
Compiling	and	Running	Open	MPI	Programs

Stewart	Weiss.
Copyright	2019.	Licensed	under	CC	BY	4.0.

Compiling	an	MPI	Program

Use		mpicc		to	compile	C	programs,		mpic++		to	compile	C++	code.
To	compile	a	program	using		mpicc	,	use	the	same	options	as	you	would	for		gcc	
but	use		mpicc		instead.	For	example,	to	build	an	executable	from	a	single	source	file
named		my_mpi_prog.c	,	turning	on	all	warnings	(-Wall)	and	the	debugging	symbols	(-g)
use

			mpicc	-Wall	-g	-o	my_mpi_prog		my_mpi_prog.c

Running	an	MPI	Program	on	a	Single	Host

To	run	an	executable	that	has	been	compiled	using		mpicc		or		mpic++	,	use
	mpirun		with	the	appropriate	flags.	See	the	OpenMPI	man	page	for	a
complete	list	of	the	flags	and	options.	This	README	document	only	describes
some	basic	running	options.

To	schedule	MPI	processes	on	separate	cores	on	a	single	multi-core	processor	use

					mpirun	--bind-to	core	-np	<NUMCORES>		<executable>

where	<`NUMCORES`>	is	the	number	of	cores	on	the	processor	and	<`executable`>
is	the	name	of	your	executable	MPI	program.
To	get	the	number	of	cores	on	the	processor,	one	easy	command	is:

								lscpu	|	grep	"^CPU(s):"

https://creativecommons.org/licenses/by/4.0/

whose	output	on	a	12	core	host	will	be

									CPU(s):														12

To	get	just	the	number,	use

								lscpu	|	grep	-w	"^CPU(s)"	|	awk	-F":[]*"		'{print	$2}'

which	will	output

								12

The		-np		option	is	how	you	specify	the	number	of	processes	to	create.
If	you	just	type

						mpirun	-np	N		<executable>

MPI	will	schedule		N		tasks	across	however	many	cores	it	finds	on	your	local
host,	and	try	to	load	balance	accordingly.	For	example,	12	processes	on	4
cores	will	result	in	3	per	core	on	average.

To	attach	information	about	which	process	wrote	output,	use

						mpirun	-tag-output	-np	<NUMCORES>		<executable>

which	prepends		[jobid,	rank]<stdxxx>		to	each	output	line,	where		stdxxx		is
either		stderr		or		stdout	.

Scheduling	MPI	Processes	on	Multiple	Hosts

This	is	a	complex	topic,	but	the	general	idea	is	that	MPI	has	to	be	able	to
launch	your	processes	on	the	separate	hosts,	and	to	do	that	it	needs

1.	 to	know	the	addresses	of	the	hosts	on	which	to	run	them,	and

2.	 to	be	able	to	start	up	processes	using	your	username	on	the	remote	hosts.

The	first	requirement	is	solved	by	giving	it	a	hostfile,	as	is	shown	below.
The	second	is	solved	on	by	using	ssh	authentication	keys	as	a	means	of	authentication
instead	of	passwords.	Instructions	for	how	to	set	up	ssh	authentication	using	an	RSA
key-pair	are	below,	site	specific	to	our	Computer	Science	Department	network.

Setting	Up	SSH	Authentication

One	Time	Configuration.	Set	up	SSH	as	the	authentication	agent	as	follows:

To	create	authentication	keys,	type	the	following	three	commands	on	any		cslab		host:

					ssh-keygen	-t	rsa

					cp		~/.ssh/id_rsa.pub			~/.ssh/authorized_keys

					chmod	go-rwx	~/.ssh/authorized_keys

The	first	command	creates	the	public	and	private	RSA	keys,	storing	the	public
key	in		~/.ssh/id_rsa.pub	;	the	second	copies	the	public	key
to	the	file		~/.ssh/authorized_keys	;	the	third	removes	read/write/execute
permission	from	everyone	except	the	owner	of	the	file,i.e.,	you.

Because	your	home	directory	is	remotely	mounted	by	every	host	in	the	lab,	all
hosts	on	which	you	would	launch	an	MPI	process	will	have	a	copy	of	the	public
key	in	the		authorized_keys		file,	and	all	from	which	you	might	launch	a	job	will
have	the	private	key	in		~/.ssh/id_rsa	,	making	the	key-pair	authentication
universal	among	the	set	of	lab	hosts.

Per	Session	Configuration.	Each	time	you	start	a	new	work	session,
meaning	each	time	you	login,	type	the	following:

					ssh-agent	bash

					ssh-add

You	can	create	a	script	if	you	like	to	make	this	one	step.	Put	the	following

lines	into	a	file	named		startsession	,	and	make	it	executable:

					#!/bin/bash
					ssh-agent	bash

					ssh-add

Then	just	type		startsession		once	after	logging	in.
These	lines	basically	make		bash		an	agent	for	ssh,	storing	your	private
key(s)	in	the	agent	for	authentication.

Creating	a	Hostfile

A	hostfile	is	a	file	that	contains,	int	its	simplect	form,	one	host	IP	address
per	line.	It	can	also	contain	how	many	slots,	i.e.,	cores,	that	host	has.
You	can	also	use	DNS	names	instead	of	IP	addresses.

The	script	on	the	server	in	the		mpi_demos/scripts		directory	named
	buildHostfile.sh		is	designed	to	create	a	list	on	standard	output	of	all
available	hosts	named	in	the	form		cslabXX		in	the	Computer	Science	Department	network.
To	create	a	hostfile,	run	it	and	redirect	output	to	a	file.	Enter	the	command

				buildHostfile	>	myhostfile

It	will	also	print	a	message	on	the	terminal	stating	how	many	slots
and	hosts	are	available.	Save	the	number	of	slots	that	it	outputs.

Running	the	MPI	Program	Using	the	Hostfile

You	can	now	run	your	MPI	program	using	this	hostfile.	Make	sure	that
the	number	of	processes	specified	by	the		-np		option	does	not	exceed
the	total	number	of	slots.	It	can	be	smaller.	Run	the	command

								mpirun	--hostfile	myhostfile	-np	N	<executable>

where		N		is	the	number	of	processes	to	run	on	the	hosts	and
<	executable	>	is	the	name	of	the	program.	If	there	are	errors,	it	may	be	because
some	of	the	hosts	are	no	longer	accessible	when	you	run	the	program.	In	this	case
you	can	edit	the	hostfile	to	remove	the	hosts	that	MPI	reported	as	unavailable.

Running	an	MPI	Program	on	Multiple	Hosts	Without	a	Hostfile

An	alternative	to	creating	a	hostfile	is	to	specify	the	names	of	the	hosts	in
the	command	that	invokes		mpirun	.

Suppose	that	you	wish	to	run	one	copy	of	your	MPI	program	on	each	of	the	hosts
	cslab8	,		cslab10	,	and		cslab14	.	The	command

								mpirun	-H	cslab8,cslab10,cslab14	<executable>

will	do	that.	Do	not	put	spaces	after	the	commas.

Although	the	documentation	for		mpirun		states	that	you	can	specify	multiple	processes
to	run	on	the	hosts	using	various	ways,	the	only	way	that	is	safe	to	use	is	to	specify	a	host	name
on	the	command	line	as	many	times	as	you	want	processes	on	thathost.	For	example,	to	run	3
processes
on		cslab8		and	two	on		cslab14	,	type

								mpirun	-H	cslab8,cslab8,cslab8,cslab10,cslab14,cslab14	<executable>

Debugging	an	MPI	Program

Debugging	any	parallel	program	is	difficult.	There	are	two	types	of	errors,	or
"bugs":

Timing-independent	errors
Timing-dependent	errors

The	first	are	errors	that	result	in	incorrect	output	or	failures	regardless	of
the	relative	order	in	which	the	processes	execute.	They	are	easier	to	find	than
the	second	ones.

Timing-dependent	errors	depend	on	the	relative	order	in	which	the	processes
execute.	They	can	be	extremely	hard	to	find.

Regardless	of	which	type	your	bug	is,	the	debugging	procedure	should	begin
in	the	same	way.	The	procedure	that	I	recommend	is	what	follows.

1.	 Modify	the	source	code	of	your	main	program	by	including	the	following

code	and	comments	in	a	place	where	you	want	to	start	stepping	through
the	code,	such	as	immediately	after	the	program	initializes	the	MPI
library	in		main()	:

				#ifdef	DEBUG_ON
								/*	To	debug,	compile	this	program	with	the	-DDEBUG_ON	option,
											which	defines	the	symbol	DEBUG_ON,		and	run	the	program	as	usual
											with	mpirun.
											When	the	output	appears	on	the	terminal,	listing	the	pids	of	the
											processes	and	which	hosts	they	are	on,	choose	the	lowest
											pid	P	on	the	machien	you	are	connected	to.
											Open	a	new	terminal	window	and	in	that	window	issue	the	command
															gdb	--pid	P
															(or	gdb	-p	P	on	some	systems)
											and	after	gdb	starts,	go	up	the	stack	to	main	by	entering	the
											command
															up	3
										(main	will	be	three	stacks	frames	above	your	current	frame,
											which	should	be	nanosleep.)
										Then	enter	the	command
															set	var	i	=	1
										to	break	the	while	loop.	You	can	now	run	ordinary	gdb	commands	to
										debug	this	process.	This	should	be	process	0.
										Repeat	these	steps	for	each	other	process	that	you	created	in
										the	mpirun	command.
								*/

								#include	<unistd.h>

								int	i	=	0;
								char	hostname[256];
								gethostname(hostname,	sizeof(hostname));
								printf("PID	%d	on	%s	ready	for	attach\n",	getpid(),	hostname);

								fflush(stdout);

								while	(0	==	i)
												sleep(5);

				#endif

If	your	program	is	already	using	the	variable		i	,	then	instead	of		i	
in	the	inserted	code,	pick	a	different	variable	name.

The	directive	to	include		unistd.h		is	needed	because	the	above	code
uses	the	function		gethostname	,	which	is	declared	in	that	header	file.

2.	 The	comment	above	describes	what	you	must	do,	but	to	clarify	some	of	the
steps:	After	you	insert	the	code,	compile	with	a	line	of	the	form

				mpicc	-g	-DDEBUG_ON	-Wall	-o	<your_executable>			<source_files>

	If	you	need	to	pass	linker	or	loader	flags	you	do	that	as	well.

3.	 Run	the	program	with	the	least	number	of	processes	you	need	to	look	for
the	bug.	I	suggest	two	to	start.

4.	 After	you	start	stepping	through	each	process,	if	you	reach	a	communication
point	or	a	barrier,	you'll	have	to	make	sure	all	processes	reach	it	before
the	others	can	continue.

5.	 If	you	are	unfamiliar	with		gdb	,	now	is	the	time	to	learn	it.

