.
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Figure 21: Shuffle of a deck of  
eight cards.
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Omega  networks  are  often  designed  to  be  broadcast  networks.  In  a  broadcast  network,  the 
switches can be in any of four different states:

By setting selected switches to either of the two broadcast states, a single input can be sent to all 
outputs.

An omega network is used in the NYU Ultracomputer, a massively parallel machine with up to 
4096 processors, to connect the processors to the memory banks.  This omega network has the 
property that the switches have small buffers, enabling them to queue packets when a conflict 
occurs.
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Figure 23: Four state C22 switch.

Figure 22: Three stage omega network (courtesy of  
Wikipedia)
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Parallel Programming on Different Architectures
We contrast the method of parallel programming on a shared memory architecture and a private-
memory architecture.

Parallel Programming Example on a UMA Achitecture

A program that sums 100,000 numbers on a UMA multiprocessor with 100 processors.   Idea: 
split the set of 100,000 numbers into 100 sets of 1000 numbers each. Give each processor a set to 
add, and then combine the sums. The numbers will reside in the shared memory; each processor 
will get the index of its first number: processor 0 gets 0 to 999, 1 gets 1000 to 1999, and so on.  
The processors execute an ordinary sequential loop. Let  the processor id of the processor be 
denoted by pk.  Each processor executes the same code, the addition loop of which is

sum[pk] = 0;
for ( i = 1000*pk;  i < 1000*(pk+1); i++ )
    sum[pk] = sum[pk] + A[i];

Note that the variable pk has a different value in each processor. There will be 100 sums to add 
together,  in  the  array  sum[100].  With  multiple  processors,  this  can  be  done  in  time 
proportional  to log2  (100)  using something like   a  buddy system.   Think of  the set  of  100 
processors as being divided initially into two sets, the ones numbered 0 to 49, and the others. The 
lower numbered processors I will call the left-half, and the higher numbered ones, the right half. 
Each processor has a "buddy" which is the processor whose number differs from it by the value 
of an integer variable named half, which is initially 50. 

1   half = 100;
2   repeat
3       synch(); // wait for all active processes to arrive here
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4       if ( half % 2 == 1 && pk == 0 )
            // processor 0 execs this, but only when half is odd
5           sum[0] = sum[0] + sum[half-1];
6       half = half/2; // integer division
7       if ( pk < half )
8           sum[pk] = sum[pk] + sum[pk+half];
9   until ( half == 1);

The synch() function is a barrier synchronization primitive. When a process executes a barrier 
synchronization function, it is put into a wait state until all other active processes execute it as 
well. The primitive will count the number of processes that execute it and will "know" when all  
processes have reached it.  This barrier ensures that sums are only added when they are both 
available.

Only half of the processors perform the sum in line 8, the left-hand buddies of the remaining 
processors. Initially, the first 50 processors add the sums: 0 adds sum[0] and sum[50] 1 adds 
sum[1] and sum[51], 2 adds sum[2] and sum[52], up to 49 adding sum[49] and sum[99]. 
Then half becomes 50, and the lowest 25 processors perform the sums: sum[0] and sum[25], 
1 adds  sum[1] and  sum[26], 2 adds  sum[2] and  sum[27], up to 24 adding  sum[24] and 
sum[49].  This halving and adding the buddy's sum continues until half == 1.

Because half is cut in half using integer division, we would lose a sum if we did not recoup it  
otherwise.  For example, when half == 25 at the top of  the loop, it becomes 12 in line 7, and 
the processors will add the sums at positions 0 and 12, 1 and 13, up to 11 and 23.  The sum at 
position 24 would be lost.  That is the reason for the if-statement in line 4; it checks whether  
half is an odd number, and if it is,  processor 0 adds to its own sum the sum in sum[half-1]. 

The time to perform the addition of the sums is clearly proportional to log2 100. This technique is 
called reduction.

Parallel Programming a Private Memory Architecture

Suppose we try to solve the same problem as we did on the shared memory multiprocessor, 
summing 100,000 numbers using 100 processors. We assume that the data is initially in just one 
of the processors. As was the case with the shared memory model, each processor has a unique 
id, in this case ranging from 0 to 99.  

The first step is to distribute 1000 numbers to each of the 100 processors. We ignore how this 
can be done for the moment.  Having done this, each processor must  now execute the same 
program. This program must first sum the 1000 numbers in its subset and store the result in a 
private variable called sum.  We no longer need a sum array, because the sums are not shared 
and accessible by their indices in an array. Instead they will be sent via messages to the other 
machines. This first loop is therefore

sum = 0;
for ( i = 0;  i < 1000; i++ )
    sum = sum + A[i];
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The  next  step  is  more  complicated  than  the  shared  memory  example.  The  sums  must  be 
exchanged  by  messages  using  the  reduction  technique.   There  is  no  need  for  barrier 
synchronization because the message-passing system acts as a means of synchronizing processes. 

The two message-passing primitives are  send() and  receive().  These are not symmetric 
operations. The send operation has the form  send(dest, message), which tries to send the 
message pointed to by message to the processor with id dest. This operation is non-blocking, 
meaning that it immediately returns and the process continues executing. The  receive operation 
has the form  receive(), which is a blocking operation, meaning that it is  blocked until the 
message  arrives.  For  those  who  have  not  had  operating  systems,  "blocked"  means  that  the 
process stops using the processor,  and exists  in  a dormant  state,  waiting to be awakened or 
reactivated. Whether or not it remains in memory depends on the operating system and how long 
a wait is expected. When a message arrives, it returns the  message as its return value. Notice 
that it does not specify the id of the process from which it expects the message. Any message 
that it receives satisfies the call.

In  each  iteration,  the  set  of  all  processors  is  divided  into  two  disjoint  sets  of  senders and 
receivers. The upper set of indices are the senders and the lower half are the receivers. At the end 
of the iteration,  the set of processors is halved, so some of the processes that were receivers  
before become senders. For example,  initially,  processors 0 through 49 are receivers and 50 
through 99 are senders. The senders send their  sums to their  buddy receivers,  and then they 
become dormant -- their work is done. When a receiver with an id between 25 and 49 receives its 
message, it performs an addition and then becomes a sender.  The receivers whose ids are within 
the range 0 through 24 remain receivers in the next iteration.

In each stage,  the processors are "buddied"  using the same arithmetic as in the shared memory 
example -- for each k from 0 to 49, processors k and k+50 are buddies in round 1, then for each k 
from 0 to 24,  k and k+25 are buddies, then in round 3,  k and k+12, and so on, until ultimately in 
the last round,  0 and 1 are buddies.

When the number of nodes in the round is an odd number, what to do with the odd sum  is solved 
in a different way than in the shared memory program. In that solution, processor 0 collected the 
sums of the processors that had no buddy. In this solution, the odd-numbered processor that has 
no buddy will act like a receiver and pretend to receive a sum from an imaginary buddy, but it 
will not receive anything. Then it will send its sum to its  lower buddy when it becomes a sender.  
The code follows.

1   limit = half = 100;
2   repeat
3       half = (half+1)/2;  
4       if (pk >= half && pk < limit) 
5           send(pk-half, sum); 
6       if (pk < limit/2)
7           sum = sum + receive();
8       limit = half;
9   until ( half == 1);
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This code is harder to understand than the shared memory code because there are two variables, 
half and limit.  half is the dividing line between senders and receivers.  In particular,  in line 
4, you can see that the processor whose id equals  half is the lowest index sender, and that a 
processor whose id is  limit or greater is out of the game completely -- it neither sends nor 
receives.  To be a receiver,  a processor has to have an id strictly  less than limit/2,  using 
integer division. 

To illustrate, in iteration 1, processes 50 through 99 send in line 5 to their buddies from 0 to 49.  
None of the senders in this round satisfy the condition in line 6, so none can be receivers. (This is 
true  in  any round,  because  if  pk > half,  pk  cannot  be  less  than  limit/2.)  In  round 1, 
processes 0 through 49 satisfy (pk < limit/2) so they each wait for the sum in line 7 from 
their buddies. In the next iteration,  half = 25 and  limit = 50. Processes 25 through 49 are 
senders  and 0 through 24 are  receivers.  In  the  next  iteration,  half = 13 and  limit =  25. 
Processes 13 through 24 are senders, and 0 through 11 are receivers. Note that, in this iteration, 
process  k sends to  process  k-13,  not  k-12.   So process  24 sends to  process  11.  Process  12 
receives  from no process.  This  is  the  sense  in  which  it  gets  a  zero.   In  the  next  iteration,  
half = 7 and limit = 13.  Processes 7 through 12 are senders, and 0 through 5 are receivers. 
This is where process 12 gets to send its sum down the pike.  This continues until all sums have 
accumulated in process 0's sum.

We ignored the issue of how the data is distributed among the processors initially. Although we 
could just have the first processor iteratively send to each processor one after the other, there are 
algorithms like the reduction algorithms that recursively split  the data and send so that each 
processor takes part in the act of distributing the data. We will not discuss it here. 

In spite of the fact that the software is more complicated, clusters are attractive because they are 
more scalable, more available, cheaper, and more energy  efficient. That is why they continue to 
grow in popularity.

Review of Pipelining

Pipelining in a processor is an implementation technique in which multiple instruction sequences 
are  overlapped in their  execution.  It  is  a  way to take  advantage  of the independence  of the 
hardware units  to increase the throughput of the processor. If you ever learned about how a 
factory assembly line works, then you already know how pipelining works.

Some factory that makes widgets has a very long conveyor belt, perhaps one hundred meters 
long. Along the belt are twenty workstations where different parts are attached to a widget. A 
widget frame is placed at the start of the belt,  and each time it reaches a new workstation, a 
machine there adds a new part to it. By the time it rolls off of the conveyor belt, after workstation 
#20, it is complete and ready to be inspected.  Suppose that each step takes an equal amount of 
time, say 5 minutes. Then it takes 100 minutes to assemble a widget.

There are two ways to use this  equipment.  The not-particularly-smart way is to put a single 
widget on the conveyor belt, and when it reaches the end, put the next widget on.  In this case the 
throughput is 1 widget per 100 minutes. However, since each workstation can do its task in 5 
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minutes, we can put the first widget on, wait 5 minutes, put the second on, wait 5 minutes, put 
the third on, and so on, so that the widgets are spaced 5 minutes apart in time, non-stop. Initially,  
it will take 100 minutes before the belt is fully loaded with widgets, but once it is, a widget is 
completed every 5 minutes, and the throughput is 20 widgets per 100 minutes. It still takes 100 
minutes to assemble a single widget, but at any moment in time after the belt is fully loaded, 20 
widgets are simultaneously under construction.

The first method of using the conveyor belt is the non-pipelined method. The second is the pipe-
lined method. The speed-up of the pipe-lined method over the non-pipelined method is 20, since 
it completes 20 times as many widgets per unit time. Notice that we are measuring speed-up by 
comparing  the  throughput  rather  than  "execution  time"  of  each  method.  This  makes  sense 
because the throughput is a measure of the work done by the factory.

This idea applies to processors in a natural way. The conveyor belt is the data path. The stages 
are the different parts of the instruction cycle, e.g. fetch, register reads, execute (ALU), data 
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Figure 26: Pipelined processor with unequal  stage lengths
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Figure 25: Pipelined processor  with uniform length stages
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access, and register write.  Figure 25 illustrates a pipelined processor in which each instruction 
stage takes the same number of clock cycles.

If not all stages take the same amount of time in the processor, then the longest stage determines 
the stage time. For example, suppose that instruction fetch,  the ALU operation, and memory 
access take 100 picoseconds (ps) each,   and  reading and writing the register file  each take 50 
ps. Then the pipeline stage length would have to be 100 ps, for the longer stages.  In this case 
the pipeline would appear as in Figure 26.

A single instruction in a non-pipelined processor would take 3*100 + 2*50 ps = 400 ps. Five 
instructions would take 5*400 ps = 2 ns (nanoseconds). In contrast, five instructions executed in 
the pipelined processor, including the start-up cost of filling the pipeline, take 850 ns. This is a 
speedup of  2000/850 = 2.35.

If we increase the number of instructions, so that we  amortize the startup cost of filling the 
pipeline, the speed-up will be much greater. For example, running 1000 instructions in the non-
pipelined processor would take 400,000 ps. Running 1000 instructions in the pipelined processor 
would take 100,400 ps. A new instruction starts every 100 ps. The last complete instruction starts 
at time 99,900 and uses 500 ps. (We ignore the fact that it really uses only 450 ps, because we 
can assume that we have to add a 50 p stall anyway.)  Therefore, the last instruction completes at 
time  100,400.   The  speedup  is  400000/100400  =  3.98.  In  general,  the  time  to  execute  N 
instructions is 500N/5 plus the pipeline startup cost, which in this case is 400, or 100N + 400 ps.

If instructions are of various lengths, as in the x86 instruction set, then pipelining is not feasible. 
Rather than pipelining the native instructions directly, they are translated into sequences of equal 
length micro-instructions, which are then pipelined. 

Hazards

A hazard is the event in which an instruction cannot execute in the next clock cycle in a pipeline. 
There are three types of hazards: structural, data, and control. These will be explained in turn.

Structural Hazards

A structural hazard occurs when an instruction cannot be executed because the hardware cannot 
execute the combination of instructions that would be executed in the same clock cycle. For 
example, if   instructions and data are fetched from the same memory, then an instruction fetch 
cannot be executed  simultaneously with a data access.

Data Hazards

A data hazard occurs when an instruction cannot execute because some of its data is not ready. 
This  can  occur  if  one  instruction  follows  another  too  soon but  it  requires  an  output  of  the 
preceding instruction. For example, consider the following two instructions:

add R0, R1, R2       #R0 = R1 + R2
sub R3, R0, R4       #R3 = R0 - R4
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The add instruction will not write the sum into register R0 until the 5th stage, but the subtract 
instruction will require the sum in its third stage.  The second instruction must be stalled three 
cycles so that the ALU stage occurs after the write to the register.   An alternative is to add 
hardware  so  that  the  result  of  the  addition  in  stage  3  in  the  ALU  can  be  made  available  
immediately as an input to the ALU in the second instruction, as shown in Figure 27. When this 
is done it is called forwarding, or bypassing.

One limitation of forwarding is that it cannot be backwards in time. In other words, the result of 
a stage cannot be delivered to a stage in a subsequent instruction that has already occurred! 
Forwarding cannot be used to solve all data hazards. For example, if the first instruction is of the 
kind whose output is not available until the memory access in the fourth stage, but that output is 
needed in the second instruction's ALU, then it is impossible to forward the data, since it will be 
backward in time. In this case the second instruction must be stalled by inserting an empty cycle, 
also called adding a bubble.

Reordering Code to Prevent Data Hazards

Sometimes  higher-level   code can be reordered by a  compiler   to prevent  data  hazards.  For 
example, consider the C instructions

a = b + e;
c = b + d;

Assume that the variables a,b,c,d, and e are in consecutive words accessible through an offset 
to register R0; i.e., a is in 0(R0), b in 4(R0), c in 8(R0), and so on.  The code generated for 
these instructions, un-optimized, would be:

load  R1, 4(R0)      # load b   
load  R2, 16(R0)     # load e
add   R3, R1, R2     # R3 = b + e
store R3, 0(R0)      # a = R3
load  R4, 12(R0)     # load d
add   R5, R1, R4     # R5 = b + d
store R5, 8(R0)      # c = R5
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Figure 27: Data hazard with forwarding
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There are data hazards in this sequence.  First, the first add requires R2 in its third stage, but  R2 
will not be loaded until the fourth stage of the preceding instruction.  The second  add has a 
similar data hazard; it requires  R4 in its third stage but  R4 will not be available until after the 
fourth stage of the preceding instruction.  By moving the load of d ahead of the first add, both 
hazards are eliminated:

load  R1, 4(R0)      # load b   
load  R2, 16(R0)     # load e
load  R4, 12(R0)     # load d
add   R3, R1, R2     # R3 = b + e
store R3, 0(R0)      # a = R3
add   R5, R1, R4     # R5 = b + d
store R5, 8(R0)      # c = R5

In this reordered sequence, R2 is available to the third stage of the add with forwarding and R4 is 
available to the second add with no forwarding.

Control Hazards

A control hazard occurs when the instruction cannot be executed because a different instruction 
must be executed as a result of a control flow decision. Whenever there is a branch in a sequence 
of instructions, there is more than one choice of instruction to execute next.  Either the pipeline 
must be stalled until the result of the instruction is known so that the correct instruction can be 
fetched, or a guess can be made about which instruction should be fetched, and if it is wrong, 
then extra stall cycles will be needed as the processor fetches the other instruction. Stalling is the 
conservative solution but it is generally the slower one.

It is possible to add extra hardware for certain instructions so that the result of an instruction 
such as a branch when a register is zero, can be known by the end of the second stage of a 
pipeline, reducing the stall to two cycles, but this is not always possible. An alternative strategy 
is branch prediction.  The processor can predict the instruction to fetch next based upon past 
history or just based on an arbitrary decision.

One type  of  branch prediction  always  picks  the  instruction  that  is  not  a  branch.  A smarter 
approach is  to  take branches always at  the end of loops,  since loops branch back far more 
frequently  than  they  exit.  There  are  also  processors  that  use dynamic  branch prediction,  by 
keeping a history of how often a particular branch is taken or not and using that to predict what it  
will do next. According to Patterson and Hennessy, these dynamic branch predictors can be more 
than 90% accurate.

Hardware Multithreading

Hardware multithreading is a technique in which a single processor allows multiple threads to 
share the functional units in an overlapped fashion in order to improve performance by reducing 
the  effects  of  stalls.   To allow threads  to  share  functional  units  though,  the processor  must 
duplicate the state of the thread for rapid thread switching. In other words, the processor must be 
able to keep a copy of the state handy, and when it needs to run this thread in the processor, it  
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has to have an extremely fast way to put its state into the processor.  Minimally, the state must 
include the register file and the program counter.  Whereas a process switch can require hundreds 
to thousands of cycles, a thread switch cannot be more than a few cycles.

Memory Refresher

Instruction-level  parallelism is  the  potential  for  simultaneous  execution  of  individual 
instructions. This exists when instructions do not access the same data. The following is a higher 
level language example:

x = x+1;
y = y+1;
z = z*z;

These are three instructions that can execute in parallel, whereas these cannot:

x = y+1;
z = x+1;
z = z*z;

because the second depends on the first and the third on the second. At the level of machine 
instructions,  there are many opportunities for instruction-level parallelism,  which often arises 
because of data parallelism. 

Thread-level parallelism is coarser: it is the potential to execute entire threads in parallel. For 
example,  the code 

for ( i = 0; i < 100; i++) 
    for ( j = 1; j < 100; j++)
        A[i,j] = A[i,j-1] + j;

replaces each entry in a matrix, except the ones in the leftmost column, by the value of the entry 
to the left plus its column index. It can be rewritten to take advantage of the fact that the rows of  
the matrix can be processed by individual threads executing in parallel  because the rows are 
independent of each other. Each row can be processed in parallel with the others because no 
row's computation modifies or accesses the values in any other row's computation. Using the 
keyword forall to mean execute the body of the statement in parallel, we have:

 forall ( i = 0; i < 100; i++) 
    for ( j = 1; j < 100; j++)
        A[i,j] = A[i,j-1] + j;

which forks 100  threads to execute in parallel.

Recall that a stall occurs when the processor has to wait for either the second-level cache or main 
memory (or L3 cache if it is present.)  The length of this stall determines the most appropriate 
way  to  switch  threads.   Fine-grained  multithreading switches  threads  on  each  machine 
instruction,  essentially  interleaving  threads  in  a  round-robin  fashion.  If  a  thread  is  stalled, 
whether long or short, it is skipped. This is only efficient if a switch takes a single clock cycle. 
The disadvantage of this approach is that threads that are not experiencing stalls take longer to 
execute  because  they  are  getting  only  a  slice  of  processor  time  and thus  they  have  poorer 
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response times. For example, if five threads are sharing the processor, and they each have ten 
instructions to execute, then with this approach, each thread executes one instruction, then waits 
while four other threads execute, then it executes its next instruction, and so on, the result being 
that the tenth instruction for each one takes place only after 45 or more instructions have been 
executed. The other major disadvantage is that the hardware must support extremely fast thread 
switches. The Sun UltraSPARC T2 uses fine-grained multithreading.

Coarse-grained multithreading only performs thread switches on long stalls, such as L2 or L3 
cache misses (i.e., those that require accesses to main memory.)  This eliminates the need to have 
very fast  thread switches and also reduces the chance that  individual  threads will  be slowed 
down. The problem with coarse-grained multithreading is that it does not reduce the throughput 
losses from short stalls, and it also has reduced throughput because of  pipeline start-up costs, 
explained next.

When a thread stalls and another must be loaded, its pipeline must be restored to the state it was 
in when it was last on the processor. It cannot execute any of these instructions until all are 
loaded. This is the pipeline start-up cost. Filling the pipeline takes longer than loading a single 
instruction. Thus, this approach is only useful for stalls that are so long that filling the pipeline is 
a small amount of time compared to the stall time.

An approach lying between these two extremes is  simultaneous multithreading  (SMT). SMT 
can be used on processors capable of dynamic multiple-issue7, (i.e. superscalar processors.) A 
superscalar  processor  has  multiple  functional  units   and  can  issue  multiple  instructions 
simultaneously in these units, deciding dynamically when to do so and how many instructions 
can be issued. It is typically seen in processors with multiple pipelines. It takes advantage of 
both thread-level parallelism and instruction-level parallelism. Because the superscalar processor 
has the ability to  resolve data dependencies and issue multiple instructions from independent 
threads even when these dependencies exist, SMT does not have to switch resources every cycle. 
It  relies on the hardware to rename registers as needed and associate  instruction slots to the 
different threads.

Whereas fine-grained multithreading can only keep as many slots busy as the instruction-level 
parallelism in that thread permits, and coarse-grained multithreading avoids this but suffers the 
pipeline start-up costs. SMT  allows multiple threads to fill the slots in each clock cycle and 
switches  when  stalls  occur,  keeping  the  hardware  busy  and  keeping  throughput  high.  An 
example from the textbook best illustrates the differences among fine-grained multithreading, 
coarse-grained multithreading, and simultaneous multithreading.  In the figure, there are four 
distinct threads, differentiated by color.  The top part of the figure shows how each thread would 
execute  in  time  on  a  superscalar  processor  without  multithreading.  Because  there  is  no 
multithreading but the processor can issue multiple instructions into the issue slots dynamically, 
each thread executes one after the other and many slots are empty.

If  coarse-grained  multithreading  is  used  (the  leftmost  part  of  the  bottom figure),  Thread  A 
executes, using only as many slots as it can fill,  until a long stall. The processor switches to 
thread B. The pipeline however has to be filled, so there is a delay. Thread B executes until its 
7 A processor is multiple-issue is it can issue more than one instruction at a time.  A dynamic  multiple-issue 

processor decides which instructions to issue simultaneously "at runtime".
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long stall, not shown in the figure, at which point Thread C would be scheduled, and so on.  In 
this type of multithreading, the utilization of the functional units is low and the parallelism is 
also low.

In fine-grained multithreading (the middle part of the bottom figure), there is a thread switch 
after each instruction cycle, but all slots in use during any one cycle are assigned to the thread 
currently executing. The threads execute in a round-robin sequence, one after the other. In SMT, 
all slots are filled, with instructions from different threads that are ready to execute.
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