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Chapter 7 Matrix-Vector Multiplication

�We can't solve problems by using the same kind of thinking we used when we created them.� -
Albert Einstein

7.1 Introduction

The purpose of this chapter is two-fold: on a practical level, it introduces many new MPI functions and
concepts to expand your programming toolkit; on a theoretical level, it introduces three di�erent ways of
applying data decomposition to the exact same problem, showing how the di�erences in data decomposition
lead to very di�erent algorithms. In addition, the problem that we address is a very important and ubiquitous
one, namely (left) multiplication of a vector by a matrix.

Multiplication of a vector by a matrix is a fundamental operation that arises whenever there are systems
of linear equations to be solved. Such systems of equations arise in �elds as diverse as computer graphics,
economics, quantum mechanics, electronics, graph theory, probability theory, statistical analysis, arti�cial
neural networks, and operations research. Because multiplying a vector by a matrix is of such widespread
use, it has been thoroughly studied and parallelized. It is not an objective of this chapter to invent a new
great parallel algorithm; rather, it is to introduce and explain some important parallel programming and
algorithm design techniques. In this chapter it is certainly the journey that matters, not the destination,
and on the way we will introduce the following MPI functions:

MPI Function Purpose

MPI_Allgatherv Gathers data from all processes and delivers it to all, allowing a varying
count of data to be contributed by each process.

MPI_Scatterv Scatters a bu�er in parts to all tasks in a communication group, allowing
a varying count of data to be sent to each process.

MPI_Gatherv Gathers varying amounts of data from all processes to
the root process.

MPI_Alltoall A collective operation in which all processes send the same amount of
data to each other, and receive the same amount of data from each other.

MPI_Dims_create Creates a division of processors in a Cartesian grid.
MPI_Cart_create Makes a new communicator to which Cartesian topology information has

been attached.
MPI_Cart_get Returns information about the Cartesian topology of the communicator

whose handle is supplied to it.
MPI_Cart_coords Returns the coordinates in Cartesian topology of a process with a given

rank in group.
MPI_cart_rank Returns the rank of a process at the given coordinates in a Cartesian

topology.
MPI_Comm_split Creates new communicators based on colors and keys.

7.2 A Brief Review

This is a brief refresher on matrix-vector multiplication. An n × 1 vector may be multiplied on the left by
an m× n matrix, resulting in an m× 1 vector. Mathematically, if A is an m× n matrix and X is an n× 1
vector, then the product AX is an m× 1 vector B whose ith entry is the inner product of row i of A and

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 7 Matrix-Vector Multiplication

Prof. Stewart Weiss

X:

Bi =

n∑
j=1

Ai,j ·Xj (7.1)

The inner product of two vectors x and y of length n each is the sum x1y1 + x2y2 + · · ·+ xnyn. Some people
call this the dot product. Because the inner product is the sum of terms xiyi, its computation is an example
of a reduction. Figure 7.1 illustrates the matrix-vector product and shows each inner product that must
be computed. Each inner product requires n multiplications and n − 1 additions, and there are m inner
products. Therefore, any sequential algorithm, in the general case, has time complexity Θ(mn).
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implies the following four inner products:

(3 · 1) + (1 · 0) + (0 · 2) + (4 · 4) + (2 · 1) + ((−1) · (−2)) = 23

(0 · 1) + (1 · 0) + (−1 · 2) + (5 · 4) + (−2 · 1) + (3 · (−2)) = 10

(4 · 1) + (2 · 0) + (−1 · 2) + (−1 · 4) + (0 · 1) + (3 · (−2)) = 4

(1 · 1) + (0 · 0) + (2 · 2) + (3 · 4) + (1 · 1) + (0 · (−2)) = 18

Figure 7.1: A 4× 6 matrix times a 6× 1 vector.

7.3 A Sequential Algorithm

The obvious sequential algorithm for matrix-vector multiplication is given in Listing 7.1.

Listing 7.1: Sequential Matrix-Vector Product

1 // Input: A, an m by n matrix ,

2 // X, an n by 1 vector

3 // Output: B, an m by 1 vector

4

5 for i = 0 to m-1

6 B[i] = 0;

7 for j = 0 to n-1

8 B[i] = B[i] + A[i,j] * X[j];

9 end for

10 end for

7.4 Data Decomposition

The sequential algorithm clearly has data parallelism. For one, each iteration of the outer loop is independent
of all others, because each updates a di�erent element of the output vector B. The inner loop also has data
parallelism, because each iteration multiplies X[j] by a unique matrix element A[i, j] before adding it to B[j].
This is a reduction whose elements are products of the form A[i, j] ·X[j]. We could, if we wanted, associate
a primitive task to each matrix element A[i, j] which would be responsible for the product A[i, j] ·X[j]. This
would result in mn primitive tasks. We should assume that m and n are very large numbers, otherwise we
would not bother to parallelize the algorithm, so we will probably not have anything near mn processors
available. Therefore, we will need to agglomerate to reduce the number of tasks. We will consider three
alternative decomposition strategies: two one-dimensional strategies and one two-dimensional strategy.

This leads to three ways to decompose the matrix: by rows, by columns, or by rectangular subblocks. In
Chapter 6, for the parallel version of Floyd's algorithm, we used a one-dimensional, row-wise decomposition
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(a) Row-wise block-striped matrix de-
composition.

(b) Column-wise block-striped matrix
decomposition.

(c) Checkerboard block decomposition.

Figure 7.2: Row-wise striped, column-wise striped, and checkerboard block decomposition of a matrix.

to decompose the adjacency matrix into sets of adjacent rows to be assigned to each process. This method of
decomposition is called row-wise block-striped decomposition, shown here in Figure 7.2a. Symmetrically,
we could decompose column-wise, as shown in Figure 7.2b, and this is called column-wise block-striped

decomposition. The block-striped part of the name expresses the idea that each process has a block of data,
and in these cases, the blocks are stripes � long and thin as opposed to fuller and more closely square-shaped.
These two methods are essentially one-dimensional decompositions. The third alternative is to decompose
the matrix in two-dimensions, into an r × c grid of rectangular subblocks, as shown in Figure 7.2c, which
is called a checkerboard block decomposition or a 2D-block decomposition. In the �gure, r = c = 6;
although it need not be a square grid, for performance purposes it is better if it is. The letters r and c are
the numbers of rows of blocks and columns of blocks respectively.

If there are p processes, then in row-wise block-striped decomposition, each process will have a group of either
dn/pe or bn/pc consecutive rows, each a primitive task. In the column-wise block-striped decomposition,
each process will have a group of either dn/pe or bn/pc consecutive columns, each a primitive task. In a
checkerboard block decomposition, each matrix element is a primitive task, and the number p determines
the possible decomposition of the matrix. It works best when p is a square number, i.e., p = q2 for some
integer q, so that the grid can have an equal number of rows and columns. If p is a prime number, the matrix
cannot be decomposed using the checkerboard block method, because it degenerates into either the row-wise
striped or column-wise striped method, as either the number of rows or the number of columns in the grid
will be 1. If p is not square and not prime, there is at least one pair of factors r and c such that p = rc, and
they should be chosen to be as close to each other as possible. For example, if p = 24, it is better to create
a 4 × 6 grid than an 8 × 3 grid. Given that the grid is r × c, each process will have a rectangular block of
adjacent matrix elements with either dm/re or bm/rc rows and either dn/ce or bn/cc columns.

No matter which decomposition we choose, each process will store in its local memory just the part of the
matrix for which it is responsible. The alternative is to replicate the entire matrix within each process's
memory. There are two reasons for which this is not a good idea. First is that the solution would not scale
well because as the problem size increased, we would not be able to store the entire matrix in each process's
local memory; under the assumption that these would be large matrices, we would run out of memory.
Secondly, replicating the entire matrix is very ine�cient in terms of time and space. In terms of space, we
would be storing p copies of an m×n matrix instead of a total of one copy distributed among the p processes.
If each entry used 8 bytes, this would be a waste of 8mn(p− 1) bytes of total memory. In terms of time, it
means that the algorithm would have taken time to distribute those matrix elements in the beginning, even
though the processes had no need for most of the matrix that they received.

In contrast to this, replicating the two vectors is not such a bad idea, for various reasons. First, depending
on the method of matrix decomposition, each process might need the entire vector anyway. For example, in
the row-wise decomposition, each process will need the entire X vector. Even if the process will not need the
entire vector, it is not particularly wasteful of storage or time because the vectors are of length n, which is
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much smaller than the matrix size mn, and the complexity of storing the vector will not increase the space
or time complexity of the algorithm, and will ultimately reduce communication overhead. Nonetheless, it is
worth investigating solutions with both replicated vectors and vectors decomposed and distributed among
the processes, which are called block-decomposed vectors.

We will partly follow the approach used by Quinn [1]: we will develop an algorithm using a row-wise block-
striped decomposition of the matrix with replicated vectors, and a checkerboard block decomposition of the
matrix with block-decomposed vectors. We will only brie�y describe an algorithm using column-wise block
striped decomposition of the matrix with block-decomposed vectors.

7.5 Row-Wise Block-Striped Matrix Decomposition

This is probably the easiest algorithm to understand, in part because we developed Floyd's algorithm in
Chapter 6, and in part because the communication pattern is the simplest. The product of an m×n matrix
and a n × 1 vector can be viewed as m independent inner products in which a row of the matrix and the
vector are multiplied together. The task that owns row j computes the jth value of the result vector, i.e.,
B[j]. Therefore, if a primitive task is assigned to each row, then each primitive task needs one row of the
matrix A, the vector X, and one element of the result vector B. However, in order to assemble the entire
result vector when each task has �nished computing its result, the algorithm will replicate the entire result
vector B in each task, because it will be easy to gather the �nal results if each task has the entire vector.

What communication will be necessary? Initially, each row of the matrix and a copy of the input vector
need to be distributed to each task. To perform the computation there is no communication among the
tasks. But after they each compute their respective elements of the result vector, that vector needs to be
assembled, which implies that they each need to contribute their value B[j] to a result vector stored in one
of the tasks. As mentioned above, it is actually more convenient to create a copy of the entire result vector
in each task, so that a gathering operation can collect the results into every task.

Because the number of rows of the matrix will be much larger than the number of processors, we agglomerate
the primitive tasks to reduce task creation overhead and to reduce the communication overhead of distributing
rows and collecting results. Assuming that the matrix is dense1, the inner product takes the same amount of
time in each primitive task, and the decision tree suggests that we agglomerate by assigning adjacent rows to
each task and assigning that task to a single process. This leads to a row-wise block striped decomposition.

As with all MPI programs, the algorithm uses the SPMD (single program multiple data) model, in which
each process executes the same program. Therefore the following pseudo-code description is written with
that in mind:

1. Initialize MPI and then store the process rank into id and number of processes into p.

2. Read the set of rows for the current process from the matrix into a local two-dimensional array
named A in the current process. We can use the same function as we did in Chapter 6, namely
read_and_distribute_matrix_byrows. This function returns the total number of rows and columns
of the matrix in m and n respectively, but each process only gets the rows it will own.

3. Read the entire vector into a local one-dimensional array named X in the current process. Each process
will have a copy of the vector. Reading the entire vector into an array in each process is simpler than
reading the entire matrix and distributing it, but the structure of the code is the same. Essentially, we
need a function that will do the following:

(a) If the process rank is p-1, then open the �le and read the size of the vector into a variable;

(b) Each process participates in a broadcast by process p-1 of the size;

(c) Each process allocates locally the storage needed for a vector of this size;

1A matrix is dense if most of its entries are non-zero, otherwise it is sparse. Although there is no uniformly-agreed upon
cut-o� point between dense and sparse, the operational de�nition is that, if the number of non-zeros in an N × N matrix is
O(N), it is sparse, otherwise it is dense.
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Figure 7.3: Using a block-distributed vector to create a replicated vector in every task. Before the operation,
each task has a di�erent block of the vector that it has computed (in Bp), as well as uninitialized storage for
a result vector (B). After the operation, the result vector B has been �lled with the blocks contributed by all
of the tasks, in rank order. This illustrates what has to take place in the �nal stage of the row-wise block
striped algorithm. (The arrays Bp still exist, but are omitted to reduce space in the �gure.)

(d) If the process rank is p-1, then the process reads the rest of the �le into its storage for the vector;

(e) Each process participates in a broadcast by process p-1 of the vector contents.

We will name this function read_and_replicate_vector.

4. Determine the number of rows that the current process owns and allocate a local one-dimensional
array named B_partial of that size to store the results of the inner products of its rows and the
vector X. For example, if the current process has �ve rows of a matrix of doubles, then it will allocate
5*sizeof(double) bytes. E.g.,

B_partial = (double*) malloc ( num_local_rows * sizeof(double) );

This is the subblock of the result vector that must be gathered when all processes �nish.

5. Create an uninitialized copy of the result vector for the current process. The result vector has to have
the same number of rows as the matrix. E.g.,

B = (double*) malloc ( m * sizeof(double) );

This is the vector into which every process will send its subblock of partial results.

6. Compute the inner products of the rows assigned to this process with the vector X, storing the results
in the partial vector B_partial:

for (i = 0; i < num_local_rows; i++) {

B_partial[i] = 0.0;

for (j = 0; j < n; j++)

B_partial[i] += A[i][j] * X[j];

}

7. Collect the partial results from all processes into the result vector B. This will use the MPI_Allgatherv
communication function. Figure 7.3 illustrates the state of the result vector in each of �ve tasks before
and after this step. The function that carries out this step will be called replicate_block_vector.

8. If the rank of the process is 0, print the results to standard output.

There are two parts of the above algorithm that require further development. One is the function in step 2
that will read and replicate the vector. The other is the function in step 7 that will gather the partial results
from all processes into the replicated result vector, which uses a new collective communication function. We
will start with reading and replicating the vector.
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7.5.1 Reading and Replicating a Vector

Reading a vector from a �le and replicating it in all processes can be viewed as a simpler, special case of
reading a two-dimensional matrix in a distributed way among the processes. Instead of having n columns,
there is a single column, so we can view a vector as a matrix whose rows are of length one. With the matrix
distribution algorithm, each process received selected rows. In this case however, each process will acquire
all rows. This di�erence leads to a di�erent communication structure. Listing 7.2 contains the pseudo-code
for this function.

Listing 7.2: Pseudo-code for read_and_replicate_vector()

1 input parameters:

2 filename - name of file to read

3 output parameters:

4 **V - vector read from file

5 *length - length of vector

6

7 int id = process rank process;

8 int p = number of processes;

9 int element_size = number of bytes in element type;

10

11 if ( p-1 == id ) {

12 open the binary file named by filename , which contains the vector.

13 if failure

14 set an error code and set length to zero.

15 otherwise

16 read the first number , assigning to *length.

17 }

18 Do a broadcast from process p-1 of the number *length to all other processes.

19 if ( 0 == *length )

20 process must exit -- vector was not read correctly.

21

22 Allocate a vector *V of size *length * element_size.

23

24 if ( p-1 == id ) {

25 read *length *element_size bytes from the file into the location starting at

26 *V and close the file.

27 }

28 Do a broadcast from process p-1 of the data whose start address is *V, consisting

of *length elements of the given element type.

If you refer back to the code for read_and_distribute_matrix_byrows.c, you will see the similarities in
the two algorithms. However, because all processes get a copy of the entire vector, the communication in this
algorithm is a global communication � every process gets a copy of the same data, and hence this algorithm
uses a broadcast, whereas the other function needed point-to-point communication using MPI_Send and
MPI_Recv.

This pseudo-code leads naturally to the function appearing in Listing 7.3.

Listing 7.3: read_and_replicate_vector()

1 void read_and_replicate_vector (

2 char *filename , /* [IN] name of file to read */

3 MPI_Datatype dtype , /* [IN] matrix element type */

4 void **vector , /* [OUT] vector read from file */

5 int *length , /* [OUT] length of vector */

6 int *errval , /* [OUT] success/error code on return */

7 MPI_Comm comm) /* [IN] communicator handle */

8 {

9 int id; /* process rank process */

10 int p; /* number of processes in communicator group */
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11 size_t element_size; /* number of bytes in matrix element type */

12 int mpi_initialized; /* flag to check if MPI_Init was called already */

13 FILE *file; /* input file stream pointer */

14 int nlocal_rows; /* number of rows calling process "owns" */

15

16 /* Make sure we are being called by a program that init -ed MPI */

17 MPI_Initialized (& mpi_initialized);

18 if ( !mpi_initialized ) {

19 *errval = -1;

20 return;

21 }

22

23 /* Get process rank and the number of processes in group */

24 MPI_Comm_size (comm , &p);

25 MPI_Comm_rank (comm , &id);

26

27 /* Get the number of bytes in a vector element */

28 element_size = get_size (dtype);

29 if ( element_size <= 0 ) {

30 *errval = -1;

31 return;

32 }

33

34 if ( p-1 == id ) {

35 /* Process p-1 opens the binary file containing the vector and

36 reads the first number , which is the length of the vector. */

37 file = fopen (filename , "r");

38 if ( NULL == file )

39 *length = 0;

40 else

41 fread (length , sizeof(int), 1, file);

42 }

43

44 /* Process p-1 broadcasts the length to all other processes */

45 MPI_Bcast (length , 1, MPI_INT , p-1, MPI_COMM_WORLD);

46

47 /* No process continues if length is zero. */

48 if ( 0 == *length ) {

49 *errval = -1;

50 return;

51 }

52

53 /* Each process allocates memory for full size of vector. */

54 *vector = malloc (* length * element_size);

55 if ( NULL == *vector ) {

56 printf ("malloc failed for process %d\n", id);

57 MPI_Abort (MPI_COMM_WORLD , MALLOC_ERROR);

58 }

59

60 /* Process p-1 reads the file and stores data in its local copy. */

61 if ( p-1 == id ) {

62 fread (*vector , element_size , *length , file);

63 fclose (file);

64 }

65

66 /* Process p-1 broadcasts the vector to all other processes. */

67 MPI_Bcast (*vector , *length , dtype , p-1, MPI_COMM_WORLD);

68 }
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7.5.2 Replicating a Block-Mapped Vector

The last remaining piece of this puzzle is to create a function that can collect the pieces of the result vector
computed by each process into a single vector that is replicated in each process, as depicted in Figure 7.3.
Having done this, the vector can be printed by any of those processes. We cannot use a broadcast to do
this, nor can we easily use point-to-point communication, without extensive conditional code. In Chapter 3,
we introduced the all-gather operation. Recall that the all-gather operation collects data from every process
onto every process. The MPI library provides two di�erent all-gather functions, one that expects every
process to contribute the exact same amount of data, and a second that allows each process to contribute a
varying amount of data. We cannot use the �rst one, which is much simpler than the second, because in the
row-wise block-striped decomposition of the matrix, di�erent processes may have di�erent numbers of rows,
and therefore will have di�erent size blocks of the result vector. This latter one is named MPI_Allgatherv

(v for varying.)

7.5.2.1 MPI_Allgatherv

The syntax of MPI_Allgatherv is

#include <mpi.h>

int MPI_Allgatherv(

void *sendbuf, /* Initial address of send buffer */

int sendcount, /* Number of elements in the send buffer */

MPI_Datatype sendtype, /* Datatype of each send buffer element */

void *recvbuf, /* Address of receive buffer */

int *recvcount, /* Integer array containing the number of

elements to be received from each process.

int *displs, /* Integer array of displacements. */

Entry i specifies the offset relative to

recvbuf at which to place the incoming

data from process i. */

MPI_Datatype recvtype, /* Datatype of receive buffer elements */

MPI_Comm comm /* Communicator handle */

)

The MPI_Allgatherv function has several parameters. The �rst is the starting address of the data that the
calling process is sending, and the second is a count of the number of elements to be sent from that address.
The type of each element is speci�ed in the third parameter. The fourth parameter is the starting address
in the process's local memory into which the gathered data will be stored. The next two parameters are
integer arrays, each containing p elements, where p is the number of processes in the communicator group.
The �rst is an array of sizes; the jth entry of this array speci�es the number of elements that process j is
contributing to the gathered data. The second array is an array of displacements from the beginning of the
recvbuffer's address; the jth entry is the displacement (or o�set) in that array where the data from process
j must start. The next parameter is the MPI data type of the data items to be received; usually it is the
same as the type being sent, but the data can be converted in the recvbuffer. Perhaps the best way to
understand the function is from a picture; Figure 7.4 illustrates how the function is used by four processes
concatenating their arrays by rank order (�rst process 0, then 1, then 2 and �nally 3.)

Notice that in the �gure, the displacement array is just the partial sums of the sizes in the recvcount array,
meaning that, displs[j] is the sum of recvcount[i] for all i < j. This is a consequence of the fact that
the data is being concatenated into the resulting array in ascending order of process rank. The function can
be used more generally than this; the array of displacements could be designed to rearrange the locations
of the gathered data blocks, if there were some reason to do so. However, for many of the algorithms
we will study, the array is a concatenation of the data blocks by process rank, and the displs array and
recvcount array can be initialized simultaneously to be passed to MPI_Allgatherv. The following function,
create_communication_arrays, could be called by each process to construct these arrays for that process.
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Figure 7.4: Example of four processes using MPI_Allgatherv to gather four di�erent size arrays of data into
an identical, replicated array in each process. Each process calls the function with the same values in the
arrays passed as recvcount and displs, and when the call returns, all processes have the data in the order
speci�ed by those two arrays.

This would be an example of redundant code, because every process would call this function with identical
parameters, and identical arrays would be created in each process.

The function create_communication_arrays expects its two array arguments to have been allocated before
it is called.

/* Fill in recvcount and displs arrays with values to concatenate in

rank order in an MPI_Allgatherv (or MPI_Allscatterv ) operation */

create_communication_arrays (

int p, /* number of processes in group */

int n /* total size of array to be gathered */

int *recvcount, /* previously allocated array of n ints */

int *displs, /* previously allocated array of n ints */

)

{

int i;

recvcount[0] = number_of_elements( 0, n, p ); // called size_of_block elsewhere

displs[0] = 0;
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for (i = 1; i < p; i++) {

displs[i] = displs[i-1] + recvcount[i-1];

recvcount[i] = number_of_elements( i, n, p );

}

The function create_communication_arrays can be used in a function to collect the blocks from each
process's result vector into a vector containing all of their blocks in process rank order, as depicted in Figure
7.3. This function, replicate_block_vector, appears in Listing 7.4.

The last step is to print out the matrix and the two vectors. We already have a function that prints out
a distributed matrix, which we developed in Chapter 6. It is named collect_and_print_matrix_byrows.
We need a function that prints a vector. Because each of the two vectors is replicated in every process,
the function does not have to gather its pieces from all tasks. It can be a simple function that prints each
element of the vector on a single line of an output stream. Because this is a relatively simple function, we
omit the code here. We name it print_vector.

We have all of the pieces needed for the complete program, which is displayed in Listing 7.5.

7.5.3 Performance Analysis

What is the time complexity of this algorithm and how scalable is it? These are the questions we address.
For anm×n matrix, the sequential algorithm has time complexity Θ(mn). To simplify the analysis, however,
we will assume that the matrix is square, i.e., m = n, so that the sequential algorithm has time complexity
Θ(n2). As a reminder, we do not include the time spent performing I/O, whether it is a sequential or a parallel
algorithm; in particular we do not include the overhead of distributing the matrix to each processor, which
is consolidated into the function read_and_distribute_matrix2. Similarly, we exclude the communication
overhead of read_and_replicate_vector, which is Θ(n log p).

Therefore, we start by determining the time complexity of the computational portion of the algorithm. Each
task has at most dn/pe rows of the matrix and iteratively computes their inner products with a vector of
size n; therefore each task spends time proportional to n dn/pe in computation. Hence, the time complexity
of the computational part of the parallel algorithm is

Θ(n2/p)

.

What about the communication time complexity? After each task completes its computation, the result
vector is replicated in every task. The time complexity of the all-gather operation depends upon how it is
implemented in MPI. If MPI uses the hypercube based approach, then each process sends dlog pe messages,
but each is of increasing size. If you look back at the analysis of the all-gather operation in Chapter 3, you
will see that the time complexity of the hypercube-based all-gather operation is

λ log p+
n (p− 1)

βp
(7.2)

which is Θ(log p+ n). The total time complexity would be

Θ((n2/p) + log p+ n)

If we assume that p is very small in comparison to n, then n2/p is much larger than n and this would be the
term that dominates the time complexity.

Now we determine the isoe�ciency relation of the algorithm to see how scalable it is. As noted above, the
time complexity of the sequential algorithm is Θ(n2), so T (n, 1) = n2. Now we need to determine the parallel
overhead T0(n, p), i.e., the work done by the parallel program not done by the sequential program. The
only parallel overhead takes place after each process computes its subblock of the result vector and the �nal

2We worked out in Chapter 6 that the time complexity of read_and_distribute_matrix was Θ((p − 1)
⌈
n2/p

⌉
) ≈ Θ(n2)

because process p− 1 sends a message whose average size is Θ(
⌈
n2/p

⌉
) to each of p− 1 processes, one after the other.
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vector has to be assembled using the all-gather operation. Assuming that the matrix is much larger than
the number of processors, the time complexity in Eq. 7.2is dominated by the n(p − 1)/βp term, which is
Θ(n). Since every processor has this overhead term, T0(n, p) = np. The isoe�ciency relation

T (n, 1) ≥ C · T0(n, p)

is therefore
n2 ≥ Cnp

which implies
n ≥ Cp

For problem size n, as we have de�ned it, the memory storage is Θ(n2), so the memory utilization function
is M(n) = n2 and the scalability function, M(f(p))/p, is

M(Cp)/p = (Cp)2/p = C2p

This means that to maintain e�ciency as the number of processors is increased, the memory per processor
would have to grow in proportion to the number of processors, which is not possible for large numbers of
processors. In other words, this algorithm is not very scalable.

7.6 Column-Wise Block-Striped Decomposition

An alternative to the row-wise block-striped decomposition of the matrix is a column-wise decomposition.
At �rst this might seem counterintuitive, because the result vector is formed from the inner product of the
matrix rows with the input vector, so it seems natural to associate tasks with matrix rows. However, we can
view the matrix-vector product in a di�erent way. When we multiply a vector by a matrix on its left, the
product vector is the linear combination of the columns of the matrix multiplied by the scalar elements of
the vector. In other words, if we let Aj denote the jth column of m× n matrix A, then the product vector
B is also de�ned by

B =

n−1∑
j=0

XjAj

where we use Xj to denote the j
th component of X. Figure 7.5 depicts this interpretation. This view suggests

that a primitive task k can be given a single column Ak of A and component Xk of input vector X and
perform the scalar multiplication XkAk, storing the results into a temporary vector Vk. The i

th component
of the temporary vector Vk would be the product XkAik. The problem though is that after each task has
performed this scalar-vector multiplication and stored its results in these temporary vectors, none of them
are part of the �nal result vector. Remember that the result vector B = (B0, B1, ..., Bm−1)T consists of the
m sums

Bk = X0Ak0 +X1Ak1 +X2Ak2 + · · ·+Xn−1Akn−1 (0 ≤ k < m) (7.3)

but each task's temporary result vector Vk has the products

XkA0k, XkA1k, XkA2k, . . . , XkAm−1k

Of these m products, only one is part of the sum needed in Eq. 7.3, namely XkAkk. What has to happen is
that the tasks have to participate in a global data exchange in which each task delivers the results it has just
computed to all other tasks. This is an example of an all-to-all collective communication operation. This is
just one of several aspects of this solution that make it more complex.

In general, this is a harder algorithm to develop than the row-wise block-striped decomposition, for several
reasons:

• The result vector has as many rows as the matrix (i.e, m rows.) If the matrix has more rows than
columns (m > n), then assigning the ithcomponent of the result vector to task i will not work when
i > n, because there is no task i. The result vector components will have to be assigned cyclically to
tasks.
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is equivalent to the sum of six scalar−vector products:

Figure 7.5: Matrix-vector multiplication as a linear combination of the columns of the matrix.

• Most of the values computed by each task are needed by other tasks and not by the task computing
them. As a consequence, a large amount of data must be transferred among all of the tasks, using an
all-to-all type of collective communication.

• The matrix is stored in the �le in row-major order but must be distributed column-wise. This means
that the input algorithm has to be more complex, because it has to scatter each row as it reads it.

• The tasks have columns of the matrix and yet when it has to be printed out, it must be printed row
by row, implying that some type of gathering of the data from each task is necessary.

Although there are some lessons to be learned by developing this algorithm, the e�ort outweighs the bene�ts
and we will explore the various collective communication operations through other examples later. Instead
we turn to the third decomposition, the checkerboard approach.

Listing 7.4: replicate_block_vector()

1 /** replicate_block_vector () copies a distributed vector into every process

2 * @param void *invec [IN] Block -distributed vector

3 * @param int n [IN] Total number of elements in vector

4 * @param MPI_Datatype dtype [IN] MPI element type

5 * @param void *outvec [OUT] Replicated vector

6 * @param MPI_Comm comm [IN] Communicator

7 */

8 void replicate_block_vector (

9 void *invec ,

10 int n,

11 MPI_Datatype dtype ,

12 void *outvec ,

13 MPI_Comm comm

14 )

15 {

16 int *recv_count; /* Elements contributed by each process */

17 int *recv_offset; /* Displacement in concatenated array */

18 int id; /* Process id */

19 int p; /* Number of processes in communicator group */

20

21 MPI_Comm_size (comm , &p); /* Get number of processes into p */

22 MPI_Comm_rank (comm , &id); /* Get process rank into id */

23
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24 /* Try to allocate recv_count and recv_offset arrays , and bail out if either

fails. */

25 recv_count = malloc ( p * sizeof(int));

26 recv_offset = malloc ( p * sizeof(int));

27 if ( NULL == recv_offset || NULL == recv_count ) {

28 printf ("malloc failed for process %d\n", id);

29 MPI_Abort (MPI_COMM_WORLD , MALLOC_ERROR);

30 }

31

32 /* Fill the count and offset arrays to pass to MPI_Allgatherv so that the

blocks are concatenated by process rank in the output vector */

33 create_communication_arrays (p, n, recv_count , recv_offset);

34

35 /* Use MPI_Allgatherv to copy the distributed blocks from invec in each

process into a replicated outvec in each process. */

36 MPI_Allgatherv (invec , recv_count[id], dtype , outvec , recv_count , recv_offset ,

dtype , comm);

37

38 /* Release the storage for the count and offset arrays. */

39 free (recv_count);

40 free (recv_offset);

41 }

Listing 7.5: matrix_vector01.c

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <mpi.h>

4 #include "utils.h"

5

6 typedef int Element_type;

7 #define MPI_TYPE MPI_INT

8

9 int main (int argc , char *argv [])

10 {

11 Element_type ** A; /* matrix to be multiplied */

12 Element_type* A_storage; /* backing storage for matrix */

13 Element_type* X; /* vector to left -multiply by A */

14 Element_type* B; /* result vector AX=B */

15 Element_type* B_partial; /* subblock of result vector */

16 int nrows; /* number of rows in matrix */

17 int ncols; /* number of columns in matrix */

18 int length; /* length of vector (=ncols) */

19 int id; /* process rank */

20 int p; /* number of processes */

21 int i, j; /* loop indices */

22 int error; /* error exit value of calls */

23 char errstring [127]; /* error message string */

24 int rows; /* number of rows on this process */

25

26 /* Initialize MPI , get rank and number of processes in group. */

27 MPI_Init (&argc , &argv);

28 MPI_Comm_rank (MPI_COMM_WORLD , &id);

29 MPI_Comm_size (MPI_COMM_WORLD , &p);

30

31 /* Check command usage and exit if incorrect */

32 if ( argc < 3 ) {

33 sprintf(errstring , "Usage: %s filename1 filename2\n", argv [0]);

34 terminate(id, errstring);
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35 }

36

37 /* Get the input matrix and distribute its rows among all processes. */

38 read_and_distribute_matrix (argv[1],

39 (void *) &A,

40 (void *) &A_storage ,

41 MPI_TYPE , &nrows , &ncols , &error ,

42 MPI_COMM_WORLD);

43

44 /* Calculate number of rows for this process. */

45 rows = size_of_block(id,nrows ,p);

46

47 /* Collect the subblocks of the matrix and print it to standard output. */

48 collect_and_print_matrix ((void **) A, MPI_TYPE , nrows , ncols ,

49 MPI_COMM_WORLD);

50

51 /* Process 0 reads the vector and distributes full vector to all tasks. */

52 read_and_replicate_vector ( argv[2], MPI_TYPE , (void *) &X,

53 &length , &error , MPI_COMM_WORLD);

54

55 /* Process 0 prints the full vector on standard output */

56 if ( 0 == id )

57 print_vector (X, ncols , MPI_TYPE , stdout );

58

59 /* Every task allocates storage for the full result vector and the piece that

it computes. */

60 B_partial = (Element_type *) malloc (rows * sizeof(Element_type));

61 B = (Element_type *) malloc (nrows * sizeof(Element_type));

62

63 /* And now the real work -- each task computes the inner product of the rows

it owns and the input vector X. */

64 for (i = 0; i < rows; i++) {

65 B_partial[i] = 0.0;

66 for (j = 0; j < ncols; j++)

67 B_partial[i] += A[i][j] * X[j];

68 }

69

70 /* The result vector is assembled in each task from the subblocks. */

71 replicate_block_vector (B_partial , nrows , MPI_TYPE , (void *) B,

72 MPI_COMM_WORLD);

73

74 /* Process 0 prints it. */

75 if ( 0 == id )

76 print_vector (B, nrows , MPI_TYPE , stdout);

77

78 MPI_Finalize ();

79 return 0;

80 }

7.7 Two-Dimensional Block Decomposition (Checkerboard)

7.7.1 The Decomposition and Related Problems

This will be a more complicated algorithm to understand. In this approach, we decompose the matrix into a
grid of rectangular subblocks and assign a process to each subblock. Doing this raises a number of questions,
namely

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 14

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 7 Matrix-Vector Multiplication

Prof. Stewart Weiss

1

2

3

4

5

6

7

8

0

9

1 2 3 4 5 6 7 8 9 10 11 12 130

10

13

12

11

1

2

3

4

5

6

7

8

0

9

X BA

p0,1 p0,2 p0,3

p1,0

p0,0

p2,0

p1,1 p1,2 p1,3

p2,1 p2,2 p2,3

Figure 7.6: Example of the matrix-vector product when the matrix is decomposed into 2D blocks. Rows 3
through 6 of the matrix are color-coded with the parts of the vector that are needed by each subblock. Each
row is divided among four processes, each having a unique color. The elements of the vector needed by those
processes have the processes' corresponding colors.

1. which elements of the input vector X are needed by each process;

2. which subblocks contribute to the �nal values of the elements of the output vector B;

3. how we can distribute the di�erent parts of the input matrix to the processes that own them;

4. how we can distribute the di�erent parts of the input vector to the processes that need them; and

5. how we can collect the partial results computed by each process into the complete result vector that
can then be output.

We use an example to reach an answer to these questions. Consider the matrix-vector product illustrated in
Figure 7.6. The matrix A has been decomposed into a 3 × 4 grid of subblocks, not necessarily of the same
dimensions. Some blocks are 3 × 4 whereas some are 3 × 3 for example. We use the term grid to refer to
the two-dimensional arrangement of subblocks and we will identify the subblocks by their coordinates in the
grid using a doubly-subscripted notation. For example, the subblock in row 2 and column 1 of the grid will
be called block[2,1]. There is a one-to-one correspondence between subblocks and processes; each subblock
is owned by a unique process and no process has more than one subblock. Therefore, to make it easy to
identify which processes own which subblocks, we will use the same subscripts on the processes as we use
for the blocks. For example, process p0,2 is the process in grid row 0 and grid column 2 owning block[0,2].
Having clari�ed how we refer to the processes and blocks, we turn to the �rst question.

1. Which elements of the input vector X are needed by each process? Look at Figure 7.6. There,
rows 3 through 6 are color-coded with the same colors as the input vector. When a row of the matrix, for
example row 3, is multiplied by vector X, the gray elements of the row are multiplied by the gray elements
of the vector, the red ones are multiplied together, the blue ones together and the yellow one together.
Therefore, the processes in the grid that own parts of that row are responsible for the following partial sums:
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Process Partial sum computed by this process

p1,0 A3,0X0 +A3,1X1 +A3,2X2 +A3,3X3

p1,1 A3,4X4 +A3,5X5 +A3,6X6

p1,2 A3,7X7 +A3,8X8 +A3,9X9 +A3,10X10

p1,3 A3,11X11 +A3,12X12 +A3,13X13

Notice that the elements of the vector needed by a process correspond to the columns that the process owns.
This distribution of the computation is true of every row of the grid. Therefore, we can conclude that, for
each process pi,j , the process will need to be given the block of the vector that has the same index values as
the process's columns. This means that every process in the same grid column needs the same parts of the
input vector.

2. Which subblocks contribute to the �nal values of the elements of the output vector B? By
de�nition, the ith element of the output vector B is the inner product of row i of the matrix with the vector
X. Therefore, every process that owns part of row i has a partial sum that must be used to compute the
�nal value of Bi. This suggests that, for each row of the matrix, all processes in the grid row containing that
row need to collectively do a reduction on their partial sums of that row onto one of these processes. This
implies in turn that all processes in a single grid row must participate in a multiple, parallel reduction of the
partial sums of each row that these processes own. For example, processes p1,j for j = 0, 1, 2, 3, would each
have to call MPI_Reduce with partial sums for their subblocks of matrix rows 3, 4, 5, and 6. The problem is
that we do not yet know how a subset of all processes can participate in a reduction but not all processes.
This will come soon.

3. How can we distribute the di�erent parts of the input matrix to the processes that own

them? There are various ways to do this. The matrix is stored in row-major order in a �le, so it needs to
be read one row at a time. One process will perform the reading. Ultimately the row needs to be broken
up into blocks and delivered to the processes in the grid row to which that matrix row belongs. Neither a
single broadcast nor a single scatter operation can selectively send the row's pieces to all of the appropriate
processes at once. The easiest algorithm to understand is not the most e�cient, but it is the one implemented
by Quinn's read_checkerboard_matrix function. That algorithm sequentially delivers the blocks to each
process of the grid row, one after the other, using point-to-point operations; this takes time proportional to
the number of processes in the grid. An alternative is to take advantage of global communication operations
to overlap some of the communication.

Suppose process p0,0 does the reading of the �le. It can read a row of the matrix and determine which grid
row the row belongs to. Suppose the row is part of grid row k. Suppose that the grid has c columns. Quinn's
approach is to break the row up into blocks and send the blocks to processes pk,0, pk,1, pk,2, and so on up
to pk,c−1.

An alternative is that p0,0 sends the entire row to pk,0 and when process pk,0 receives the row, it can scatter
the row to the processes in that grid row. Because scattering is a global operation, we cannot just make a
process scatter to a subset of processes, so there is something else we will have to do to make this happen.
Both of these approaches will require MPI features we have not yet learned.

4. How can we distribute the di�erent parts of the input vector to the processes that need

them? We can let the �rst process in the �rst row, p0,0, read the �le containing the input vector. The
vector needs to be distributed by block to the processes that need it. We determined above that every
process in a grid column gets the same part of input vector X. In our example, elements X0 through X3 go
to processes in the �rst column, X4 through X6 go to processes in the next column, and so on. There are
several di�erent ways to do this, but we choose a fairly simple approach. Process p0,0 scatters the vector
onto the processes in the �rst row of the grid. Each process gets a piece of the input vector equal to the
number of columns that it owns. Now each of these �rst row processes will broadcast the piece of the vector
it received to all processes in its column. When this is �nished, every process has the block of the input
vector that it needs. Again, the question is how we can perform collective communication operations on
subsets of processes, and again the answer is, we will get there shortly.
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5. How we can collect the partial results computed by each process into the complete result

vector that can then be output? The answer to question 2 indicated that after each process computes
the partial sum of the products of the elements in its row with the corresponding elements of the input
vector, the processes in each grid row will participate in a reduction to put the �nal values of the output
vector onto the process in column 0 of that row. When that step is �nished, all processes in column 0 can
participate in a gather operation to put the complete vector onto process p0,0, which can then write it to
the output stream.

7.7.2 Creating and Using Communicators in MPI

The algorithm we have just described requires the capability of performing various types of collective com-
munication among subsets of processes rather than among all processes. In particular,

• Processes in the same grid row need to participate in a sum reduction.

• The I/O process, p0,0 needs to scatter data only to the processes in grid row 0.

• Each process in grid row 0 needs to broadcast data only to the processes in its own grid column.

• Processes in column 0 need to gather their data onto the top process, p0,0, in that column.

• In distributing the matrix rows, process 0 needs to identify and communicate with processes only in
column 0.

Clearly we need a way to arrange for processes to communicate in a grid-oriented way, and to be able to
perform collective communications within grid columns and/or rows and point-to-point communications as
well.

So far we have only used the MPI_COMM_WORLD communicator. This communicator creates a linear ordering
of all processes in the program and assigns each process a rank in this ordering. Although we could, if
pressed, solve this problem using just this communicator, point-to-point communication, and a great deal
of book-keeping within the algorithm, it is far easier to take advantage of the part of the MPI library that
provides virtual topologies for us.

MPI provides functions that allow the speci�cation of virtual process topologies of arbitrary connectivity
in terms of graphs, in which each vertex corresponds to a process and two vertices are connected if and
only if they communicate with each other. The library is powerful enough that graphs of processes can
be used to specify any desired topology. However, the most commonly used topologies in message-passing
programs are one-, two-, and occasionally, higher-dimensional grids, which are also referred to as Cartesian
topologies. For this reason, MPI provides a set of speci�c functions for specifying and manipulating these
types of multi-dimensional virtual grid topologies.

We call them virtual topologies because they are not physically connected to each other, but connected by
an opaque layer of software that MPI creates for us. This opaque layer of software is what we have called a
communicator so far. It is time to explore communicators in more depth.

A communicator consists of a process group, a set of attributes, and a context. The virtual topology is
just one of many attributes of a communicator. A communicator is represented within system memory as
an object and is only accessible to the programmer by a handle; MPI_COMM_WORLD is actually a handle.

A process group is simply an ordered set of processes. Each process in the group is associated with a unique
integer rank. Rank values range from zero to one less than the number of processes in the group. In MPI,
a group is represented within system memory as an object. Like communicators, it is only accessible to the
programmer by a handle, and is always associated with a communicator object. Although there are special
functions for manipulating groups as independent objects, you should think of groups only as parts of a
communicator object. The group functions are primarily used to specify which processes should be used to
construct a communicator.

There are some important ideas to remember about communicators:

• They allow you to organize tasks, based upon function, into task groups.
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• They enable collective communications operations across a subset of processes.

• They provide the means for implementing user de�ned virtual topologies.

• They provide the means for safe communications.

• They can be created and destroyed during program execution.

• Processes may be in more than one communicator at a time and will have a unique rank within each
group/communicator.

• There are over 60 functions related to groups, communicators, and virtual topologies.

7.7.3 Cartesian Topologies

A Cartesian topology is a topology in which the processes are arranged in a grid of any number of dimensions,
and have Cartesian coordinates within that grid. In order to create a Cartesian topology, MPI needs to know
the number of dimensions, the size of each dimension, and whether or not, in each dimension, the coordinates
wrap around (so that the �rst and last index values in that dimension are adjacent). In addition, in order
to populate the topology with processes, it needs a communicator containing a group or processes, and it
needs to know whether it must preserve their ranks or is free to assign new ranks to them if it chooses. The
function to create Cartesian topologies is called MPI_Cart_create. Its syntax is

#include <mpi.h>

int MPI_Cart_create(

MPI_Comm comm_old, /* handle to the communicator from which processes come */

int ndims, /* number of dimensions in grid */

int *dims, /* integer array of size ndims of grid dimensions */

int *periods, /* logical array of size ndims of flags (1 = periodic) */

int reorder, /* flag to allow reordering of processes */

MPI_Comm *comm_cart /* returned handle of new communicator */

)

This function takes the group of processes that belong to the communicator comm_old and creates a virtual
Cartesian process topology. The topology information is attached to the new communicator comm_cart.
Any subsequent MPI functions that want to use this new Cartesian topology must use comm_cart as the
communicator handle.

Notes

• All of the processes in the comm_old communicator must call this function.

• The shape and properties of the topology are speci�ed by the arguments ndims, dims, and periods.

� The parameter ndims speci�es the number of dimensions of the topology. They are numbered 0,
1, ..., ndims-1.

� The array dims speci�es the size along each dimension of the topology: the ith element of this
array stores the size of the ith dimension of the topology. The product

ndims−1∏
i=0

dims[i]

is the number of processes in the resulting communicator.

� The array periods speci�es whether or not the topology has wraparound connections. In partic-
ular, if periods[i] is non-zero then the topology has wraparound connections along dimension
i, otherwise it does not.
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Cartesian communicator

Figure 7.7: Mapping of processes into a 3 × 4 two-dimensional Cartesian topology by a call to
MPI_Cart_create. It is important to remember that after the call the processes exist in the old com-
municator as well as the new one; they are not removed from the old one. The Cartesian communicator just
makes it possible for them to communicate collectively within a grid topology.

• The reorder parameter determines whether the processes in the new group retain their ranks. If
reorder is false (zero), then the rank of each process in the new group is identical to its rank in the old
group. Otherwise, MPI_Cart_create may reorder the processes if that leads to a better embedding of
the virtual topology onto the parallel computer.

• If the total number of processes speci�ed in the dims array is smaller than the number of processes in the
communicator speci�ed by comm_old, then some processes will not be part of the Cartesian topology.
For this set of processes, when the call returns, the value of comm_cart will be set to MPI_COMM_NULL.

• It is an error if the total number of processes speci�ed by dims is greater than the number of processes
in the comm_old communicator.

The following code snippet would produce the Cartesian topology shown in Figure 7.7, assuming that there
were 12 processes in MPI_COMM_WORLD to start.

int ndims = 2;

int dims[2] = {3,4};

int periodic[2] = {0,0};

MPI_Comm cartesian_comm;

MPI_Cart_create(MPI_COMM_WORLD, ndims, dims, periodic, 1, &cartesian_comm);

The reorder parameter is set to true because we do not care whether the ranks in the new communicator
are di�erent than they are in the old one.

It will often be the case that we do not know the actual number of processes, as this number is speci�ed at
run-time, and that we do not know the shape of the grid until run-time as well. Therefore, if we are trying to
decompose a matrix so that the process grid is as square as possible, we would have to do a bit of arithmetic
prior to making the call to MPI_Cart_create, to determine the best sizes of each dimension. MPI provides
a function to do this for us, MPI_Dims_create, whose syntax is

#include <mpi.h>

int MPI_Dims_create(

int nnodes, /* number of nodes in grid */

int ndims, /* number of dimensions in grid */

int *dims, /* array of size ndims of chosen dimension sizes */

)
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This function helps the program select a balanced distribution of processes per coordinate direction, depend-
ing on the number of processes in the group to be balanced and optional constraints that can be speci�ed.
Speci�cally, the entries in the array dims are chosen to de�ne a Cartesian grid with ndims dimensions and
a total of nnodes nodes. The dimensions are set to be as close to each other as possible, using a divisibility
algorithm internal to the function. The array dims[] may be initialized prior to the call; if dims[i] is set
to a positive number, the routine will not modify the number of nodes in dimension i; only those entries
where dims[i] = 0 are modi�ed by the call.

If, for example, the number of processes is stored in a variable p, and we want to create a virtual two-
dimensional grid topology (i.e., a mesh) that is as square as possible, we could use the following code
snippet:

int dimensions[2] = {0,0};

int periodic[2] = {0,0};

MPI_Comm cartesian_comm;

MPI_Dims_create(p, 2, dimensions);

MPI_Cart_create(MPI_COMM_WORLD, 2, dimensions, periodic, 1, &cartesian_comm);

Now we know how to create a Cartesian topology of the appropriate shape, but to solve some of the typical
programming problems, we still need more support from MPI. Suppose that the process that performs the
I/O needs to send data to the �rst process in a particular row, say row k, of the grid. Recall that the
MPI_Send function needs to be passed the rank of the destination process. This implies that the I/O process
needs to know the rank of the process in column 0 and row k of the grid. The question is thus, if we know the
Cartesian coordinates of a process, how can we get its rank? This is where the MPI function MPI_Cart_rank

comes into play. Its syntax is

#include <mpi.h>

int MPI_Cart_rank(

MPI_Comm comm, /* handle to the communicator */

int *coordinates, /* integer array of coordinates of calling process */

int *rank /* returned rank of calling process */

)

We pass the function the coordinates of the process in the virtual grid, and it gives us the process's rank. To
get the rank of the process in row k and column 0 of the virtual grid in the communicator cartesian_comm,
we would use the code

int destination_coords[2];

int destination_rank;

destination_coords[0] = k;

destination_coords[1] = 0;

MPI_Cart_rank( cartesian_comm, destination_coords, &destination_rank);

It will also be useful for a process that knows its rank to obtain its coordinates in the grid. This is like the
inverse to the preceding problem. The MPI_Cart_coords function is used for this purpose. Its syntax is

#include <mpi.h>

int MPI_Cart_coords(

MPI_Comm comm, /* handle to the communicator */

int rank, /* rank of calling process */

int ndims, /* number of dimensions in the grid */

int *coordinates, /* integer array of coordinates of calling process */

)
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A process will also need the ability to determine the topology of the grid to which it belongs, i.e., how many
rows and columns are in the grid, and perhaps whether wrap is turned on or o� in each dimension. There is
a special function just to get grid dimensions (MPI_Cartdim_get), but if a process also needs its coordinates,
it can use the more general-purpose function, MPI_Cart_get, whose syntax is

#include <mpi.h>

int MPI_Cart_get(

MPI_Comm comm, /* handle to the communicator */

int maxdims, /* number of dimensions (size of arrays to fill) */

int *dims, /* integer array with size of each dimension */

int *periods, /* true/false array of wraparound flags for each dim */

int *coords /* coordinates of calling process in the grid */

)

The process supplies the Cartesian communicator handle and the number of dimensions, as well as the
addresses of arrays that it has allocated, and the functions �lls the arrays with the dimensions, the periodicity
of each dimension, and the process's coordinates.

The checkerboard matrix decomposition requires that processes in a given row or a given column perform
gather or scatter operations among each other. Assuming that we have created a Cartesian communicator
out of the processes in the program, the question is then, how can all of the processes in each of the rows
(or columns) participate in a collective communication independently of each other? The answer lies in the
ability to form disjoint subsets of the communicator that consist of only the processes in a given row or
column. MPI provides us with a very powerful function for this purpose:

#include <mpi.h>

int MPI_Comm_split(

MPI_Comm comm, /* handle to the communicator */

int color, /* subgroup identifier */

int key, /* possibly new rank for calling process */

MPI_Comm *newcomm /* handle to new communicator */

)

This function partitions the group associated with original communicator comm into a collection of disjoint
subgroups, one for each value of the parameter color. In other words, each process calls the function with
a value for the color parameter. Those processes that supply the same value for color are put into the
same subgroup. All of the processes within a subgroup have a new rank in that subgroup. That rank is
based on the value of the key parameter. If each process in a given subgroup supplies a unique value for
key, then each will have its new rank equal to key. If two or more processes supply the same value for key,
then MPI_Comm_split breaks the tie by assigning ranks to these processes according to their ranks in the old
group. For example, if three processes with ranks 5, 8, and 12 in the old group all supply the value 10 for
key, then the function will pick three distinct unused ranks in the new group and assign them in ascending
order to processes 5, 8, and 12 respectively.

A new communicator is created for each subgroup and returned in newcomm. A process that does not wish
to be placed into any subgroup can opt out by supplying the color value MPI_UNDEFINED, in which case
newcomm stores MPI_COMM_NULL for that process. This is a collective call, meaning that every process must
call the function, but each process is permitted to provide di�erent values for color and key.

A few examples will illustrate. Suppose we want to partition the processes in a Cartesian grid so that all
processes in the same grid row are in the same subgroup, so that each row of processes can perform its own
reduction operation. Then every process can pass the row index to the color parameter. This way every
process in a row will be in the same subgroup after the call, and each subgroup will be distinct. If we do
not care about the ranks within the new group, we can pass a 0 for the key parameter and let the function
assign ranks based on their old ranks. If we want, we can give them a rank equal to their column index in
the grid. The code would be as follows.
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Figure 7.8: The result of splitting a cartesian communicator by columns. After the split, four more commu-
nicators exist, and each process is now a part of three di�erent communicator groups, with a rank within
each.

int my_rank; /* rank of process in MPI_COMM_WORLD */

int my_cart_rank; /* rank of process in Cartesian topology */

int my_cart_coords[2]; /* coordinates of process in Cartesian topology */

int dimensions[2] = {0,0}; /* dimensions of Cartesian grid */

int periodic[2] = {0,0}; /* flags to turn off wrapping in grid */

MPI_Comm cartesian_comm; /* Cartesian communicator handle */

MPI_Comm row_comm; /* Communicator for row subgroup */

/* Get optimal dimensions for grid */

MPI_Dims_create(p, 2, dimensions);

/* Create the Cartesian communicator using these dimensions */

MPI_Cart_create(MPI_COMM_WORLD, 2, dimensions, periodic, 1, &cartesian_comm);

/* Compute for a while .... */

/* Get rank of process in the Cartesian communicator */

MPI_Comm_rank( cartesian_comm, &my_cart_rank );

/* Use this rank to get coordinates in the grid */

MPI_Cart_coords(cartesian_comm, my_cart_rank, 2, my_cart_coords );

/* Use my_cart_coords[0] as the subgroup id, and my_cart_coords[1] as new rank

and split off into a group of all processes in the same grid row */

MPI_Comm_split( cartesian_comm, my_cart_coords[0], my_cart_coords[1], &row_comm);

At this point each process has been placed into a subgroup of processes in the same row. Each row can do a
collective communication in parallel with all other rows using the newly created communicator, row_comm.

With these MPI functions at our disposal, we can return to the design of the algorithm for matrix-vector
multiplication using a two-dimensional block decomposition of the matrix.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 22

https://creativecommons.org/licenses/by-sa/4.0/ 


CSci 493.65 Parallel Computing
Chapter 7 Matrix-Vector Multiplication

Prof. Stewart Weiss

7.7.4 The Algorithm

The broad steps in the parallel matrix-vector multiplication algorithm are as follows. Remember that every
process executes the same program, but to make the meaning clear, the steps indicate whether every process
executes the step or just a singled-out process.

1. Every process initializes MPI and stores its rank into id and the number of processes into p.

2. Every process creates the Cartesian grid, making it as square as possible, with wraparound turned o�.
Every process must call the function in order to be placed into the Cartesian grid.

3. Every process obtains its coordinates and rank within the Cartesian grid, storing these into grid_coords[2]
and grid_id respectively.

4. Every process creates subgroups of the Cartesian grid by both columns and rows. In particular, each
process puts itself into a subgroup consisting of all processes in the same grid column and another
consisting of all processes in the same grid row. The handles to these subgroup communicators will be
called col_comm and row_comm respectively.

5. The matrix stored in the input �le is read and distributed to each process by subblocks. This step
is encapsulated into a function named read_and_distribute_2dblock_matrix, which is described
below. Every process participates in this step, although it is only one process that opens the �le and
reads its contents. This function allocates the storage necessary within a process to store its sub-block
of the matrix.

6. Although not essential to carry out the multiplication, at this point the matrix is printed to standard
output. The function that does this is named collect_and_print_2dblock_matrix. An alternative to
printing the matrix with a separate function would be to modify read_and_distribute_2dblock_matrix
so that it prints it while it is reading it. This might be faster, but since in general we need a function
that can print a block-decomposed matrix anyway, we develop it for this problem and use it here.

7. Each process determines the number of rows and columns it owns in the block decomposition, storing
these into nlocal_rows and nlocal_cols respectively.

8. Process 0 in row 0 opens the vector �le, reads the size of the vector, and allocates memory locally to
hold the entire vector. It then reads the vector. If the read was successful, every process computes how
much memory it needs for its block of the vector and allocates memory locally for it. Then process
0 in row 0 scatters the vector to all processes in row 0. These processes then broadcast the blocks of
the vector they received to all processes in their grid columns, because all processes in a given grid
column receive the same block of the vector. We could consolidate all of this logic into a function
named read_and_distribute_block_vector.

9. Every process allocates memory for its local block of the result vector, which will contain the inner
products of the portions of the rows that it owns with the portion of the input vector that corresponds
to it. For example, if a process manages a subblock of the matrix of dimensions m× n, then its block
would contain m elements. Each process also allocates memory of the same size as this one to store the
result of the global reduction across the row. The following two instructions take care of this, assuming
nlocal_rows is the number of rows in the process:

B_block = (element_type*) malloc ( nlocal_rows * sizeof(element_type) );

B_sum = (element_type*) malloc ( nlocal_rows * sizeof(element_type) );

10. Every process computes the inner products of the rows of the matrix assigned to this process with the
corresponding block of the vector X, storing the results in the partial vector B_block:

for (i = 0; i < nlocal_rows; i++) {

B_block[i] = 0.0;

for (j = 0; j < nlocal_cols; j++)
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B_block[i] += A[i][j] * X[j];

}

11. Each row of processes in the grid does a sum reduction across its row. The row communicators created
earlier are used in this step. Every process in each row communicator participates in the reduction
within that row. The call will be of the form

MPI_Reduce(B_block, B_sum, nlocal_rows, mpitype,

MPI_SUM, rank_of_first_column_process, row_communicator);

When this call has returned, the process in the �rst column of each grid row has the block of the result
vector that should be output.

12. Every process in the �rst column of the grid participates in the printing of the result vector. To ensure
that the values are printed in the correct order, the process with rank 0 in that column iteratively
requests each other process to send its block, in row order, and prints that block when it receives it.
The other processes essentially wait for process 0 to request their data and send it when requested.

13. All processes call MPI_Finalize.

This leads to the main program displayed in Listing 7.6 below. Most comments have been removed to save
space, and error handling is not complete, also to save space.

Listing 7.6: Main program for matrix-vector multiplication using 2D blocks.

1 typedef int Element_type;

2 #define MPI_TYPE MPI_INT

3 #define REORDER 1

4

5 int main (int argc , char *argv [])

6 {

7 int ncols; /* total number of columns in input matrix */

8 int id; /* process rank in MPI_COMM_WORLD */

9 int p; /* number of processes in MPI_COMM_WORLD */

10 int i, j; /* loop indices */

11 int error; /* error exit value of calls */

12 int nlocal_rows; /* number of rows belonging to this process */

13 int nlocal_cols; /* number of cols belonging to this process */

14 int grid_id; /* rank of process within Cartesian grid */

15 int row_id; /* rank of process within its row subgroup */

16 int grid_size [2]; /* grid dimensions */

17 int grid_coords [2]; /* process 's coordinates in Cartesian grid */

18 MPI_Comm grid_comm; /* Cartesian communicator for grid of procs */

19 MPI_Comm row_comm; /* communicator for all processes in a grid row */

20 MPI_Comm col_comm; /* communicator for all processes in a grid col */

21 int *send_count; /* array of counts for MPI_Scatterv function */

22 int *send_offset; /* array of offsets for MPI_Scatterv function */

23 int periodic [2]; /* array of wraparound flags when creating grid */

24 int nrows_X; /* number of rows of X vector local to process */

25 FILE *file; /* for open input files */

26

27 MPI_Init (&argc , &argv);

28 MPI_Comm_rank (MPI_COMM_WORLD , &id);

29 MPI_Comm_size (MPI_COMM_WORLD , &p);

30

31 grid_size [0] = 0; /* Let MPI choose dimensions */

32 grid_size [1] = 0;

33 MPI_Dims_create (p, 2, grid_size);

34
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35 periodic [0] = 0; /* No wraparound */

36 periodic [1] = 0; /* No wraparound */

37

38 MPI_Cart_create (MPI_COMM_WORLD , 2, grid_size , periodic , REORDER , &grid_comm);

39 MPI_Comm_rank (grid_comm , &grid_id); /* grid_id is rank in Cartesian grid */

40 MPI_Cart_coords (grid_comm , grid_id , 2, grid_coords); /* coordinates in grid

*/

41

42 MPI_Comm_split (grid_comm , grid_coords [0], grid_coords [1], &row_comm);

43 MPI_Comm_split (grid_comm , grid_coords [1], grid_coords [0], &col_comm);

44

45 read_and_distribute_2dblock_matrix(argv[1], (void*) &A, (void*) &A_storage ,

MPI_TYPE , &nrows , &ncols , &error , grid_comm);

46 if ( 0 != error )

47 MPI_Abort(MPI_COMM_WORLD , MP_ERR_IO);

48

49 collect_and_print_2dblock_matrix ((void **) A, MPI_TYPE , nrows , ncols , grid_comm

);

50

51 nlocal_rows = size_of_block(grid_coords [0], nrows , grid_size [0]);

52 nlocal_cols = size_of_block(grid_coords [1], ncols , grid_size [1]);

53

54 if ( 0 == grid_coords [0] ) {

55 MPI_Comm_rank(row_comm , &row_id);

56 if ( 0 == row_id ) { /* we could have also just checked column coord. */

57 file = fopen (argv[2], "r");

58 if ( NULL == file ) {

59 MPI_Abort (MPI_COMM_WORLD , MPI_ERR_FILE );

60 }

61 else {

62 int temp;

63 fread (&temp , sizeof(int), 1, file);

64 /* Make sure vector length matches matrix width. */

65 if ( temp != ncols ) {

66 fprintf(stderr , "Vector size and matrix size unmatched .\n");

67 MPI_Abort(MPI_COMM_WORLD , MPI_ERR_IO);

68 }

69 input_vec = (Element_type *) malloc(ncols*sizeof(Element_type));

70 if ( NULL == input_vec ) {

71 fprintf(stderr , "Could not allocate more storage .\n");

72 MPI_Abort(MPI_COMM_WORLD , MPI_ERR_NO_MEM);

73 }

74 fread (input_vec , sizeof(Element_type), ncols , file);

75 }

76 }

77 }

78

79 nrows_X = size_of_block (grid_coords [1], ncols , grid_size [1] );

80 X_local = (Element_type *) malloc (nrows_X * sizeof(Element_type));

81 if (NULL == X_local ) {

82 fprintf(stderr , "Could not allocate more storage .\n");

83 MPI_Abort(MPI_COMM_WORLD , MPI_ERR_NO_MEM);

84 }

85

86 if ( 0 == grid_coords [0] ) {

87 if (grid_size [1] > 1) {

88 send_count = (int *) malloc (grid_size [1] * sizeof(int));

89 send_offset = (int *) malloc (grid_size [1] * sizeof(int));

90 if ( NULL == send_count || NULL == send_offset ) {
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91 fprintf(stderr , "Could not allocate more storage .\n");

92 MPI_Abort(MPI_COMM_WORLD , MPI_ERR_NO_MEM);

93 }

94 init_communication_arrays(grid_size [1], ncols , send_count , send_offset

);

95 MPI_Scatterv (input_vec , send_count , send_offset , MPI_TYPE , X_local ,

nrows_X , MPI_TYPE , 0, row_comm);

96 }

97 else

98 for (i = 0; i < ncols; i++) X_local[i] = input_vec[i];

99 }

100 MPI_Bcast (X_local ,nrows_X , MPI_TYPE , 0, col_comm);

101

102 B_partial = (Element_type *) malloc (nlocal_rows * sizeof(Element_type));

103 B_sums = (Element_type *) malloc (nlocal_rows * sizeof(Element_type));

104 if (NULL == B_sums || NULL == B_partial ) {

105 fprintf(stderr , "Could not allocate more storage .\n");

106 MPI_Abort(MPI_COMM_WORLD , MPI_ERR_NO_MEM);

107 }

108

109 for (i = 0; i < nlocal_rows; i++) {

110 B_partial[i] = 0.0;

111 for (j = 0; j < nlocal_cols; j++)

112 B_partial[i] += A[i][j] * X_local[j];

113 }

114

115 MPI_Reduce(B_partial , B_sums , nlocal_rows , MPI_TYPE , MPI_SUM , 0, row_comm);

116

117 if (grid_coords [1] == 0)

118 print_block_vector (B_sums , MPI_TYPE , nrows , col_comm);

119

120 MPI_Finalize ();

121 return 0;

122 }

We turn to the major components of the algorithm now.

7.7.5 Reading and Distributing a Matrix by Two-Dimensional Subblocks

In Chapter 6, in our parallel version of the Floyd-Warshall algorithm, we saw how to read a matrix and
distribute it by rows among the processes in a program when a matrix was decomposed in a row-wise
organization. Here, however, we need to distribute subblocks of the input matrix among the processes in
the program, and this requires a di�erent algorithm. The function that implements this algorithm has the
prototype

void read_and_distribute_2dblock_matrix (

char *filename, /* [IN] name of file to read */

void ***matrix, /* [OUT] matrix to fill with data */

void **matrix_storage, /* [OUT] linear storage for the matrix */

MPI_Datatype dtype, /* [IN] matrix element type */

int *nrows, /* [OUT] number of rows in matrix */

int *ncols, /* [OUT] number of columns in matrix */

int *errval, /* [OUT] success/error code on return */

MPI_Comm cart_comm) /* [IN] communicator handle */

When it has �nished, each process in the Cartesian grid de�ned by the communicator handle cart_comm will
have its own local subblock of the input matrix, pointed to by the parameter matrix, with backing storage
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pointed to by matrix_storage, and it will also have the dimensions of the complete matrix in nrows and
ncols, provided that errval was not set to a nonzero value by the function.

The general idea is that process 0 in this communicator group will perform the actual input of the �le �
opening it, reading the numbers of rows and columns, and reading one row at a time. After process 0
reads the number of rows and columns, it broadcasts these to all other processes. Each process uses its
grid coordinates and the total numbers of rows and columns to determine the size of its own subblock
and allocates memory for it. Assuming this is successful, the rest of the algorithm requires that process 0
repeatedly read a row of the matrix and send it block by block to the processes that own the subblocks of
that row. The detailed steps follow.

1. Every process begins by getting its rank into id, the number of processes in the group into p, and the
element size of the matrix.

2. Process 0 opens the �le and reads the number of rows and columns of the matrix, broadcasting these
to all processes.

3. Every process then uses MPI_Cart_get, passing it the Cartesian communicator handle cart_comm to
obtain the grid shape and its coordinates in the grid. It needs these to determine how many rows and
columns it has in its subblock.

4. Every process calculates its nlocal_rows and nlocal_cols and allocates a matrix of this size using
the function alloc_matrix.

5. Process 0 allocates a bu�er large enough to store an entire row of the matrix.

6. For each row of the grid (not the matrix!)

(a) For each row belonging to the processes in that grid row

i. Process 0 reads the row from the �le

ii. For each column of the grid, every process calls MPI_Cart_rank to get the rank of the process
that is associated with the current row and column. Call this rank destination_rank.
Process 0 calculates the starting address within the bu�er, of the block of the row that must
be sent to the process with rank destination_rank as well as the length of that block.
If process 0 is not also the process whose rank is destination_rank, then it sends the
block using MPI_Send to that process, and that process calls MPI_Recv to receive the block.
Otherwise process 0 just copies the block out of the bu�er into its local matrix, created in
step 4 above.

7. Process 0 frees the bu�er that it allocated in step 5 and all processes return from the function.

The function is displayed in Listing 7.7 below, with most comments deleted.

Listing 7.7: read_and_distribute_2dblock_matrix()

1 void read_and_distribute_2dblock_matrix (

2 char *filename , /* [IN] name of file to read */

3 void *** matrix , /* [OUT] matrix to fill with data */

4 void ** matrix_storage , /* [OUT] linear storage for the matrix */

5 MPI_Datatype dtype , /* [IN] matrix element type */

6 int *nrows , /* [OUT] number of rows in matrix */

7 int *ncols , /* [OUT] number of columns in matrix */

8 int *errval , /* [OUT] sucess/error code on return */

9 MPI_Comm cart_comm) /* [IN] communicator handle */

10 {

11 int i,j,k; /* various loop index variables */

12 int grid_id; /* process rank in the cartesian grid */

13 int p; /* number of processes in the cartesian grid */

14 size_t element_size; /* number of bytes in matrix element type */
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15 int mpi_initialized; /* flag to check if MPI_Init was called already */

16 FILE *file; /* input file stream pointer */

17 int nlocal_rows; /* number of rows that calling process "owns" */

18 int nlocal_cols; /* number of columns that calling process "owns" */

19 MPI_Status status; /* result of MPI_Recv call */

20 int dest_id; /* rank of receiving process in cartesian grid */

21 int grid_coord [2]; /* process coordinates in the grid */

22 int grid_periodic [2];/* flags indicating if grid wraps around */

23 int grid_size [2]; /* dimensions of grid */

24 void* buffer; /* address of temp location to store rows */

25 int block_coord [2]; /* coordinates in grid of current block */

26 void* source_address; /* address of block to be sent */

27 void* dest_address; /* location where block is to be received */

28

29 MPI_Initialized (& mpi_initialized);

30 if ( !mpi_initialized ) {

31 *errval = -1;

32 return;

33 }

34

35 MPI_Comm_rank (cart_comm , &grid_id);

36 MPI_Comm_size (cart_comm , &p);

37

38 element_size = get_size (dtype);

39 if ( element_size <= 0 ) {

40 *errval = -1;

41 return;

42 }

43

44 if ( 0 == grid_id ) {

45 file = fopen (filename , "r");

46 if ( NULL == file ) {

47 *nrows = 0;

48 *ncols = 0;

49 }

50 else { /* successful open */

51 fread (nrows , sizeof(int), 1, file);

52 fread (ncols , sizeof(int), 1, file);

53 }

54 }

55 MPI_Bcast (nrows , 1, MPI_INT , 0, cart_comm);

56 if ( 0 == *nrows ) {

57 *errval = -1;

58 return;

59 }

60 MPI_Bcast (ncols , 1, MPI_INT , 0, cart_comm);

61

62 MPI_Cart_get (cart_comm , 2, grid_size , grid_periodic , grid_coord);

63 nlocal_rows = size_of_block( grid_coord [0], *nrows , grid_size [0] );

64 nlocal_cols = size_of_block( grid_coord [1], *ncols , grid_size [1] );

65

66 alloc_matrix( nlocal_rows , nlocal_cols , element_size , matrix_storage , matrix ,

errval);

67 if ( SUCCESS != *errval )

68 MPI_Abort (cart_comm , *errval);

69

70 if ( 0 == grid_id ) {

71 buffer = malloc (*ncols * element_size);

72 if ( buffer == NULL )
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73 MPI_Abort (cart_comm , *errval);

74 }

75

76 for (i = 0; i < grid_size [0]; i++) { /* for each grid row */

77 block_coord [0] = i;

78 for (j = 0; j < size_of_block(i, *nrows , grid_size [0] ); j++) {

79 if ( 0 == grid_id ) {

80 fread (buffer , element_size , *ncols , file);

81 }

82

83 for (k = 0; k < grid_size [1]; k++) {

84 block_coord [1] = k;

85 MPI_Cart_rank (cart_comm , block_coord , &dest_id);

86

87 if ( 0 == grid_id ) {

88 source_address = buffer + ( (k*(* ncols))/grid_size [1] ) *

element_size;

89 if (0 == dest_id ) {

90 dest_address = (* matrix)[j];

91 memcpy (dest_address , source_address ,nlocal_cols *

element_size);

92 }

93 else {

94 int blocksize = size_of_block(k,*ncols , grid_size [1]);

95 MPI_Send (source_address ,blocksize , dtype , dest_id , 0,

cart_comm);

96 }

97 }

98 else if (grid_id == dest_id) {

99 MPI_Recv ((* matrix)[j], nlocal_cols , dtype , 0, 0, cart_comm , &

status);

100 }

101 } /* end for k */

102 } /* end for j */

103 } /* for i */

104

105 if (0 == grid_id)

106 free (buffer);

107 *errval = 0;

108 }

The function to print the matrix is displayed in Listing 7.8 but not explained here.

7.7.6 Performance Analysis

We again ask the questions, �what is the time complexity of this algorithm and how scalable is it?� To
simplify the analysis, we will assume again that the matrix is square, i.e., it is n× n, so that the sequential
algorithm has time complexity Θ(n2). We will also assume for simplicity that the number of processes, p, is
a square number, so that the grid is

√
p×√p and that each subblock is of size at most

⌈
n/
√
p
⌉
×
⌈
n/
√
p
⌉
.

Although we will not count in our analysis the communication time associated with reading and distributing
the matrix and the vector to each processor, we will determine what that time is.

The algorithm to read and distribute the matrix takes each of n rows of the matrix and sends it by subblocks
to the processes that own those blocks. As there are

√
p subblocks in each row, and there are n rows, there

are a total of
⌈
n
√
p
⌉
messages sent, each having

⌈
n/
√
p
⌉
elements. The communication time is therefore⌈

n
√
p
⌉

(λ+
⌈
n/
√
p
⌉
/β), or approximately n

√
pλ+ n2/β, which is Θ(n2). This is as expected, as the matrix

contains n2 elements that must be delivered to all processes.

The algorithm that distributes the vector begins by scattering the vector to
√
p processes in the �rst row.
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Assuming a hypercube algorithm is used and that the average message size is n/
√
p, the overhead of this

step is log
√
pλ + n log

√
p/(
√
pβ). Since log

√
p = (log p)/2, this is Θ((n log p)/

√
p). After this step each

process in the top row simultaneously broadcasts its block to all processes in its column. This step takes the
same time as the scattering operation, as it is a broadcast of a message of size n/

√
p to

√
p processes, so the

overall time complexity is Θ((n log p)/
√
p).

The time complexity of the computational portion of the algorithm is the time spent computing the partial
inner products. Each task computes the matrix product of an approximately n/

√
p × n/√p matrix with a

vector of size n
√
p and therefore takes Θ(n2/p) steps to perform the computation.

The time complexity of the communication overhead not associated with input of the matrix or the vector
is the time that all processes take when participating in the simultaneous row reductions of their partial
sums of the result vector. There are

√
p processes in each row, and the message size is n/

√
p. This is

exactly like the time to broadcast the input vector along a column, so each sum reduction has a complexity
of Θ((n log p)/

√
p).

The total time to perform the matrix-vector multiplication using the two-dimensional block decomposition
is therefore

Θ(n2/p+ (n log p)/
√
p).

We now determine the isoe�ciency and scalability of this parallel system. The sequential algorithm has
time complexity Θ(n2), so T (n, 1) = n2. The parallel overhead of this algorithm, T0(n, p), is the work not
done by the sequential algorithm and is limited to the total communication time (excluding the I/O time.)
Since p processes perform the row reduction and the scattering and broadcast of the vector simultaneously,
the communication overhead is p times the time complexity of the sum reduction, which is therefore Θ(p×
(n log p)/

√
p) = Θ((n

√
p log p)) , so T0(n, p) = n

√
p log p . The isoe�ciency relation

T (n, 1) ≥ C · T0(n, p)

is therefore
n2 ≥ Cn√p log p

which implies
n ≥ C√p log p

For problem size n, as we have de�ned it, the memory storage is Θ(n2), so the memory utilization function
is M(n) = n2 and the scalability function, M(f(p))/p, is

M(C
√
p log p)/p = (C

√
p log p)2/p = C2(p log2 p)/p = C2 log2 p

This means that to maintain e�ciency as the number of processors is increased, the memory per processor
would have to grow in proportion to the square of the logarithm of the number of processors. This is
a relatively slow-growing function, so this algorithm is fairly scalable, certainly much more scalable than
either the row-wise striped or column-wise striped algorithm.

Listing 7.8: collect_and_print_2dblock_matrix()

1 void collect_and_print_2dblock_matrix (

2 void **a, /* IN -2D matrix */

3 MPI_Datatype dtype , /* IN -Matrix element type */

4 int m, /* IN -Matrix rows */

5 int n, /* IN -Matrix columns */

6 MPI_Comm grid_comm) /* IN - Communicator */

7 {

8 void *buffer; /* Room to hold 1 matrix row */

9 int coords [2]; /* Grid coords of process

10 sending elements */

11 int element_size; /* Bytes per matrix element */

12 int els; /* Elements received */

13 int grid_coords [2]; /* Coords of this process */
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14 int grid_id; /* Process rank in grid */

15 int grid_period [2]; /* Wraparound */

16 int grid_size [2]; /* Dims of process grid */

17 int i, j, k;

18 void *laddr; /* Where to put subrow */

19 int local_cols; /* Matrix cols on this proc */

20 int p; /* Number of processes */

21 int src; /* ID of proc with subrow */

22 MPI_Status status; /* Result of receive */

23

24 MPI_Comm_rank (grid_comm , &grid_id);

25 MPI_Comm_size (grid_comm , &p);

26 element_size = get_size (dtype);

27

28 MPI_Cart_get (grid_comm , 2, grid_size , grid_period ,

29 grid_coords);

30 local_cols = size_of_block(grid_coords [1], n, grid_size [1]);

31

32 if (0 == grid_id)

33 buffer = malloc ( n * element_size);

34

35 /* For each row of the process grid */

36 for (i = 0; i < grid_size [0]; i++) {

37 coords [0] = i;

38

39 /* For each matrix row controlled by the process row */

40 for (j = 0; j < size_of_block(i,m, grid_size [0] ); j++) {

41

42 /* Collect the matrix row on grid process 0 and

43 print it */

44 if (0 == grid_id) {

45 for (k = 0; k < grid_size [1]; k++) {

46 coords [1] = k;

47 MPI_Cart_rank (grid_comm , coords , &src);

48 els = size_of_block(k,n, grid_size [1]);

49 laddr = buffer +

50 ((k*n)/grid_size [1]) * element_size;

51 if (src == 0) {

52 memcpy (laddr , a[j], els * element_size);

53 } else {

54 MPI_Recv(laddr , els , dtype , src , 0,

55 grid_comm , &status);

56 }

57 }

58 print_vector (buffer , n, dtype , stdout);

59 printf ("\n");

60 }

61 else if (grid_coords [0] == i) {

62 MPI_Send (a[j], local_cols , dtype , 0, 0,

63 grid_comm);

64 }

65 }

66 }

67 if (0 == grid_id) {

68 free (buffer);

69 printf ("\n");

70 }

71 }
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