
CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

Chapter 6 Performance Analysis

�The computer scientist's greatest challenge is not to get confused by complexities of his own
making.� - E. W. Dijkstra

6.1 Introduction

Sometimes we discover tools that we like so much that we use them even when we should not. Learning how
to design and write parallel programs should not be confused with knowing when to do so. Some problems
bene�t from parallelization and others do not. It is as important to know when to parallelize and understand
its costs and bene�ts as it is to know how to do it. The purpose of this chapter is to give you the means to

• determine how much faster a parallel algorithm performs than a sequential algorithm;

• predict the performance of a parallel algorithm;

• decide whether there are inherent limitations that prevent a parallel algorithm from performing, and
what they are; and

• determine how e�cient a parallel algorithm can be as the problem size and number of available pro-
cessors increases.

The theory we describe here can help you avoid the mistake of using a tool that does not �t the job.

6.2 Speedup and E�ciency

Informally, the speedup of a parallel algorithm is a measure of how much faster it is than a sequential
algorithm, but this begs the question, which sequential algorithm, and what does faster mean? The second
question is the easy one; the speedup of a parallel algorithm over a speci�c sequential algorithm is the ratio
of the execution time of the sequential algorithm to the execution time of the parallel algorithm:

Speedup =
Sequential execution time

Parallel execution time
(6.1)

Regarding the �rst question, for a given problem, more than one sequential algorithm may exist, but not
all of these will be suitable for parallelization. On a single processor computer, one tries to use the fastest
sequential algorithm that solves the problem. It makes sense to judge the speedup of a parallel algorithm by
comparing it to the fastest sequential algorithm for solving the same problem on a single processing element.
The problem is that sometimes, the asymptotically fastest sequential algorithm to solve a problem is not
known, or its runtime has a large constant that makes it impractical to use. In this case, we take the fastest
known algorithm that would be a practical choice for a single processor computer as the best sequential
algorithm.

There are three components to the execution time that a parallel algorithm would require if it were imple-
mented:

• the part of the computation that must be performed sequentially, called the inherently sequential

part of the computation,

• the part of the computation that can be performed in parallel, called the parallelizable part of the
computation, and

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

• the overhead that the parallel algorithm has, but that the sequential algorithm does not, which includes:

� communication overhead

� computations that are performed redundantly

� the overhead of creating multiple processes.

We make this more mathematical in order to do some quantitative analysis. To do so, we have to abstract
the concept of computation. When we talk about computations, we will think of them as being equivalent to
time units. If we say, for example that the inherently sequential part of the computation is s, then we think
of s as an amount of time. Similarly, if we say the computation in an algorithm that can be performed in
parallel is t, then we think of t as being measured in time units. So we use the words computation and time
interchangeably. With this in mind, we introduce some notation.

De�nition 1. We let

ψ(n, p) denote the speedup achieved by solving a problem of size n on a computer system with p processors.

σ(n) denote the inherently sequential part of the computation of a problem of size n.

ϕ(n) denote the part of the computation of a problem of size n that may be executed in parallel.

κ(n, p) denote the parallel overhead of the computation of a problem of size n using p processors.

Observations

1. A sequential program has no parallel overhead, κ(n, p), and executes all instructions on a single pro-
cessor. Therefore the total time spent in a sequential algorithm on a problem of size n is

σ(n) + ϕ(n) (6.2)

.

2. The best possible parallel algorithm still has to execute the inherently sequential portion of the com-
putation sequentially, so that part contributes σ(n) time to the parallel execution time. However,
this best possible parallel algorithm can execute the parallelizable part of the computation, ϕ(n), on
p processors by dividing it up equally among the processors, so that this portion of the computation
contributes ϕ(n)/p time to the parallel execution time. Lastly, it still has the parallel overhead, κ(n, p).
Therefore the total parallel execution time is, in the best case,

σ(n) + ϕ(n)/p+ κ(n, p) (6.3)

3. If the parallel algorithm is not �the best�, it may not be able to uniformly distribute the parallelizable
part of the computation among the p processors, and in this case, some processors must necessarily
take longer than ϕ(n)/p time to �nish their part of the work. This implies that the expression in Eq.
6.3 above is a lower bound on the parallel execution time. Since in the de�nition of speedup (Eq. 6.1
above), the parallel execution time is in the denominator, the relationship is

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p+ κ(n, p)
(6.4)

It might seem that throwing more processors at a problem will make the parallel execution time even
smaller, but this is not true in general. In most parallel algorithms, the processes need to communicate
with each other. As the number of processes increases, the communication costs increase. The objective of
agglomeration, you may remember, is to reduce communication overhead by reducing the number of processes
that need to exchange data. In general, as p increases, ϕ(n)/p decreases but κ(n, p) increases. Therefore,
for each n, there is an optimal value of p that minimizes the parallel execution time σ(n) +ϕ(n)/p+κ(n, p),
and consequently maximizes speedup. When p is too large, the speedup is not increased proportionately,
and the processors are being wasted.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

Suppose that you had to buy time on a parallel machine to run your algorithm, and that the price was
based on the total time spent executing on all processors combined. You would be wasting money to run the
parallel program with too many processors because you would be paying for the parallel overhead instead
of actual computation time. In other words, you would not be utilizing the processors well. E�ciency is a
measure of processor utilization.

De�nition 2. The e�ciency of a parallel algorithm solving a problem of size n using p processors, denoted
ε(n, p), is de�ned by

E�ciency =
Sequential execution time

Parallel execution time × Processors used

From Eq. 6.4 and the above de�nition, we have

ε(n, p) = ψ(n, p)/p

≤ σ(n) + ϕ(n)

(σ(n) + ϕ(n)/p+ κ(n, p)) · p
implying

ε(n, p) ≤ σ(n) + ϕ(n)

pσ(n) + ϕ(n) + pκ(n, p)
(6.5)

Also, p ≥ 1 implies that

0 ≤ σ(n) + ϕ(n) ≤ pσ(n) + ϕ(n, p) (6.6)

.

Since parallel overhead, κ(n, p)), is non-negative,

0 ≤ pκ(n, p)) (6.7)

.

Using (6.6) and (6.7), it follows that

0 ≤ σ(n) + ϕ(n) ≤ pσ(n) + ϕ(n) + pκ(n, p) (6.8)

.

Dividing all sides of Eq. 6.8 by pσ(n) + ϕ(n) + pκ(n, p) shows that 0 ≤ ε(n, p) ≤ 1.

6.3 Amdahl's Law

In 1967, Gene Amdahl, who at the time worked at IBM, argued that there was an inherent limitation to
the amount of speedup that could be obtained by performing a computation using more processors [1]. His
observation of this fact has come to be called Amdahl's Law and has been formalized more mathematically
than he actually presented it.

Amdahl's Law. Let f be the fraction of operations in a computation that must be performed sequentially,
where 0 ≤ f ≤ 1. The maximum speedup ψ achievable by a parallel computer with p processors for this
computation is

ψ ≤ 1

f + (1− f)/p
(6.9)

Before we prove Amdahl's Law, observe that, as p approaches∞, the upper bound for the speedup approaches
1/f . In other words, the inverse of the sequential fraction is the most speedup one can ever obtain, so the
more inherently sequential computation in an algorithm, the less speedup is possible. For any �xed problem
size, the fraction of inherently sequential computation is �xed. Amdahl's Law shows that for a �xed problem,
the upper bound on speedup is also �xed.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

Proof. Starting with Eq. 6.4, we have

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p+ κ(n, p)

The fact that 0 ≤ κ(n, p)) implies that

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p+ κ(n, p)
≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p
(6.10)

The inherently sequential part of the computation is, by de�nition, σ(n). The total computation is the inher-
ently sequential part plus the parallelizable part, which is ϕ(n). Therefore, the fraction of the computation
that is inherently sequential is

f =
σ(n)

σ(n) + ϕ(n)
.

Then

1/f =
σ(n) + ϕ(n)

σ(n)

implying
σ(n) + ϕ(n) = σ(n)/f (6.11)

and

ϕ(n) = σ(n)/f − σ(n) = σ(n)(1/f − 1) (6.12)

Combining (6.10), (6.11), and(6.12), we have

ψ(n, p) ≤ σ(n) + ϕ(n)

σ(n) + ϕ(n)/p

=
σ(n)/f

σ(n) + σ(n)(1/f − 1)/p

=
1/f

1 + (1/f − 1)/p

=
1

f + (1− f)/p

which completes the proof.

Example 3. Suppose that we are considering developing a parallel program to improve on an existing
sequential program and that we determine that 10% of the execution time of the sequential program is spent
in inherently sequential code. (We have to inspect the code to determine this.) The remaining code can be
parallelized, although we do not as yet know how many processors would be optimal. What is the maximum
possible speedup that could be obtained if we were to develop a parallel version that used ten processors?

Solution In this problem, f = 0.1. Applying Amdahl's Law, we have

ψ ≤ 1

0.1 + 0.9/10
=

1

0.1 + 0.09
≈ 5.26

Example 4. We can ask the inverse question. Suppose that we know that fraction of inherently sequential
computation is 0.12 in the problem of interest. We know that the upper bound on the speedup with any
number of processors is 1/f = 1/0.12 ≈ 8.33. What is the least number of processors that we need to use to
obtain a speedup of 5.0?

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

Solution We solve Eq. 6.9 in terms of p.

ψ ≤ 1

f + (1− f)/p

=⇒ ψ ≤ p

pf + (1− f)

=⇒ pfψ + (1− f)ψ ≤ p
=⇒ (1− f)ψ ≤ p− pfψ

=⇒ (1− f)ψ

1− fψ ≤ p

This tells us that p must be at least (1− 0.12) · 5.0/(1− 0.12 · 5.0) = 4.40/0.4 = 11.

6.3.1 Rami�cations of Amdahl's Law

Many problems have the property that the inherently sequential part of the solution is a linear function of
problem size, n. This is often due to the fact that the time to read the data is linear and the time to output
results is either constant or at most linear. In contrast, the time to do the computation is a higher order
function, such as n2 or even n3. For example, an elementary array sorting algorithm takes time Θ(n2) for
inputs of size n.

Let us represent the inherently sequential part of some sequential program execution time as a linear function
σ(n) = an + b, for some constants a, b > 0, and let us suppose that the parallelizable part is quadratic,
i.e., ϕ(n) = cn2 for some constant c > 0. To make it concrete, we can let a = 1000, b = 10000, and
c = 0.25. This is not unreasonable, because I/O operations take time on the order of milliseconds, and a
and b represent primarily I/O operations, whereas c represents the cost of computational instructions, on
the order of nanoseconds or microseconds. If we plot the maximum speedup predicted by Amdahl's Law
with p processors using these functions for σ(n) and ϕ(n), for two �xed problem sizes of n = 20000 and
n = 1000000, we have a chart such as the one shown in Figure 6.1.

0 5 10 15 20 25
0

2

4

6

8

10

12

14

n=20000
n=100000

Number of processors

M
a

xi
m

u
m

 s
p

e
e

d
u

p

Figure 6.1: Maximum speedup for the functions σ(n) = 1000n+ 10000 and ϕ(n) = 0.25n2, when n = 20000
and n = 1000000.

Notice that the maximum speedup for a larger problem size is larger. We will discuss this shortly.

Amdahl's Law does not account for the parallel overhead, a large part of which are the communication costs.
Suppose we add communication delays to the hypothetical parallel version of the program we just analyzed.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

0 5 10 15 20 25
0

2

4

6

8

10

12

14

Speedup Comparison (n=1000000)

no communication overhead
 communication overhead 
included

Number of processors

M
a

xi
m

um
 s

p
e e

d
up

Figure 6.2: Comparison of speedup maximum with and without communication overhead.

In particular, suppose that there is an additional overhead of dlog ne communication points and that each
of these points uses

10000 · dlog pe+ (n/10)

of the same unspeci�ed units of time. Then the prediction for speedup taking this into account, for our
problem with σ(n) = 1000n+ 10000 and ϕ(n) = 0.25 · n2 is

ψ ≤ 1000n+ 10000 + 0.25 · n2
1000n+ 10000 + (0.25 · n2)/p+ 10000 · dlog pe+ (n/10)

Letting n = 100000 as before, the predicted upper bound for a given p is

ψ ≤ 10001× 104 + 25 · 108

10002× 104 + 25 · 108/p+ 10000 · dlog pe

A graph comparing this function and the one without overhead is shown in Figure 6.2.

6.3.2 The Amdahl E�ect

In Section 6.3.1, we observed in one example that as the problem size increased, the fraction of the compu-
tation that was inherently sequential decreased. This is often the case. Furthermore, the parallel overhead
κ(n, p) often has smaller complexity as a function of n than the parallelizable portion of the computation,
ϕ(n). A consequence of these facts is that, as the problem size increases, for a �xed number of processors,
the maximum possible speedup tends to increase. This relationship has been called the Amdahl e�ect.

6.4 Gustafson-Barsis's Law

Amdahl's Law states a limit on just how much faster a parallel program can run than a given sequential
program for a problem of a �xed size. In other words, it starts out with the execution time of solving a
problem of �xed size on a single processor, and shows that there is an inherent limit on how much faster the
problem can be solved with more processors. It does not take into consideration that adding processors to
the parallel computer usually means adding memory to the computer as well, and that the increased memory
size makes it possible to solve larger instances of the problem on the computer.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

Hypothetical time to run on serial processor

p processors
Time to run with

tpts

ts
tp · p

Figure 6.3: Gustafson-Barsis scaled speedup is justi�ed by imagining the parallel program being run on a
serial processor. The parallel time expands and the problem size grows in proportion, but the serial time
stays �xed.

In 1988, John Gustafson and his colleague Edwin Barsis proposed an alternative way to view the speedup
obtained by using a parallel computer [3]. At the time, they worked at Sandia National Labs and had
found in their work there that parallelizing several programs resulted in speedups greater than Amdahl's
Law predicted, because the assumptions underlying Amdahl's Law did not hold. Gustafson argued that
people do not take a �xed-size problem and run it on varying numbers of processors to decrease running
time, �except when doing academic research.� Instead, he noted, �when given a more powerful processor, the
problem generally expands to make use of the increased facilities� [3]. In other words, when the number of
processors increases, people use the larger number of processors to solve a larger problem in the same amount
of time.

There are many examples of this. Someone may be trying to solve a problem like the heat dissipation
example that we worked through in Chapter 3. Given a larger number of processors, one would increase the
number of grid points to get a more accurate answer, or decrease the time interval and increase the number
of simulated time steps. In fact, he argued, the inherently sequential code does not grow at all when grid
resolution or time granularity is re�ned. Therefore, his argument was that, when the number of processors
is increased, the problem size is increased linearly with it and the running time of the parallel version of the
program remains �xed, not the problem size. In essence, when the problem size grows, the parallelizable part
of the program grows proportionately and the inherently sequential part tends to diminish, consistent with
the Amdahl E�ect.

Let us start with a parallel program that is being used to solve a problem of some arbitrary size c. Let ts
denote the amount of time that this parallel program spends executing inherently sequential code, and let
tp denote the amount of time it spends executing the parallel code in the computation with p processors.
We ignore the parallel overhead in this analysis, which therefore implies that the total running time of the
parallel program for this particular problem size c, using p processors, is ts + tp.

Let

s =
ts

ts + tp
.

Then s is the fraction of time that the parallel program spends executing inherently sequential code, and

(1− s) = 1− ts
ts + tp

=
ts + tp − ts
ts + tp

=
tp

ts + tp

is the fraction of time that the parallel program spends executing the parallel part of the code.

Now we turn the problem sideways. Suppose that the reason we used this parallel program on a parallel
computer was to increase the problem size. In other words, initially we could only solve a problem of some
smaller size, but by using p processors, we were able to solve the larger problem in the same amount of
time. Thus, as p increases, c increases linearly with it. We say that problem size scales with the number

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Scaled Speedup

s=0.01
s=0.10

Number of Processors

S
p

ee
d

up

Figure 6.4: Plot of scaled speedup, S(p), with s = 0.01 and s = 0.1. The graphs are straight lines because
this is a linear function of p for each �xed s.

of processors and we de�ne a di�erent notion of speedup, called scaled speedup (by Gustafson and Barsis),
to be the ratio of the amount of time we would have to spend to solve this same problem on a computer
with a single processor, to the amount of time that it takes to solve it on our parallel machine with p
processors, under the assumption that, as p increases, the parallel running time remains �xed and problem
size is increased linearly with p:

Scaled speedup =
Hypothetical time to solve problem on sequential computer

Actual parallel execution time
(6.13)

The time to solve this problem on a sequential computer would be the sum of the inherently sequential time,
ts, and the time to execute the parallel code, which would be tp · p, since there is only one processor instead
of p, so the total execution time would be ts + tp · p. This is illustrated in Figure 6.3. Letting S(p) denote
the scaled speedup,

S(p) =
ts + tpp

ts + tp
=

ts
ts + tp

+
tp

ts + tp
p = s+ (1− s)p = s+ p− ps = p+ (1− p)s (6.14)

This is Gustafson-Barsis's Law, which we restate:

Gustafson-Barsis's Law Given a parallel program solving a problem of size n in a given amount of time
using p processors, let s denote the fraction of the program's total execution time spent executing inherently
sequential code. The scaled speedup achievable by this program, as a function of the number of processors
p, is

S(p) = p+ (1− p)s

Further Observations

1. Gustafson-Barsis's Law states the relationship between the left and right-hand sides as an equality,
unlike the statement of it in [5]. However, Gustafson intentionally ignores the parallel overhead,
k(n, p). As κ(n, p) ≥ 0, the actual execution time that would appear in the denominator of Eq. 6.13,
ts + tp + κ(p) is greater than what is used in Eq. 6.14. This means that the actual scaled speedup is
at most what is derived in Eq. 6.13. Hence it is reasonable to state the law as S(p) ≤ p+ (1− p)s.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 8

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

2. Quinn uses the function ψ(n, p) in Gustafson-Barsis's Law. Here we do not. The problem size n
does not appear on the right-hand side of the equation because it is not an independent variable. An
assumption underlying this law is that the problem size is dependent on p; therefore, it is not a free
variable.

3. The inherently sequential fraction is treated as a constant, not as a free variable. The underlying
assumption, as we noted above, is that the initial problem is run on a parallel computer and s is
derived from the execution time there. It is based on some initial problem size. As p increases, s
remains �xed because it is a fraction derived from a �xed problem size and number of processors.

A plot of the scaled speedup for two �xed values of s is shown in Figure 6.4.

6.5 The Karp-Flatt Metric

Neither Amdahl's Law nor Gustafson-Barsis's Law take into account the parallel overhead, κ(n, p). As a
result, they both overestimate the maximum possible speedup, because this overhead is never absent. The
Karp-Flatt Metric [4] provides a means to use empirical data to learn something about this overhead as well
as the amount of inherently sequential computation in a parallel program. Like Gustafson-Barsis's Law, it
starts with the parallel program. The basic idea is that one can collect data from several runs of the program
with increasing numbers of processors, and if one knows the running time of the sequential program, one
can compute the speedup for these various runs. From the speedup data and the Karp-Flatt Metric, one
can infer sources of performance degradation. Our derivation of the metric follows the method used by Karp
and Flatt [4], rather than that used by Quinn [5], which has errors in the older printings.

To simplify the notation (and to be consistent with Karp and Flatt) we henceforth assume that the problem
size is �xed and introduce the following notation:

Notation 5. T (n, p) denotes the execution time of a parallel program solving a problem of size n using p
processors. When the meaning is clear, we drop the size argument and write T (p) instead.

Notation 6. T (n, 1) denotes the execution time of a sequential program solving a problem of size n. When
the meaning is clear, we drop the size argument and write T (1) instead.

Suppose that we let the experimentally determined speedup of a parallel program solving a problem
using p processors be denoted s(p). The way that s(p) is determined is by running the program on p
processors and also running the sequential program and computing the fraction

s(p) =
T (1)

T (p)

where T (p) denotes the execution time of a parallel program solving a problem using p processors and T (1)
is the execution time of a sequential program. Notice that, here, the speed-up is the elapsed time needed by
one processor divided by the elapsed time needed on p processors. Let f denote the inherently serial fraction
of the computation (as it is de�ned in Amdahl's Law). We let Ts denote the time spent in the serial part of
the computation (i.e., σ(n)) and Tp denote the time spent in the parallelizable part of the computation (i.e.,
ϕ(n) ). Then

f =
Ts

Ts + Tp
=

Ts
T (1)

and
Ts = f · T (1)

and
Tp = T (1)− Ts = T (1)− fT (1) = (1− f)T (1)

If we ignore the overhead component of the parallel program's running time as well as load-balancing e�ects,
we can write

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 9

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

T (p) = Ts + Tp/p (6.15)

implying

T (p) = f · T (1) + (1− f)T (1)/p

and therefore
1

s(p)
=
T (p)

T (1)
=
f · T (1) + (1− f)T (1)/p

T (1)
= f + (1− f)/p

Solving for f , we have

f =
1

s(p)
− (1− f)/p)

f =
1

s(p)
− 1

p
+
f

p

f − f

p
=

1

s(p)
− 1

p

f(1− 1

p
) =

1

s(p)
− 1

p

implying

f =
1/s(p)− 1/p

1− 1/p
(6.16)

This is what Karp and Flatt call the experimentally determined serial fraction of a computation. We
will henceforth denote it by fe:

De�nition 7. The experimentally determined serial fraction fe of a parallel computation of a problem
using p processors is de�ned as

fe =
1/s(p)− 1/p

1− 1/p
(6.17)

where s(p) is the measured speedup of the parallel program using p processors. It is important to stress
this, because the simpli�ed formula for the parallel execution time in Eq. 6.15 assumes that all processors
compute for the same amount of time, i.e., the work is perfectly load balanced. If some processors take longer
than others, the measured speed-up will be reduced giving a larger measured serial fraction. In addition, it
does not include the overhead of communication.

Load-balancing e�ects can result in an irregular change in fe as p increases. For example, if there are 12
tasks that each take the same amount of time, and they are distributed among the processors, one can have
perfect load balancing for 2, 3, 4, 6, and 12 processors, but less than perfect load balancing for other values
of p. Since a larger load imbalance results in a larger increase in fe, the value of fe can be used to identify
problems not apparent from speed-up or e�ciency measures. For example, the data in Table 6.1, which
was obtained by running the Linpack software benchmark on an Alliance FX/80 with varying numbers of
processors, shows that the e�ciency ranges from 0.97 for 2 processors, down to 0.749 for 8 processors. This
by itself is not so bad. However, the serial fraction ranges from 0.031 up to 0.048 as the number of processors
increases. The fact that it is increasing shows that there is some overhead that grows with the number of
processors. This is most likely communication overhead, but we cannot know without further analysis, as
it could be process startup costs, memory contention, or something else. It could be that the topologies of
the interconnection networks on the di�erent machines are di�erent, and that one is more suitable than the
other for this software.

On the other hand, the data collected from a run of the same software on a Cray Y-MP/8 (Figure 6.2)
shows that the e�ciency drops only slightly from 0.975 for 2 processors to 0.87 for 8 processors, and the

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 10

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

p (number of processors) 2 3 4 5 6 7 8
s (experimental speedup) 1.94 2.79 3.56 4.24 4.89 5.44 5.99
ε (experimental e�ciency) 0.970 0.930 0.890 0.848 0.815 0.777 0.749
fe (experimental serial fraction) 0.031 0.038 0.041 0.045 0.045 0.048 0.048

Table 6.1: Performance data of Linpack running on an Alliance FX/80 (from [4].)

experimentally determined serial fraction remains constant, supporting the conjecture that on this machine,
there is very little overhead. One can use these two tables to infer characteristics of the software that could
not be determined from either Amdahl's Law or Gustafson-Barsis's Law, and as such the Karp-Flatt Metric
is an important, practical tool.

p (number of processors) 2 3 4 8
s (experimental speedup) 1.95 2.88 3.76 6.96
ε (experimental e�ciency) 0.975 0.960 0.940 0.870

fe (experimental serial fraction) 0.024 0.021 0.021 0.021

Table 6.2: Performance data of Linpack running on a Cray Y-MP/8 (from [4].)

6.6 The Isoe�ciency Relation

In the preceding section, you saw that the same parallel software running on two di�erent parallel computers
had very di�erent performance characteristics. This should convince you that it is both the underlying
hardware and the software that determine the overall performance. Therefore, rather than discussing the
parallel program alone, we discuss parallel systems. We de�ne a parallel system to be a speci�c parallel
program running on a speci�c parallel computer.

We introduce a metric in this section that can be used to determine how scalable a parallel system is.
Informally scalability is the extent to which the e�ciency of a parallel system can be maintained as the
number of processors and the problem size are increased. If e�ciency, and consequently performance,
degrades with an increasing number of processors, the system is not scalable. If it stays at least the same,
it is scalable.

Recall from the discussion in Section 6.3.2 that we need to increase problem size as the number of processors
is increased in order to maintain the same level of e�ciency. The Amdahl E�ect tells us that the inherently
serial fraction tends to decrease with increased problem size. Also in Section 6.4, we saw that Gustafson-
Barsis's Law tells us that the scaled speedup does not have a limiting upper bound when both the problem
size and number of processors are increased together. Summarizing, on the one hand, increasing the number
of processors alone tends to decrease e�ciency, whereas increasing problem size tends to increase e�ciency.
The question is, at what rate should we increase the problem size with respect to the number of processors
to keep the e�ciency �xed? The isoe�ciency relation proposed by Grama, Kupta, and Kumar [2] will be
the key to this question. It will tell us in a quantitative way the relationship between problem size and the
number of processes and the degree of scalability of a parallel system. The word isoe�ciency means �same
e�ciency.�

6.6.1 Derivation of the Relation

In Section 6.5 we de�ned T (n, 1) to represent the amount of time that the sequential program executes on
a single processor on a problem of size n, and T (n, p) to be the time that the parallel program executes on
p processors.

Let T0(n, p) denote the total amount of time spent by all processes in the parallel program performing work
that is not performed in the sequential program. This includes communication costs, process startup costs,
contention for shared memory, and so on. But it also includes the fact that in the parallel program, every

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 11

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

process executes the inherently sequential code. For example, if a program has 1000 lines of inherently
sequential code that are each executed by 16 processes, then 16, 000 lines are executed in total in the parallel
system, versus only 1000 lines in the sequential program. Since T0(n, p) is the total computation done by
the parallel program not done by the sequential program, and T (n, 1) is the time the sequential program
takes to execute, it follows that

T (n, 1) + T0(n, p) = p · T (n, p) (6.18)

because the parallel program is executed by p processes each spending T (n, p) time1. Therefore

T (n, p) =
T (n, 1) + T0(n, p)

p

Since speedup is the ratio of the sequential program's running time divided by the parallel program's running
time, we can write it as

ψ(n, p) =
T (n, 1)

T (n, p)
=

p · T (n, 1)

T (n, 1) + T0(n, p)

and since e�ciency is speedup divided by the number of processors, this leads to

ε(n, p) =
T (n, 1)

T (n, 1) + T0(n, p)

=
1

1 + T0(n, p)/T (n, 1)
(6.19)

In other words, the e�ciency of the system depends entirely on the ratio between the parallel overhead
T0(n, p) and the serial execution time. If that ratio can be kept constant by increasing n and p appropriately,
then e�ciency can be held constant. For di�erent parallel systems, we must increase n at di�erent rates with
respect to p to maintain a �xed e�ciency. For example, n might need to grow as an exponential function
of p; such a system would be poorly scalable, as it is di�cult to obtain good speedup for a large number
of processors on such a system unless the problem size were extremely large, which may not be feasible. In
contrast, if n needs to grow only linearly with respect to p, then the system is highly scalable. Thus, it
would be useful to have a function of p that could tell us how n has to grow to maintain e�ciency, i.e., an
isoe�ciency function.

Using Eq. 6.19, we have

ε(n, p) (1 + T0(n, p)/T (n, 1)) = 1

⇒ ε(n, p) +
ε(n, p)T0(n, p)

T (n, 1)
= 1

implying
T (n, 1)(1− ε(n, p)) = ε(n, p)T0(n, p)

and

T (n, 1) =
ε(n, p)

(1− ε(n, p))T0(n, p) (6.20)

If the goal is that e�ciency is held constant as both n and p increase, then the factor ε(n, p)/(1− ε(n, p)) is
treated as remaining a constant for all n and p. Let us write

C =
ε(n, p)

(1− ε(n, p))
1In fact, the right-hand side of Eq. 6.18 is at least as large as the left-hand side, because T (n, p) is the total elapsed time

spent by all processes, and some of these processes might have �nished their work before others. Therefore, it is more accurate

to replace the = relation by ≤.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 12

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

Then C is a constant depending on the e�ciency alone, and we can rewrite Eq. 6.20 as

T (n, 1) = C · T0(n, p) (6.21)

This is the isoe�ciency function de�ned in [2]. In fact, since Eq. 6.19 really de�nes an upper bound on
the e�ciency, the right-hand side of (6.21) is a lower bound (which you can verify from the steps leading to
it) and the isoe�ciency relation is

T (n, 1) ≥ C · T0(n, p) (6.22)

How is this relation used? The following de�nition is the �rst step.

De�nition 8. Suppose that a parallel system with p processors has e�ciency ε(n, p) for a problem of size
n. De�ne C = ε(n, p)/(1− ε(n, p)) and let T0(n, p) be the total amount of time spent by all processes in the
parallel program performing work that is not performed in the sequential program. In order to maintain the
same level of e�ciency as p is increased, n must be increased so that the inequality

T (n, 1) ≥ CT0(n, p) (6.23)

is satis�ed.

Notice that the left-hand side of (6.23), which is the running time of the sequential program, is some function
g(n). The right-hand side is a function of n and p, say q(n, p). We can solve the inequality g(n) ≥ q(n, p)
to determine for what range of values of n it will be true. For simplicity we let the constant C equal 1.
Assuming that g(n) is invertible, we can write g−1(g(n)) ≥ g−1(q(n, p)) or n ≥ g−1(q(n, p)) or n ≥ f(n, p)
where f = g−1q. In other words, the isoe�ciency relation can always be expressed in the form n ≥ f(n, p)
for some suitable function f .

We cannot increase the problem size arbitrarily. Machines have a �nite amount of memory and the problem
must �t into that memory. The assumption is that the data must be stored in memory2. Therefore, the
memory size is the limiting factor in how large n may be.

Suppose for simplicity that the isoe�ciency relation for a particular parallel system is n ≥ f(p), i.e., the
overhead does not depend on n. LetM(n) be a function that describes the amount of memory that a problem
of size n requires. For example, in Floyd's algorithm, we say that the problem size is n because n is the
number of vertices in the graph. The algorithm uses Θ(n2) memory, so M(n) = n2. If m is an amount of
memory in a parallel computer, then M−1(m) is the size of the largest problem that can be stored in that
amount of memory. Therefore the inequality M−1(m) ≥ f(p) indicates how the memory must increase to
maintain the same level of e�ciency as p increases. Thus

M(M−1(m)) ≥M(f(p))

which implies

m ≥M(f(p))

must be true. In other words, the amount of available memory must be greater than or equal to M(f(p)).
In general the amount of memory available on a parallel computer is a linear function of the number of
processors, p. Therefore M(f(p))/p is the least amount of memory per processor that must be available to
solve the problem at the same level of e�ciency as p increases. The function

M(f(p))/p (6.24)

is called the scalability function. Figure 6.5 shows how the scalability function's growth rate is a factor
in the sizes of the problems that can be solved with the given parallel system.

If M(f(p))/p is Θ(1) then the amount of memory needed per processor is constant and the parallel system
will scale without bound. On the other hand if it is anything faster than constant, it will eventually reach a
limit. How quickly it reaches that limit depends on how fast it grows. As long as there is memory available,
the e�ciency can be maintained, but once the limit is reached, e�ciency will drop.

2From a practical point of view, the data must reside in internal memory. In theory it can reside on any storage device

locally accessible to the processor. In either case, the data is in a storage device locally accessible to the processor.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 13

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

Number of processors

M
em

o
ry

 r
eq

u
ir

em
en

t 
p

er
 p

ro
ce

ss
o

r

Memory capacity per processor

Cp

C log p

C

Figure 6.5: Graphs of some scalability functions. If the scalability function grows faster than a constant,
then eventually it will reach the memory capacity of each processor. Slower-growing functions may not reach
this limit in a practical setting, but faster growing functions will make scaling the parallel system infeasible.

6.6.2 Examples

6.6.2.1 Parallel Reduction

The �rst example is from Chapter 3, where we introduced the parallel reduction algorithm. A sequential
algorithm to perform reduction of n data items has running time T (n, 1) = Θ(n). The parallel reduction
required Θ(log p) communication steps, which is pure overhead not present in the sequential algorithm. Each
of p processes participates and uses log p steps, so the parallel overhead function T0(n, p) is Θ(p log p). Order
notation hides constants but we can assume all constants are factors of C. Since the isoe�ciency relation
from Eq. 6.22 is de�ned as

T (n, 1) ≥ C · T0(n, p)

substituting T (n, 1) = Θ(n) and T0(n, p)) = Θ(p log p) and dropping order notation, it is

n ≥ Cp log p

This means that the input size has to grow at the rate of p log p for e�ciency to be maintained. The question
is, will memory allow it? The memory function requirement for sequential reduction is M(n) = n, because
we need to store n values to perform the reduction, so the scalability function is

M(Cp · log p))/p = Cp · log p/p = C · log p

This shows that the amount of memory per processor must grow proportional to log p if we are to maintain
e�ciency. Because memory does not grow at this rate, there will be a limit to how well this will scale.

Does this result make intuitive sense? Consider how the parallel reduction algorithm worked. Given n values
to be reduced, each processor performed a sequential reduction on n/p values roughly, and then participated
in a parallel reduction taking about log p steps. That means it needed to store n/p values. Let us see how
well it scales. Suppose we multiply the problem size and the number of processors by the same constant k.
The sequential algorithm now takes kn steps roughly. In the parallel algorithm, each processor still has the
same portion of data, n/p values (because kn/kp = n/p), so the per-processor memory requirement does
not change, but the parallel overhead increases, since it becomes kp · log(kp) steps. The e�ciency decreases

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 14

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

n/
√
p

n/
√
p

Figure 6.6: Partitioning and agglomeration of an n × n matrix among p processors using checkerboarding.
Each processor has a n/

√
p× n/√p submatrix and sends to each neighbor the cells in its block that bound

that neighbor's block.

because the parallel overhead increased much more than the sequential execution time (kp · log(kp) versus
kp.) So problem size must grow more than the number of processors for e�ciency to be maintained. It must
grow proportionately to p · log p, as the isoe�ciency relation shows, but the scalability function shows us
that this will not be possible without limit.

6.6.2.2 Floyd's Algorithm

We return to Floyd's algorithm from Chapter 6. The conservative estimate of communication overhead
given there, the one that did not assume overlap of message transmission and computation was n dlog pe (λ+
4n/β) = nλ dlog pe + 4n2 dlog pe /β = Θ(n2log p). Each process participates in this step, so the total
communication overhead, T0(n, p) = Θ(n2p log p). The sequential algorithm uses Θ(n3) time, so T (n, 1) =
Θ(n3). Therefore, the isoe�ciency relation is

n3 ≥ C · n2p · log p ⇒ n ≥ C · p · log p

This shows, as in the preceding example, that the problem size must increase as p · log p if we are to maintain
e�ciency. Let us see whether this is feasible in terms of memory. The memory function for Floyd's algorithm
is M(n) = n2 because the adjacency matrix uses Θ(n2) storage. Therefore,

M(C · p · log p)/p = C2p2 log2 p/p = C2p log2 p

This shows that the amount of memory per processor would have to increase as p log2 p to maintain e�ciency,
which is not feasible. In other words, this parallel system is not very scalable.

6.6.2.3 Finite Di�erence Method

There are many parallel matrix processing algorithms that partition and agglomerate by a method known
as checkerboarding , which basically means that the n × n matrix is divided up into square submatrices
of size n/

√
p × n/√p and each processor is responsible for one of these submatrices (see Figure 6.6.) The

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 15

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

communication pattern depends upon the particular problem, but it often requires that each processor sends
data to its four adjacent neighbors (north, east, south, and west.) One problem that uses checkerboarding
is the �nite di�erence method for solving a di�erential equation. It is not important to understand the
exact nature of the problem right now; we will study this problem in a later chapter. What does matter is
understanding that in this algorithm, in each iteration, each processor sends its boundary values to its four
neighbors. The boundary values are simply the values in each matrix cell on one of its boundaries. There
are n/

√
p such cells in each of its north, east, south, and west boundaries. Since each communication to each

neighbor takes time proportional to the amount of data, each individual process takes time proportional to
n/
√
p in a single transfer of data. All p processors must do this in a given iteration of the algorithm, so the

parallel overhead is Θ(p ·n/√p) = Θ(n
√
p). In the sequential algorithm, each iteration takes Θ(n2) steps, as

just a single process must update each matrix cell one after the other. The isoe�ciency relation is therefore

n2 ≥ Cn√p ⇒ n ≥ C√p

The memory function for this problem is M(n) = n2 because we took n above to mean the number of rows
or columns of the matrix. (Had we taken n to be the total number of matrix entries, then we would have to
substitute

√
n in all formulas above where we used n.) The scalability function is therefore

M(C
√
p)/p = C2p/p = C2

which is a constant. This means that the parallel system is perfectly scalable, because the memory require-
ments per processor do not need to increase to maintain the same level of e�ciency.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 16

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

References

[1] Gene M. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities.
In Proceedings of the April 18-20, 1967, Spring Joint Computer Conference, AFIPS '67 (Spring), pages
483�485, New York, NY, USA, 1967. ACM.

[2] Ananth Y. Grama, A. Gupta, and V. Kumar. Isoe�ciency: measuring the scalability of parallel algo-
rithms and architectures. Parallel Distributed Technology: Systems Applications, IEEE, 1(3):12�21, Aug
1993.

[3] John L. Gustafson. Reevaluating amdahl's law. Communications of the ACM, 31:532�533, 1988.

[4] Alan H. Karp and Horace P. Flatt. Measuring parallel processor performance. Communications of the
ACM, 33(5):539�543, 1990.

[5] M.J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Higher Education.
McGraw-Hill Higher Education, 2004.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 17

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 6 Performance Analysis

Prof. Stewart Weiss

Subject Index

Amdahl e�ect, 6
Amdahl's Law, 3

e�ciency, 3
experimentally determined serial fraction, 10
experimentally determined speedup, 9

Gustafson-Barsis's Law, 8

inherently sequential part, 1
isoe�ciency function, 13
isoe�ciency relation, 11, 13

parallel system, 11
parallelizable part, 1

scalability, 11
scalability function, 13
scaled speedup, 8
speedup, 1

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 18

https://creativecommons.org/licenses/by-sa/4.0/ 

	6 Performance Analysis
	6.1 Introduction
	6.2 Speedup and Efficiency
	6.3 Amdahl's Law
	6.3.1 Ramifications of Amdahl's Law
	6.3.2 The Amdahl Effect

	6.4 Gustafson-Barsis's Law
	6.5 The Karp-Flatt Metric
	6.6 The Isoefficiency Relation
	6.6.1 Derivation of the Relation
	6.6.2 Examples
	6.6.2.1 Parallel Reduction
	6.6.2.2 Floyd's Algorithm
	6.6.2.3 Finite Difference Method




