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   CUDA-based MATRIX MULTIPLICATION

   This program demonstrates a common CUDA paradigm, as well as how CUDA
   relates to C/C++.  It is not a main program, but a function that can 
   utilize the resources of the GPU to perform matrix multiplication.

   BACKGROUND
  
   CUDA extends the set of types of C/C++ with types whose names are of the form
       type1, type2, type3, and in some cases, type4

   where "type" can be replaced by one of:
       char, uchar, int, uint, long, ulong, short, ushort, or float

   For example, char3, uint4, and ulong3 are all type names in CUDA.
   These are called "vectors" in CUDA, but they are really C structs with members
   x, y, z, and w respectively.  Thus, for example, if Point is declared as

       int3 Point;

   then Point.x, Point.y, and Point.z are the members of Point. These types all 
   have constructors of the form make_type(arg1,...,arg4). Thus we can initialize
   a member as follows:

       uint3 Dimensions_of_box(100,200,200);

   The type dim3 is an extension of uint3. It specifies dimensions of things,
   but the constructor initializes all uninitialized components with the value 1.
   For example,

       dim3  Dimensions_of_block(64, 64);

   specifies a block that is 64 by 64 by 1 (because the z member is set to 1.)

   ALGORITHM 
   This code is an implementation of matrix multiplication that takes advantage 
   of the shared memory within each SM (streaming multiprocessor). It is more
   complex than the algorithm that uses just global device memory, for several
   inter-related reasons.

   Each thread block is responsible for computing one square sub-matrix Csub of 
   the product matrix C, and each thread within the block is responsible for 
   computing one element of Csub. 

   Csub is equal to the product of two rectangular matrices: 
     the sub-matrix of A of dimension A_width x BLOCK_SIZE that has the same 
     row indices as Csub, and
     the sub-matrix of B of dimension BLOCK_SIZE x A_width that has the same 
     column indices as Csub. 

   In order to fit into the device’s resources, these two rectangular matrices 
   are divided into as many square matrices of dimension BLOCK_SIZE as necessary
   and Csub is computed as the sum of the products of these square matrices. 

   Each of these products is computed by first loading the two corresponding 



   square matrices from global memory to shared memory, having each 
   thread compute one element of the product, and writing the resulting square
   sub-matrix back to global memory afterward.

   To make the copying from global to shared memory efficient, each thread is
   responsible for copying a single element from each of the A and B matrices.
   The copying is done in such a way to maximize the memory bandwidth, which will
   be explained below.
*/

#define BLOCK_SIZE 16   // Thread block size

/* The __global__ qualifier declares a function as being a kernel. 
   A kernel is a function that is executed on the device (the GPU), and
   is callable from the host (CPU).
   This is a forward declaration of the device multiplication function
*/
__global__ void Muld(float*, float*, int, int, float*);

/** Multiply(&A, %B, hA, wA, wB, &C)  Host multiplication function, performs
 *  C = A * B, where 
 *  hA is the height of A
 *  wA is the width of A
 *  wB is the width of B
 *  and A, B, and C are linear arrays allocated by the calling program. 
 *  The arrays must have been allocated correctly; no chek is made.
 */
void Multiply ( const float  *A,  
                const float  *B, 
                int          height_A, 
                int          width_A, 
                int          width_B,
                float        *C)
{
    int size;

    /* Copy matrices A and B to the device memory
       To copy requires using cudaMemCpy, which can copy either from host
       to device, from device to host, or from device to device.
    */
    float* A_on_device;
    size = height_A * width_A * sizeof(float);
    cudaMalloc((void**)&A_on_device, size);
    cudaMemcpy(A_on_device, A, size, cudaMemcpyHostToDevice);

    float* B_on_device;
    size = width_A * width_B * sizeof(float);
    cudaMalloc((void**)&B_on_device, size);
    cudaMemcpy(B_on_device, B, size, cudaMemcpyHostToDevice);

    // Allocate matrix C on the device
    float* C_on_device;
    size = height_A * width_B * sizeof(float);
    cudaMalloc((void**)&C_on_device, size);

    /* Compute the execution configuration assuming
       the matrix dimensions are multiples of BLOCK_SIZE



       The dim3 declaration is used here. This specifies that dimBlock
       is BLOCK_SIZE x BLOCK_SIZE x 1
    */
    dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);

    /* width_B/dimBlock.x is the length of a row of B divided by the horizontal
       size of a block, which yields the number of blocks in the horizontal
       dimension of the Grid.  
       Similarly,  height_A/dimBlock.y is the height of A divided by the vertical
       size of a block, which is the number of blocks vertically in the grid.
       These two values define the shape of the grid, i.e. the number of 
       blocks horizontally and vertically. */
    uint gridwidth  = width_B / dimBlock.x;
    uint gridheight = height_A / dimBlock.y;
    dim3 dimGrid(gridwidth, gridheight);

    /* Launch the kernel now.
       The syntax 
           func<<< Dg, Db, Ns, S >>>(parameter_list)
       defines a kernel function with a parameter list that is executed on a
       specific configuration defined as follows:
           Dg is of type dim3 and specifies the dimension and size of
           the grid; Dg.x * Dg.y equals the number of blocks being launched;
           Dg.z must be equal to 1;
           Db is of type dim3 and specifies the dimension and size of
           each block, such that Db.x * Db.y * Db.z equals the number of 
           threads per block;
           Ns is of type size_t and specifies the number of bytes in shared 
           memory that is dynamically allocated per block for this call 
           in addition to the statically allocated memory; Ns is an
           optional argument which defaults to 0;
           S is of type cudaStream_t and specifies the associated stream; 
           S is an optional argument which defaults to 0. 

       The Muld() function will be run by every thread in every block of
       the grid. Thread blocks execute independently: they execute in any 
       order, in parallel or in series, unpredictably. The function must be
       correct regardless of the order.
    */
    Muld<<<dimGrid, dimBlock>>>(A_on_device, 
                                B_on_device, 
                                width_A, 
                                width_B, 
                                C_on_device);

    // Copy result C from the device to host memory
    cudaMemcpy(C, C_on_device, size, cudaMemcpyDeviceToHost);

    // Free device memory
    cudaFree(A_on_device);
    cudaFree(B_on_device);
    cudaFree(C_on_device);
}

   /*  Note again the __global__ qualifier: this is a kernel function
       This also means that every thread executes this function.
       When a thread executes this function, it has a specific thread id
       and block id. The thread id is the value of threadIdx, used below, 
       and the block id is stored in blockIdx, used below.
       threadIdx  and blockIdx are of type unit3.



   */
__global__ void Muld(float* A, float* B, int width_A, int width_B, float* C)
{
    // Block index
    int block_col  = blockIdx.x;
    int block_row  = blockIdx.y;

    // Thread index
    int thread_col = threadIdx.x;
    int thread_row = threadIdx.y;
    
    /* Index of the first cell of the sub-matrix of A processed by the block
       of threads. There are width_A cells in a row and BLOCK_SIZE many rows
       in each sub-matrix. Therefore, 
           width_A * BLOCK_SIZE * block_row
       is the total number of cells from the start of A to the leftmost cell
       of the first row of the horizontal set of sub-matrices of A processed
       by this block of threads.
    */
    int aBegin = width_A * BLOCK_SIZE * block_row;

    /* The index of the last cell in the row of A that starts at ABegin is 
       aBegin plus width_A-1, since a row is width_A cells long.
    */
    int aEnd = aBegin + width_A - 1;

    /* Step size used to iterate through the sub-matrices of A
       The upper left corner of the next block of A is BLOCK_SIZE columns
       from the current block's corner, so the increment is just BLOCK_SIZE.
    */
    int aStep = BLOCK_SIZE;

    /* Index of the first sub-matrix of B processed by the block */
    int bBegin = BLOCK_SIZE * block_col;

    /* Step size used to iterate through the sub-matrices of B
       The upper left corner of the next block of B is BLOCK_SIZE rows
       below the upper left corner of the current block. Each row has
       width_B bytes, so the increment is BLOCK_SIZE * width_B. */
    int bStep = BLOCK_SIZE * width_B;

    /* The element of the block sub-matrix that is computed by the thread */
    float Csub = 0;

    /* Loop over all the sub-matrices of A and B required to
       compute the block sub-matrix */
    for (int a = aBegin, b = bBegin;
            a <= aEnd;
            a += aStep, b += bStep) {
     
        /* The __shared__ qualifier declares a variable that
            * resides in the shared memory space of a thread block,
            * has the lifetime of the block, and
            * is only accessible from the threads within the block.
           The As and Bs matrices declared below are in the shared memory of 
           the block; As is for the sub-matrix of A, and Bs, a sub-matrix of B.
        */
        __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

        /* Shared memory for the sub-matrix of B */



        __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

        /* The next step loads the matrices from global memory to shared memory;
           each thread loads one element of each matrix. There are two things
           to discuss about this: the logic and the performance. 
        
           Performance Issue:
           The global memory access by all threads of a half-warp is coalesced 
           into one or two memory transactions if it satisfies the following 
           three conditions:
             1. Threads must access either
                4-byte words, resulting in one 64-byte memory transaction,  or
                8-byte words, resulting in one 128-byte memory transaction, or
                16-byte words, resulting in two 128-byte memory transactions;
             2. All 16 words must lie in the same segment of size equal to the 
                memory transaction size (or twice the memory transaction size 
                when accessing 16-byte words);
             3. Threads must access the words in sequence, meaning that the 
                kth thread in the half-warp must access the kth word.

           In the instructions below, each thread accesses a 4-byte word 
           ( because it is a float) and 16 threads do this simultaneously, 
           for a total of 64-bytes in each transaction. The words accessed by 
           the threads are in sequence, so the memory accesses satisfy the 
           conditions stated above, which implies that the accesses are 
           coalesced and will require just two trips to global memory.

           Logic:
           The matrices As and Bs are shared by all threads in a given block.
           There are multiple blocks in a grid and hence multiple shared
           matrices at any given time. We focus on just one pair of these.
           Initially, the loop index variable, a, points to the upper-left 
           corner of the rectangular sub-matrix of A that will contribute to
           the CSub result, and b points to the upper-left corner of the
           B sub-matrix.

           Remember that A and B are linear arrays in row-major order. The
           cell of A needed by the thread with id (row,col) is at an offset 
           from a of width_A*row + col.  The cell of B is similarly
           at an offset of width_B*row + col. The thread copies these two
           values into As[row,col] and Bs[rox,col] respectively.

           All threads in the thread block do this simultaneously, so the two
           arrays, As and Bs, are filled by the collection of threads in the
           thread block. These two arrays have the contents of just one
           BLOCK_SIZE by BLOCK_SIZE sub-matrix of each of A and B, not an
           entire row or column od A and B. 
           
           In the next iteration of the loop, the a and b index variables
           point to the upper-left corners of two difference sub-matrices
           of A and B. The a index points to the sub-matrix to the immediate
           right of the preceding one, and b, to the one imediately below
           the preceding one. 

           This continues until every sub-matrix in the row of A and in the 
           column of B have been copied into As and Bs, one after the other.          
        */
        As[thread_row][thread_col] = A[a + width_A * thread_row + thread_col];
        Bs[thread_row][thread_col] = B[b + width_B * thread_row + thread_col];



        /* The next step synchronizes to make sure the matrices are loaded:
           __syncthreads() is a barrier synchronization call; all threads in 
           a single block wait here until every thread has made the call, 
           at which point it returns in each thread. This guarantees that the
           BLOCK_SIZE by BLOCK_SIZE matrices As and Bs are completely filled.
        */
        __syncthreads();

        /* The next step is to compute the inner product of the row of As
           and column of Bs assigned to this thread, As[thread_row],
           and Bs[thread_col], i.e., the sum

             As[i][0]*Bs[0][j] + As[i][1]*Bs[1][j] + ... As[i][N-1]Bs[N-1][j]

           The loop below,
               for (int k = 0; k < BLOCK_SIZE; ++k)
                   Csub += As[thread_row][k] * Bs[k][thread_col];
           adds to Csub the inner product of two vectors of size 16 
           corresponding to the row of a sub-matrix of A and a column of a
           sub-matrix of B. But each time the outer for-loop steps the index
           a to the next sub-matrix, this inner product is continued for the
           next sub-matrix to the right in A and the one below in B, so that
           when the loop completes, the inner product of the entire row of A 
           and column of B has been computed and stored in Csub.
           
           For a device with compute capability 1.x, there are 16 banks in 
           shared memory, each 4-bytes wide. A float is stored in one word 
           of a bank.

           Remember that all threads within a single warp execute the same 
           instruction at a time. Therefore, when a kernel has a loop such as
               for (int k = 0; k < BLOCK_SIZE; ++k)
                   Csub += As[thread_row][k] * Bs[k][thread_col];

           each thread executes the instruction in the body simultaneously.
           Consider the assignment statement, 

               Csub += As[thread_row][k] * Bs[k][thread_col];

           for fixed k. Each of the threads in a half-warp have the same
           value of thread_row, because a warp consists of 16 threads in
           row i followed by 16 threads in row i+1, for each i = 0,2,4,... 30.
           So the first half-warp accesses only row i, and the second half-warp
           accesses only row i+1. Put another way, all threads in a half-warp 
           have the same value of thread_row. Thus, for a fixed value of k, 
           As[thread_row][k] is the same memory location in each thread in a
           half-warp and will be read once and stored locally for each thread 
           in a register.

           The values Bs[k][thread_col] are 16 successive 4-byte words, 
           (because the arrays are stored in row-major order), stored
           in banks 0, 1, 2, ..., 15 of the shared memory. This is a fact of
           how shared memory is used by the GPU: successive 4-byte words are in
           successive banks. Therefore there is no bank conflict in the threads 
           accessing these banks simultaneously. When simultaneous memory 
           requests are to different banks, they are accessed concurrently.
           Therefore, the values Bs[k][thread_col] accessed by the 16 threads
           in a half-warp are accessed in just two clock cycles.
        */
        for (int k = 0; k < BLOCK_SIZE; ++k)



            Csub += As[thread_row][k] * Bs[k][thread_col];

        /* Synchronize to make sure that the preceding computation is done 
           before loading two new sub-matrices of A and B in the next iteration
        */
        __syncthreads();
    }

    /* Now that the loop has terminated, the value in Csub has to be copied
       back to global memory, to the corresponding cell of the C matrix.
       Each thread writes one element. The position is relative to the 
       upper-left corner element of the C sub-matrix computed by this
       thread block. This sub-matrix is in position [block_row, block_col],
       so the upper-left corner is in the row given by
              width_B*BLOCK_SIZE*block_row
       at an offset from the 0 collumn of 
              BLOCK_SIZE*block_col.
    */
    int c = width_B * BLOCK_SIZE * block_row + BLOCK_SIZE * block_col;

    /* The cell within this sub-matrix is in the row of the sub-matrix
       given by  width_B*thread_row, and column thread_col. We assign
       Csub to this cell in the global array.
    */   
    C[c + width_B * thread_row + thread_col] = Csub;
}


