
Chapter 10 Shared Memory Parallel Computing With
Pthreads

Preface

There are two different approaches to multi-threaded programming. One is based on explicit user-
defined threads and the other is based in part on user-guided threading support provided by the
compiler. The latter is exemplified by OpenMP ; the former by various threading libraries. This
chapter is an introduction to the use of threads in general, specifically covering the POSIX threads
library, better known as Pthreads. This is a cross-platform library, supported on Solaris, Mac OS,
FreeBSD, OpenBSD, and Linux. There are several other threading libraries, including the native
threading introduced in C++ 11 through the thread support library, whose API is obtained by
including the <thread> header file. C++ includes built-in support for threads, mutual exclusion,
condition variables, and futures. There is also Qt Threads, which are part of the Qt cross-platform
C++ toolkit. Qt threads look very much like those from Java. On Windows platforms, there is
winThreads, which has a C++ binding.

Concepts Covered

Shared memory parallelism, processes, threads,
multi-threading paradigms,
Pthreads, NPTL,
thread properties,
thread cancellation, detached threads,
mutexes, condition variables,

barrier synchronization, reduction algorithm
producer-consumer problem,
reader/writer locks,
thread scheduling, deadlock, starvation

10.1 Introduction

By “shared memory” we mean that the physical processors have access to a shared physical memory.
This in turn implies that independent processes running on these processors can access this shared
physical memory. The fact that they can access the same memory does not mean that they can
access the same logical memory because their logical address spaces are by default made to be
disjoint for safety and security. Modern operating systems provide the means by which processes
can access the same set of physical memory locations and thereby share data, but that is not the
topic of these notes. The intention of these notes is to discuss multi-threading .

In the shared memory model of parallel computing, processes running on separate processors have
access to a shared physical memory and therefore they have access to shared data. This shared
access is both a blessing and a curse to the programmer. It is a blessing because it makes it possible
for processes to exchange information and synchronize actions through shared variables. It is a curse
because it makes it possible to corrupt the state of the collection of processes in ways that depend
purely on the relative rates of progress of the processes. We call the potential for such corruption
a race condition .

1

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

A running program, which we call a process, is associated with a set of resources including its
memory segments (text, stack, initialized data, uninitialized data, and so on), environment variables,
command line arguments, and various properties and data that are contained in kernel resources
such as the process and user structures (data structures used by the kernel to manage the processes.)
A partial list of the kinds of information contained in these latter structures includes things such
as the process’s

• IDs, including its process ID, process group ID, user ID, and group ID

• Hardware state

• Memory mappings, such as where all process segments are located in logical memory

• Flags such as set-uid, set-gid

• File descriptors

• Signal masks and dispositions

• Resource limits

• Inter-process communication tools such as message queues, pipes, semaphores, or shared mem-
ory.

In short, a process is a fairly “heavy” object in the sense that when a process is created, all of these
resources must be created for it, which takes time. The fork() system call duplicates almost all of
the calling process’s resources for the new, child process. A few resources are not duplicated. But
after the fork() call, the processes are essentially independent execution units. The paradigm for
forking a process is shown in Listing 10.1 below.

Listing 10.1: Simple fork() program
#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>

in t main (i n t argc , char ∗ argv [])
{

pid_t r e s u l t ;

r e s u l t = fo rk () ;

i f (−1 == r e s u l t) {
p r i n t f (" Error t ry ing to c r e a t e new proce s s . \ n ") ;
e x i t (1) ;

}
e l s e i f (0 == r e s u l t) {

/∗ ch i l d execute s t h i s branch ∗/
p r i n t f ("Code execute by ch i l d p roce s s . \ n ") ;

}
e l s e {

2

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

/∗ parent execute s t h i s branch ∗/
p r i n t f ("Code executed by parent p roce s s . \ n ") ;

}

re turn 0 ;
}

Processes by default are limited in what they can share with each other because they do not share
their logical memory spaces. Thus, for example, they do not in general share variables and other
objects that they create in memory. To make sharing possible, most operating systems provide an
API for sharing memory. For example, in Linux 2.4 and later, and glibc 2.2 and later, POSIX
shared memory is available so that unrelated processes can communicate through shared memory
objects. Solaris also supported shared memory, both natively and with support for the later POSIX
standard. In addition, processes can share files and messages, and they can send each other signals
to synchronize.

The major drawbacks to using processes as a means of multi-tasking is their consumption of system
resources and the inability to share variables easily. The fork() call itself is a time-consuming call
because it has to replicate the memory image of the process. The replication of data is also wasteful
because in many cases the child process replaces its code anyway using some form of the exec()
system call. This was the motivation for the invention of threads.

10.2 Thread Concepts

A thread is a flow of control (i.e., a sequence of instructions) that can be independently scheduled
by the kernel. A process can have multiple threads. A typical process can be thought of as having
a single thread of control: each process is executing one instruction at a time. When a program has
multiple threads of control, more than one instruction at a time can be executed within a single
process, with each thread handling a separate task. Some of the advantages of using threads are:

• Asynchronous Processing . Code to handle asynchronous events can be executed by sepa-
rate threads. Each thread can then handle its event using a synchronous programming model.

• Performance :

– Multiple threads can take advantage of multiple cores because they can be independently
scheduled by the kernel.

– Whereas multiple processes have to use mechanisms provided by the kernel to share
memory and file descriptors, threads automatically have access to the same memory
address space, which is faster and simpler.

– Even on a single processor machine, performance can be improved by putting calls to
system functions with expected long waits in separate threads. This way, just the calling
thread blocks, not the whole process, allowing the other threads to make progress1.

• Response Time . Programs that have both interactive and background tasks, such as ani-
mated games, have to handle user input while computing scenes to display. Separate threads
can be used to improve response time while performing background tasks.

1This depends to some extent on how threads are implemented on the particular system

3

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

• Program Structure . Programs can be structured more understandably if separate logical
tasks are performed by separate threads.

Threads share certain resources with the parent process and each other, and maintain private copies
of other resources. The most important resources shared by threads are

• the program’s text segment, i.e., its executable code, and

• its global and heap memory.

This implies that threads can communicate through the program’s global variables, but it also
implies that they have to synchronize their access to these shared resources. To make threads
independently schedulable, at the very least they they must have their own stack and register
values. They also need some unique number, a thread ID, so that they can be identified.

POSIX requires that each thread have its own distinct

• thread ID

• stack and alternate stack

• stack pointer and registers

• signal mask

• errno value

• scheduling properties

• thread specific data.

On the other hand, in addition to the text and data segments of the process, UNIX threads share

• file descriptors

• environment variables

• process ID

• parent process ID

• process group ID and session ID

• controlling terminal

• user and group IDs (real and effective)

• open file descriptors

• record locks

• signal dispositions

• file mode creation mask (the umask)

4

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

• current directory and root directory

• interval timers and POSIX timers

• nice value

• resource limits

• measurements of the consumption of CPU time and resources

To summarize, a thread

• is a single flow of control within a process and uses the process resources;

• duplicates only the resources it needs to be independently schedulable;

• can share the process resources with other threads within the process; and

• terminates if the parent process is terminated;

10.3 Examples of Thread Creation

To make this concrete, below are three examples of thread creation using different libraries. The
first uses the thread class introduced in the C++ 11 standard and the second uses the POSIX thread
API known as Pthreads.

Listing 10.2: C++ Native <thread> Class Example
/∗ This must be bu i l t on Linux us ing

g++ −std=c++11 −o simplethreaddemo simplethreaddemo . cpp −pthread
I t i s implemented us ing the under ly ing POSIX l i b r a r y .

∗/
#inc lude <thread>
#inc lude <iostream>

void g r e e t i n g ()
{

std : : cout << " Hel lo world ! \ n " ;
}

i n t main (i n t argc , char ∗ argv [])
{

std : : thread ch i l d (g r e e t i n g) ; /∗ thread execute s func t i on named g r e e t i n g ∗/

std : : cout << "This i s the main (parent) thread \n " ;
c h i l d . j o i n () ;
r e turn 0 ;

}

5

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

In Listing 10.2 the declaration of a thread in the main program causes it to be created and launched.
It is given a function name, which is the code that it executes. The function must return void and
have no parameters. Threads in C++ have limited support and not all implementations of C++
provide the full support natively. For this reason, we will focus on POSIX threads. The following
listing shows the analogous POSIX thread example.

Listing 10.3: PThreads Simple Thread Creation Example
#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <pthread . h>

void ∗ hel lo_world (void ∗ unused)
{

p r i n t f ("The ch i l d says , \" He l lo world !\"\n ") ;
pthread_exit (NULL) ;

}

i n t main (i n t argc , char ∗ argv [])
{

pthread_t chi ld_thread ;
char ∗ p lanet = "Pluto " ;

/∗ Create the thread and launch i t . ∗/
i f (0 != pthread_create(&chi ld_thread , NULL, hel lo_world , NULL)){

p r i n t f (" pthread_create f a i l e d . \ n ") ;
e x i t (1) ;

}

p r i n t f (" This i s the parent thread . \ n ") ;
/∗ Wait f o r the ch i l d thread to terminate . ∗/
pthread_join (chi ld_thread , NULL) ;

r e turn 0 ;
}

Notice that the declaration of a thread in Pthreads does not launch it. There is an explicit function,
pthread_create() to launch the thread. Also, the function passed to the thread has a single void*
parameter. We will go through the details later in these notes.

10.4 Race Conditions

A race condition occurs when two or more threads access some shared resource and the outcome of
their sharing it is that the correctness of the computation depends on the order in which they do
so. Clearly, if both just read the resource without modifying it, there is no problem. But if one or
more can modify it, then a race condition might exist.

6

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

Example

Multiple threads execute the thread routine below. Each performs a computation and adds its
partial sum to the address pointed to by parameter sum, which is passed to it. The increment takes
place through an integer cast of sum within the thread routine.

void * update_count(void *sum)
{

int i;
int *temp = (int*) sum;
/* temp is just a cast of sum because sum is of

type void* and we cannot do arithmetic with it. */
int partial_sum = calc(); /* do some work and return a result */

for (i = 0; i < 10000; i++)
*temp = *temp + partial_sum; /* Race Condition */

}

The problem is that the line marked as a race condition performs addition, which is not a single
machine instruction. It is typically translated to something like this:

mov register1, @temp
add register1, partial_sum
mov @temp, register1

If two different threads execute this code and their computations are interleaved in time, the result
can be incorrect. Suppose Thread1 has 5 as the value for partial_sum and Thread2 has the value
8, and that *temp is 0 initially. They each use a separate register. After both execute, temp should
be 13. Consider this interleaving in time

t0: thread1 executes mov register1, @temp {register1 == 0 }
t1: thread1 executes add register1, partial_sum {register1 == 5 }
t2: thread2 executes mov register2, @temp {register2 == 0 }
t3: thread2 executes add register2, partial_sum {register2 == 8 }
t4: thread1 executes mov @temp, register1 {temp == 5 }
t5: thread2 executes mov @temp, register2 {temp == 8 }

The final value is 8, not 13. Had they executed in a different order, the result could be 5 or 13.
Programs using shared variables are prone to this problem.

10.5 Program Design Using Threads

Threads are suitable for certain types of parallel programming. In general, in order for a program
to take advantage of multi-threading, it must be possible to organize it into discrete, independent

7

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

tasks that can execute concurrently. The first consideration when contemplating using multiple
threads is how to decompose the program into such discrete, concurrent tasks. There are other
considerations though. Among these are

• How can the load be balanced among the threads so that they no one thread becomes a
bottleneck?

• How will threads communicate and synchronize to avoid race conditions?

• What type of data dependencies exist in the problem and how will these affect thread design?

• What data will be shared and what data will be private to the threads?

• How will I/O be handled? Will each thread perform its own I/O for example?

Each of these considerations is important, and to some extent each arises in most programming
problems. Determining data dependencies, deciding which data should be shared and which should
be private, and determining how to synchronize access to shared data are very critical aspects to
the correctness of a solution. Load balancing and the handling of I/O usually affect performance
but not correctness.

Knowing how to use a thread library is just the technical part of using threads. The much harder
part is knowing how to design the program. There is no magic bullet in so far as that goes and these
notes do not pretend to assist you with that task. Their purpose is just to provide the technical
background, examples, and guidance.

However, before continuing, we present a few common paradigms for organizing multi-threaded
programs.

10.5.1 Master/Worker Paradigm

In this approach, also called the boss/worker paradigm, there is a single master thread and multiple
worker threads. The master thread does the following:

• It manages various tasks that must be performed and hands out tasks to the workers to
perform work. It might be creating the tasks itself or creating tasks based on user input.

• It collects the results of worker computations.

• It performs all I/O and sends and receives data from the worker threads so that they do not
have to perform I/O.

• If the program is interactive, the master is the thread that interacts with the user.

This paradigm models the way that many servers behave - as the server receives incoming requests,
it hands out tasks to worker threads to service these requests. The functions of the master typically
include handing out work and collecting results from workers, performing all I/O, and interacting
with the user and or other processes.

Within this model two different sub-models emerge. In one sub-model, worker tasks are created
dynamically as needed. The following pseudocode illustrates this idea.

8

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

i n t main (i n t argc , char ∗ argv [])
{

/∗ The master thread ∗/
// de c l a r e c h i l d threads

{
whi l e (more work to do) {
get a job from a job queue ;
switch (job) {

case X : pthread_create(& chi ld_thread1 ,
NULL, taskX , (void ∗) job))

case Y : pthread_create(& chi ld_thread2 ,
NULL, taskY , (void ∗) job))

/∗ . . . more ca s e s here ∗/
}
}

/∗ r e s t o f main thread here ∗/
}

void ∗ taskX () /∗ Worker to p roce s s job o f type X ∗/
{

proce s s job type X
}

void ∗ taskY () /∗ Worker to p roce s s job o f type Y ∗/
{

proce s s job type X
}

The problem with this approach is that threads are being created and destroyed frequently, which
adds to the total overhead of the program. The alternative is to maintain a thread pool , which is
a fixed set of threads created at the start of the program. Rather than creating new threads as jobs
arise, the jobs are assigned to available threads. This implies that the master and workers must use
a shared data structure, such as a queue, to manage the assignment of jobs to threads.

In general, the master/worker paradigm, whether it uses dynamically created threads or a thread
pool, suffers from the possibility that the master is a bottleneck in the computation. A paradigm
that avoids this removes the master and lets the workers manage themselves collectively.

A paradigm that is similar to the Master/Worker paradigm is one derived from Google’s MapRe-
duce technology, which Google used in its search engines for several years. In the MapReduce
paradigm, the master coordinates two types of tasks: map tasks, which transform data from one
form to another, and reduce tasks, which essentially perform reductions on the data that they
receive. The number of map tasks and reduce tasks can vary over time.

10.5.2 Peer or WorkCrew Paradigm

In the peer model, tasks are assigned to a finite set of worker threads. Each worker can enqueue
subtasks for concurrent evaluation by other workers as they become idle. The peer model is similar
to the master/worker model except that after the master creates all the other peer threads when

9

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

the program starts, the master becomes the another thread in the thread pool, and is thus a peer to
the other threads. Whereas the master/worker model uses a stream of input requests to the master,
the peer model makes each thread responsible for its own input. A peer knows what its input is in
advance, has its own private way of obtaining its input, and/or shares a single point of input with
other peers.

The peer model is suitable for applications that have a fixed or well-defined set of inputs, such
as matrix operations, parallel database search engines, applications that process grids of data in
general, and prime number generators. One problem with this model is that communication costs
can be high, and peer performance can degrade if they must frequently synchronize to access shared
resources.

An application like the 2D boundary value problem (heat dissipation for example) or generating
a MandelBrot set, is suitable for this model, but because the results of each thread’s calculations
might require the adjustment of the bounds of the next thread’s calculations, all threads might have
to synchronize afterward to exchange and compare each other’s results.

10.5.3 Pipeline

Similar to how pipelining works in a processor, each thread is part of a long chain in a processing
factory. Each thread works on data processed by the previous thread and hands it off to the next
thread. Conceptually, each thread executes a stage of the pipeline, which is of the form

i n i t i a l i z e _ s t a g e () ;
whi l e (there_is_data_to_be_processed) {

get_data_from_previous_stage (data) ;
p roc e s s (data) ;
pass_data_to_next_stage (data) ;

}

When designing a program using a pipeline structure, the difficulty is distributing work equally.
Extra steps must be taken to ensure non-blocking behavior in this thread model or the program
could experience pipeline "stalls." The paradigm is illustrated in the sample code in the listing
below.

i n t main (i n t argc , char ∗ argv [])
{

/∗ The master thread ∗/
// de c l a r e c h i l d threads

pthread_create (. . . s tage1) ;
pthread_create (. . . s tage2) ;
// more s t ag e s here

pthread_create (. . . stageN) ;

wait f o r a l l p i p e l i n e threads to f i n i s h
c l ean up

}

void ∗ s tage1 () /∗ thread to proce s s p i p e l i n e s tage 1 ∗/

10

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

{
get input from prev ious thread in p i p e l i n e
p roce s s s tage 1 o f input
pass r e s u l t to next thread in p i p e l i n e

}

void ∗ s tage2 () /∗ thread to proce s s p i p e l i n e s tage 2 ∗/
{

get input from prev ious thread in p i p e l i n e
p roce s s s tage 2 o f input
pass r e s u l t to next thread in p i p e l i n e

}
// and so on

10.6 Overview of the Pthreads Library

The Pthreads library is the most widely used threading library and it underpins the design of many
other libraries such as Qt threads, winThreads and C++ threads. For this reason, it is the library
that these notes explore.

In 1995 the Open Group defined a standard interface for UNIX threads (IEEE POSIX 1003.1c)
which they named Pthreads (P for POSIX). This standard was supported on multiple platforms,
including Solaris, Mac OS, FreeBSD, OpenBSD, and Linux. In 2005, a new implementation of the
interface was developed by Ulrich Drepper and Ingo Molnar of Red Hat, Inc. called the Native
POSIX Thread Library (NPTL), which was much faster than the original library, and has since
replaced that library. The Open Group further revised the standard in 2008. We will limit our
study of threads to the NPTL implementation of Pthreads. To check whether a Linux system is
using the NPTL implementation or a different implementation, run the command

getconf GNU_LIBPTHREAD_VERSION

The Pthreads library provides a very large number of primitives for the management and use of
threads; there are 93 different functions defined in the 2008 POSIX standard. Some thread functions
are analogous to those of processes. The following table compares the basic process primitives to
analogous Pthread primitives.

Process Primitive Thread Primitive Description

fork() pthread_create() Create a new flow of control with a function
to execute

exit() pthread_exit() Exit from the calling flow of control

waitpid() pthread_join() Wait for a specific flow of control to exit and
collect its status

getpid() pthread_self() Get the id of the calling flow of control

abort() pthread_cancel() Request abnormal termination of the calling
flow of control

The Pthreads API can be categorized roughly into the following four groups.

11

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

Thread management: This group contains functions that work directly on threads, such as creating,
detaching, joining, and so on. This group also contains functions to set and query thread
attributes.

Mutexes: This group contains functions for handling critical sections using mutual exclusion. Mu-
tex functions provide for creating, destroying, locking and unlocking mutexes. These
are supplemented by mutex attribute functions that set or modify attributes associated
with mutexes.

Condition variables: This group contains functions that address communications between threads
that share a mutex based upon programmer-specified conditions. These include func-
tions to create, destroy, wait and signal based upon specified variable values, as well as
functions to set and query condition variable attributes.

Synchronization: This group contains functions that manage read/write locks and barriers.

We will visit these groups in the order they are listed here, not covering any in great depth, but
enough depth to write fairly robust programs.

10.7 Thread Management

Each thread in a process has a unique thread identifier, of type pthread_t. This identifier is used by
various functions in the Pthreads API. The thread id is returned to the caller of pthread_create(),
and a thread can obtain its own thread identifier using pthread_self(). Thread ids are only unique
within a single process. Thread ids might be reused by a system after a thread has been terminated
(and joined); an application should never try to reference the id of a terminated thread but should
instead use whatever id was returned to the caller of pthread_create(). In the remainder of this
section we examine the fundamental functions involved in managing threads. We start with the
pthread_create() function.

10.7.1 Creating Threads

The prototype for pthread_create() is

int pthread_create (pthread_t *thread,
const pthread_attr_t *attr,
void * (*start_routine)(void *),
void *arg);

This function creates and starts a new thread in the calling process. On successful creation of the
new thread, thread contains the thread id of the created thread. Unlike fork(), this call passes in
the third parameter the address of a function to be executed by the new thread. This function must
have exactly one argument, of type void*, and its return value must also be void*. The fourth
argument, arg, is the argument that will be passed to the start_routine() function in the thread.

The second argument is a pointer to a pthread_attr_t structure. This structure can be used
to define attributes of the new thread. These attributes include properties such as its stack size,

12

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

scheduling policy, and joinability (to be discussed below). If the program does not specifically set
values for its members, default values are used instead. A NULL value can be passed instead to use
the system defaults. To start, it is easiest to accept the default attributes assigned by the library.
We will explore changing thread properties in more detail later.

Because the start_routine() function is passed just a single argument, if the function needs to
be passed more than a pointer-sized variable, we need a way to give the thread access to the data
that it needs. Recall that all threads have their own stacks but can share global memory and heap
memory. One solution is to make all data that a threads needs to access global, so that the thread
has access to it.

When there is just a single thread, this might be an acceptable solution, but when there are many
threads, it raises the specter of race conditions, when threads try to modify the same data at the
same time. Even if the data is not modified by the threads, it can create too much contention for
main memory.

An alternative is to define a structure with all of the state that needs to be accessed within a thread,
and to give each thread its own copy of that structure by pass a pointer to that structure as the
argument to pthread_create().

Example

A set of P threads needs to access a shared array named data that contains length elements. Each
thread must process a contiguous portion of that array. We can define the structure

typedef struct _task_data
{

int first; /* index of first element in array for this thread */
int last; /* index of last element in array for this thread */
int *array; /* pointer to start of data array */
int task_id; /* program’s id of thread */
int result; /* whatever the thread computes */

} task_data;

and each thread can then be passed a copy of this structure with the values of first, last, array,
and task_id initialized before the call. The array pointer may or may not be needed; if the array
is declared as a global variable, the threads will have access to it. If the array name is a local
variable in the main program, then the array must be allocated on the heap and its address passed
to the threads in the struct’s member variable. As another option, the array could be declared as
a static local variable in the main program and its name can be passed into the threads through
the struct.

The program declares an array of P task_data structs, one for each thread, and an array to store
the thread ids returned by pthread_create():

task_data thread_data[P];
pthread_t threads[P];

The code to initialize the thread data and create the threads could be

13

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

for (unsigned int t = 0 ; t < P; t++) {
thread_data[t].first = (t*length)/P;
thread_data[t].last = ((t+1)*length)/P -1;
thread_data[t].task_id = t;
thread_data[t].num_segments = length;

if (0 != (rc = pthread_create(&threads[t], NULL, process_array,
(void *) &thread_data[t]))) {

printf("ERROR; %d return code from pthread_create()\n", rc);
exit(-1);

}
}

This would create P many threads, each executing a function named process_array(), each with its
own structure containing parameters of its execution. The assignment of array segments follows the
same strategy as was described in the notes on the parallel implementation of the Floyd-Warshall
algorithm.

Note that we could have created a single array and made the thread id a part of the structure, as in

typedef struct _task_data
{

int first; /* index of first element in array for this thread */
int last; /* index of last element in array for this thread */
int *array; /* pointer to start of data array */
int task_id; /* program’s id of thread */
pthread_t thread_id; /* system’s id for thread */
int result; /* whatever the thread computes */

} task_data;

Design Decision Regarding Shared Data

The advantage of declaring the data array as a static local variable in the main program is that code
is easier to analyze and maintain when there are fewer global variables and potential side effects.
Programs with functions that modify global variables are harder to analyze. On the other hand,
making it a static local in main and then having to add a pointer to that array in the thread data
structure passed to each thread increases thread storage requirements and slows down the program.
Each thread has an extra pointer in its stack when it executes, and each reference to the array
requires two dereferences instead of one. Which is preferable? It depends what the overall project
requirements are. If speed and memory are a concern, use a global array and use good practices
in documenting and accessing it. If not, use the static local. Of course if the array’s size is not
known statically, then it will be created dynamically and the threads will have to access it through
a pointer in a thread structure.

10.7.2 Thread Identification

A thread can get its thread ID by calling pthread_self(), whose prototype is

14

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

pthread_t pthread_self(void);

This is the analog to getpid() for processes, and to MPI_Comm_rank(). This function is the only
way that the thread can get its ID, because it is not provided to it by the creation call. It is entirely
analogous to fork() in this respect.

A thread can check whether two thread IDs are equal by calling

int pthread_equal(pthread_t t1, pthread_t t2);

This returns a non-zero if the two thread IDs are equal and zero if they are not.

10.7.3 Thread Termination

A thread can terminate itself by calling pthread_exit():

void pthread_exit(void *retval);

This function terminates the calling thread. The pthread_exit() function never returns. Analogous
to the way that exit() returns a value to wait(), the return value may be examined from another
thread in the same process if it calls pthread_join()2. The value pointed to by retval should not
be located on the calling thread’s stack, since the contents of that stack are undefined after the
thread terminates. It can be a global variable or allocated on the heap. Therefore, if you want to
use a locally-scoped variable for the return value, declare it as static within the thread.

It is a good idea for the main program to terminate itself by calling pthread_exit(), because if
it has not waited for spawned threads and they are still running, if it calls exit(), they will be
killed. The exit() call terminates all threads if any thread of a process calls it. If these threads
should not be terminated, then calling pthread_exit() from main() will ensure that they continue
to execute. Listing 10.4 contains a short program that demonstrates this. The thread displays the
process id that can be used to kill it from the terminal.

Listing 10.4: Example showing that threads continue to run after main thread calls pthread_exit()
#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <pthread . h>

void ∗ ch i l d (void ∗ unused)
{

pthread_t t i d = pthread_se l f () ; /∗ get thread id ∗/
pid_t pid = getp id () ; /∗ get p roce s s id ∗/
whi l e (1) {

s l e e p (1) ;
p r i n t f ("Thread %lu , part o f p roce s s %d i s s t i l l running \n" ,

t id , pid) ;

2Provided that the terminating thread is joinable.

15

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

}
pthread_exit (NULL) ;

}

i n t main (i n t argc , char ∗ argv [])
{

pthread_t chi ld_thread ;

/∗ Create the thread and launch i t . ∗/
i f (0 != pthread_create(&chi ld_thread , NULL, ch i ld , NULL)){

p r i n t f (" pthread_create f a i l e d . \ n ") ;
e x i t (1) ;

}

s l e e p (1 0) ;
p r i n t f (" This i s the parent thread . I t i s about to terminate . \ n ") ;
pthread_exit (NULL) ; /∗ r ep l a c e t h i s with a c a l l to e x i t and

observe the d i f f e r e n c e ∗/

re turn 0 ;
}

10.7.4 Thread Joining and Joinability

When a thread is created, one of the attributes defined for it is whether it is joinable or detached.
By default, created threads are joinable. If a thread is joinable, another thread can wait for its
termination using the function pthread_join(). Only threads that are created as joinable can be
joined.

Joining is a way for one thread to wait for another thread to terminate, in much the same way that
the wait() system calls lets a process wait for a child process. When a parent process creates a
thread, it may need to know when that thread has terminated before it can perform some task.
Joining a thread, like waiting for a process, is a way to synchronize the performance of tasks. It
also allows the child thread to pass its status on exiting to the process calling pthread_join().

However joining is different from waiting in one respect: the thread that calls pthread_join()
must specify the thread ID of the thread for which it waits. In this respect it is like the analogous
waitpid(). The prototype is

int pthread_join(pthread_t thread, void **value_ptr);

The pthread_join() function suspends execution of the calling thread until the target thread
terminates, unless the target thread has already terminated. If the target thread already terminated,
pthread_join() returns immediately and successfully.

If value_ptr is not NULL, then the value passed to pthread_exit() by the terminating thread will
be available in the location referenced by value_ptr, provided pthread_join() succeeds.

Some things that cause problems include:

16

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

• Multiple simultaneous calls to pthread_join() specifying the same target thread have unde-
fined results.

• The behavior is undefined if the value specified by the thread argument to pthread_join()
does not refer to a joinable thread.

• The behavior is undefined if the value specified by the thread argument to pthread_join()
refers to the calling thread.

• Failing to join with a thread that is joinable produces a "zombie thread". Each zombie thread
consumes some system resources, and when enough zombie threads have accumulated, it will
no longer be possible to create new threads (or processes).

The following listing shows a simple program that creates a single thread and waits for it using
pthread_join(), collecting and printing its exit status.

Listing 10.5: Simple example of thread creation with join
void ∗ hel lo_world (void ∗ world)
{

s t a t i c i n t e x i t v a l ; /∗ The e x i t va lue cannot be on the s tack ∗/

p r i n t f (" He l lo World from %s . \ n" , (char ∗) world) ;
e x i t v a l = 2 ;
pthread_exit ((void ∗) e x i t v a l) ;

}

i n t main (i n t argc , char ∗ argv [])
{

pthread_t chi ld_thread ;
void ∗ s t a tu s ;
char ∗ p lanet = "Pluto " ;

i f (0 != pthread_create(&chi ld_thread , NULL,
hel lo_world , (void ∗) p lanet)) {

pe r ro r (" pthread_create ") ;
e x i t (−1);

}
/∗ Ca l l j o i n pas s ing address o f s tatus , which i s a po in t e r to

void ∗/
pthread_join (chi ld_thread , (void ∗∗) (& s ta tu s)) ;
p r i n t f (" Child ex i t ed with s t a tu s %ld \n" , (long) s t a tu s) ;
r e turn 0 ;

}

Any thread in a process can join with any other thread. They are peers in this sense. The only
obstacle is that to join a thread, it needs its thread ID.

10.7.5 Detached Threads

Because pthread_join() must be able to retrieve the status and thread ID of a terminated thread,
this information must be stored someplace. In many Pthread implementations, it is stored in a
structure that we will call a Thread Control Block (TCB). In these implementations, the entire

17

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

TCB is kept around after the thread terminates, just because it is easier to do this. Therefore, until
a thread has been joined, this TCB exists and uses memory. Failing to join a joinable thread turns
these TCBs into wasted memory.

Sometimes threads are created that do not need to be joined. Consider a process that spawns
a thread for the sole purpose of writing output to a file. The process does not need to wait for
this thread. When a thread is created that does not need to be joined, it can be created as a
detached thread. When a detached thread terminates, no resources are saved; the system cleans up
all resources related to the thread.

A thread can be created in a detached state, or it can be detached after it already exists. To create
a thread in a detached state, you can use the pthread_attr_setdetachstate() function to modify
the pthread_attr_t structure prior to creating the thread, as in:

pthread_t tid; /* thread ID */
pthread_attr_t attr; /* thread attribute */

pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

/* now create the thread */
pthread_create(&tid, &attr, start_routine, arg);

An existing thread can be detached using pthread_detach():

int pthread_detach(pthread_t thread);

The function pthread_detach() can be called from any thread, in particular from within the thread
itself! It would need to get its thread ID using pthread_self(), as in

pthread_detach(pthread_self());

Once a thread is detached, it cannot become joinable. It is an irreversible decision. The following
listing shows how a main program can exit, using pthread_exit() to allow its detached child to
run and produce output, even after main() has ended. The call to usleep() gives a bit of a delay
to simulate computationally demanding output being produced by the child.

Listing 10.6: Example of detached child
#inc lude <pthread . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <uni s td . h>

void ∗ thread_rout ine (void ∗ arg)
{

i n t i ;
i n t bu f s i z e = s t r l e n (arg) ;
i n t fd = 1 ;

18

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

p r i n t f (" Child i s running . . . \ n ") ;
f o r (i = 0 ; i < bu f s i z e ; i++) {

us l e ep (500000) ;
wr i t e (fd , arg+i , 1) ;

}
p r i n t f ("\ nChild i s now ex i t i n g . \ n ") ;
r e turn (NULL) ;

}

i n t main (i n t argc , char ∗ argv [])
{

char ∗ buf = " abcdefghi jklmnopqrstuvwxyz " ;
pthread_t thread ;
pthread_attr_t a t t r ;

pthread_attr_init (&a t t r) ;
pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_DETACHED) ;

i f (pthread_create(&thread , NULL, thread_routine , (void ∗) (buf))) {
f p r i n t f (s tde r r , " e r r o r c r e a t i n g a new thread \n ") ;
e x i t (1) ;

}

p r i n t f ("Main i s now ex i t i n g . \ n ") ;
pthread_exit (NULL) ;

}

10.7.6 Example: Calculating Pi

A simple application of the use of threads that does not involve more than thread creation and
joining is a multi-threaded solution to the problem of estimating the value of π by using numerical
integration. It demonstrates how to pass the required parameters and collect the results.

The program declares a task_data structure globally so that the main thread and child threads all
have access to its definition:

#inc lude <pthread . h>
/∗

task_data i s a s t r u c tu r e that conta in s the data r equ i r ed f o r
a thread to compute the sum of the p a r t i a l r e s u l t s i t has been
de l egated to ca l cu l a t e , s t o r i n g the sum in the s t r u c t . The
s t r u c t conta in s f i r s t , l a s t segments . and t h e i r task number
and t o t a l number o f segments , and thread id .

∗/
typede f s t r u c t _task_data
{

i n t f i r s t ; /∗ index o f f i r s t element f o r task ∗/
i n t l a s t ; /∗ index o f l a s t element f o r task ∗/
i n t num_segments ; /∗ t o t a l number o f segments to be c a l c u l a t ed ∗/
double sum ; /∗ sum of va lues computed by t h i s thread ∗/

19

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

pthread_t thread_id ; /∗ id returned by pthread_create () ∗/
i n t task_num ; /∗ program ’ s thread id ∗/

} task_data ;

The thread function, which each thread uses to approximate πnumerically, is called approximate_pi
and is given below. Notice that each thread stores its partial result in the sum member of the passed-
in parameter, and that each thread computes the areas of a consecutive sequence of approximating
rectangles. See Figure 10.1.

void ∗ approximate_pi (void ∗ thread_data)
{

double dx , x ;
task_data ∗t_data = (task_data ∗) thread_data ;
i n t k ;

/∗ Set dx to the width o f each segments ∗/
dx = 1 .0 / (double) t_data−>num_segments ;

/∗ I n i t i a l i z e sum to 0 to be s a f e ∗/
t_data−>sum = 0 ;

f o r (k = t_data−>f i r s t ; k <= t_data−>l a s t ; k++) {
x = dx ∗ ((double) k − 0 . 5) ; /∗ x i s midpoint o f segment k ∗/
t_data−>sum += 4.0 / (1 . 0 + x∗x) ; /∗ add new area to sum ∗/

}

/∗ mult ip ly sum by dx because we are computing
an i n t e g r a l and dx i s the d i f f e r e n t i a l ∗/

t_data−>sum = dx ∗ t_data−>sum ;

pthread_exit ((void ∗) 0) ;

}

Following is the main program.

#inc lude <s t r i n g . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <math . h>
#inc lude <pthread . h>

in t main (i n t argc , char ∗ argv [])
{

double t o t a l ; /∗ est imated value o f p i ∗/
i n t num_intervals ; /∗ number o f segments to sum ∗/
i n t num_threads ; /∗ number o f threads t h i s program w i l l use ∗/

i n t r e t v a l ;

20

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

Figure 10.1: Numerical integration of f(x) = 1/(1 + x2)

i n t t ;

task_data ∗ thread_data ; /∗ array o f thread data ∗/
pthread_attr_t a t t r ;

/∗ Make a l l threads j o i n ab l e ∗/
pthread_attr_ini t (&a t t r) ;
pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_JOINABLE) ;

i f (argc < 3) {
e x i t (1) ;

}

/∗ Get command l i n e arguments , convert to in t s , and compute
s i z e o f each thread ’ s segment o f the array

∗/
num_intervals = a t o i (argv [1]) ;
num_threads = a t o i (argv [2]) ;
i f ((0 == num_intervals) | | (0 == num_threads)) {

p r i n t f ("ERROR; i n s u f f i c i e n t memory\n ") ;
e x i t (1) ;

}

/∗ A l l o ca t e the array o f task_data s t r u c t u r e s on the heap .
This i s nece s sa ry because the array i s not g l oba l . ∗/

thread_data = c a l l o c (num_threads , s i z e o f (task_data)) ;

21

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

i f (thread_data == NULL)
e x i t (1) ;

/∗ I n i t i a l i z e task_data f o r each thread and c r ea t e the threads ∗/
f o r (t = 0 ; t < num_threads ; t++) {

thread_data [t] . f i r s t = (t ∗num_intervals)/ num_threads ;
thread_data [t] . l a s t = ((t+1)∗num_intervals)/ num_threads −1;
thread_data [t] . task_num = t ;
thread_data [t] . sum = 0 ;
thread_data [t] . num_segments = num_intervals ;

r e t v a l = pthread_create (&(thread_data [t] . thread_id) , &att r ,
approximate_pi ,
(void ∗) &thread_data [t]) ;

i f (r e t v a l) {
p r i n t f ("ERROR; return code from pthread_create () i s %d\n" ,

r e t v a l) ;
e x i t (−1);

}
}

/∗ Join a l l threads so that we can add up t h e i r p a r t i a l sums ∗/
f o r (t = 0 ; t < num_threads ; t++) {

pthread_join (thread_data [t] . thread_id , (void ∗∗) NULL) ;
}
/∗ Co l l e c t p a r t i a l sums in to a f i n a l t o t a l ∗/
t o t a l = 0 ;
f o r (t = 0 ; t < num_threads ; t++) {

t o t a l += thread_data [t] . sum ;
}

p r i n t f (" p i i s approximated to be %.16 f . The e r r o r i s %.16 f \n" ,
t o ta l , f abs (t o t a l − M_PI)) ;
f f l u s h (stdout) ;

/∗ Free memory a l l o c a t e d to program ∗/
f r e e (thread_data) ;
r e turn 0 ;

}

Observation

This program is not ideal because a single thread sums the partial sums obtained by all other
threads after the all terminate. It would be faster if the total could be computed in parallel. For
example, suppose we modify the program as follows. First we make total a global variable and
change the sum member of the task_data structure so that it can be used as a pointer to total:

22

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

#inc lude <pthread . h>

s t a t i c double t o t a l = 0 ;

typede f s t r u c t _task_data
{

i n t f i r s t ; /∗ index o f f i r s t element f o r task ∗/
i n t l a s t ; /∗ index o f l a s t element f o r task ∗/
i n t num_segments ; /∗ t o t a l number o f segments to be c a l c u l a t ed ∗/
double ∗ sum ; /∗ po in t e r to sum computed by a l l threads ∗/
pthread_t thread_id ; /∗ id returned by pthread_create () ∗/
i n t task_num ; /∗ program ’ s thread id ∗/

} task_data ;

Next we modify the main program:

/∗ Dec lare and c a l c u l a t e dx in the main program
a f t e r g e t t i n g the number o f i n t e r v a l s from command l i n e ∗/

double dx = 1 .0 / (double) num_intervals ; ;

/∗ I n i t i a l i z e task_data f o r each thread and c r ea t e the threads ∗/
f o r (t = 0 ; t < num_threads ; t++) {

thread_data [t] . f i r s t = (t ∗num_intervals)/ num_threads ;
thread_data [t] . l a s t = ((t+1)∗num_intervals)/ num_threads −1;
thread_data [t] . task_num = t ;
thread_data [t] . sum = &to t a l ; /∗ CHANGED ∗/
thread_data [t] . num_segments = num_intervals ;

r e t v a l = pthread_create (&(thread_data [t] . thread_id) , &att r ,
approximate_pi ,
(void ∗) &thread_data [t]) ;

/∗ Join a l l threads ∗/
f o r (t = 0 ; t < num_threads ; t++) {

pthread_join (thread_data [t] . thread_id , (void ∗∗) NULL) ;
}

t o t a l = t o t a l ∗ dx ;

/∗ p r i n t the value o f t o t a l ∗/
p r i n t f (" p i i s approximated to be %.16 f . The e r r o r i s %.16 f \n" ,
t o ta l , f abs (t o t a l − M_PI)) ;

Lastly, we need to modify approximate_pi() because it treats the member sum as a double and
now it is a pointer to a double:

void ∗ approximate_pi (void ∗ thread_data)
{

double dx , x ;

23

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

task_data ∗t_data = (task_data ∗) thread_data ;
i n t k ;

/∗ Set dx to the width o f each segments ∗/
dx = 1 .0 / (double) t_data−>num_segments ;

/∗ we do not mult ip ly by dx here ; i n s t ead we do i t once in main ∗/
f o r (k = t_data−>f i r s t ; k <= t_data−>l a s t ; k++) {

x = dx ∗ ((double) k − 0 . 5) ; /∗ x i s midpoint o f segment k ∗/
∗(t_data−>sum) += 4.0 / (1 . 0 + x∗x) ; /∗ add new area to sum ∗/

}

/∗ mult ip ly sum by dx because we are computing
an i n t e g r a l and dx i s the d i f f e r e n t i a l ∗/

∗(t_data−>sum) ∗= dx ;

pthread_exit ((void ∗) 0) ;

}

This code avoids the main thread’s having to compute the total, but is it correct? No, because
there is are race conditions in the approximate_pi() function in two places where it updates the
global sum through t_data->sum. Soon we will see how to fix this.

10.7.7 Thread Cancellation

Threads can be canceled as well. Cancellation is roughly like killing a thread. When a thread
is canceled, its resources are cleaned up and it is terminated. A thread can request that another
thread be canceled by calling pthread_cancel(), the prototype for which is

int pthread_cancel(pthread_t thread);

This is just a request; it is not necessarily honored. When this is called, a cancellation request
is sent to the thread given as the argument. Whether or not that thread is canceled depends
upon the thread’s cancelability state and cancelability type . A thread can enable or disable
cancelability, and it can also specify whether its cancelability type is asynchronous or deferred . If
a thread’s cancelability type is asynchronous, then it will be canceled immediately upon receiving a
cancellation request, assuming it has enabled its cancelability. On the other hand, if its cancelability
is deferred, then cancellation requests are deferred until the thread enters a cancellation point .
Certain functions are cancellation points. To be precise, if a thread is cancelable, and its type is
deferred, and a cancellation request is pending for it, then if it calls a function that is a cancellation
point, it will be terminated immediately. The list of cancellation point functions required by POSIX
can be found on the man page for pthreads in Section 7.

A thread’s cancelability state is enabled by default and can be set by calling pthread_setcancelstate():

int pthread_setcancelstate(int state, int *oldstate);

24

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

The two values are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE. The new state is passed
as the first argument and a pointer to an integer to store the old state, or NULL, is the second
argument. If a thread disables cancellation, then a cancellation request remains queued until it
enables cancellation. If a thread has enabled cancellation, then its cancelability type determines
when cancellation occurs.

A thread’s cancellation type, which is deferred by default, can be set with pthread_setcanceltype()
:

int pthread_setcanceltype(int type, int *oldtype);

To set the type to asynchronous, pass PTHREAD_CANCEL_ASYNCHRONOUS in the first argument. To
make it deferred, pass PTHREAD_CANCEL_DEFERRED.

The only way for the caller of pthread_cancel() to know if the target thread was canceled is to
join that thread and check if the returned status is PTHREAD_CANCELED, as in the following code:

retval = pthread_join(thread, &res);
if (retval)

/* join failed - report it */
else

if (res == PTHREAD_CANCELED)
printf("Thread was canceled\n");

else
printf("Thread was not canceled.\n");

10.7.8 Thread Properties

10.7.8.1 Stack Size

The POSIX standard does not dictate the size of a thread’s stack, which can vary from one imple-
mentation to another. Furthermore, with today’s demanding problems, exceeding the default stack
limit is not so unusual, and if it happens, the program will terminate, possibly with corrupted data.

Safe and portable programs do not depend upon the default stack limit, but instead, explicitly
allocate a large enough stack for each thread by using the pthread_attr_setstacksize() function,
whose prototype is

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);

The first argument is the address of the thread’s attribute structure and the second is the size that
you want to set for the stack. This function will fail if the attribute structure does not exist, or if the
stack size is smaller than the allowed minimum (PTHREAD_STACK_MIN) or larger than the maximum
allowed. See the man page for further caveats about its use.

To get the stack’s current size, use

int pthread_attr_getstacksize(pthread_attr_t *attr, size_t *stacksize);

25

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

This retrieves the current size of the stack. It will fail of course if attr does not reference an existing
structure.

The problem when trying to use this function is that it must be passed the attributes structure of
the thread. There is no POSIX function to retrieve the attribute structure of the calling thread,
but there is a GNU extension, pthread_getattr_np(). If this extension is not used, the best that
the calling thread can do is to get a copy of the attribute structure with which it was created,
which may have different values than the one it is currently using. The following listing is of a
program that prints the default stack size then sets the new stack size based on a command line
argument, and from within the thread, displays the actual stack size it is using, using the GNU
pthread_getattr_np() function. To save space, some error checking has been removed.

Listing 10.7: Setting a new stack size (with missing error checking)
#de f i n e _GNU_SOURCE /∗ To get pthread_getattr_np () d e c l a r a t i on ∗/
#inc lude <pthread . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <errno . h>

void ∗ thread_start (void ∗ arg)
{

s i ze_t s tack_s i ze ;
pthread_attr_t ga t t r ;

pthread_getattr_np (pthread_se l f () , &ga t t r) ;
pthread_att r_gets tacks i ze (&gattr , &stack_s i ze) ;
p r i n t f (" Actual s tack s i z e i s %ld \n" , s tack_s i ze) ;
pthread_exit (0) ;

}

i n t main (i n t argc , char ∗ argv [])
{

pthread_t thr ;
pthread_attr_t a t t r ;
i n t r e t v a l ;
s i z e_t new_stack_size , s tack_s i ze ;
void ∗ sp ;

i f (argc < 2) {
p r i n t f (" usage : %s s t a c k s i z e \n" , argv [0]) ;
e x i t (1) ;

}

new_stack_size = s t r t o u l (argv [1] , NULL, 0) ;

r e t v a l = pthread_attr_init (&a t t r) ;
i f (r e t v a l) {

e x i t (1) ;
}
pthread_att r_gets tacks i ze (&attr , &stack_s i ze) ;
p r i n t f (" Defau l t s tack s i z e = %ld \n" , s tack_s i ze) ;
p r i n t f ("New stack s i z e w i l l be %ld \n" , new_stack_size) ;

26

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

r e t v a l = pthread_att r_se t s tacks i z e (&attr , new_stack_size) ;
i f (r e t v a l) {

e x i t (1) ;
}

r e t v a l = pthread_create(&thr , &attr , &thread_start , NULL) ;
i f (r e t v a l) {

e x i t (1) ;
}

pthread_join (thr , NULL) ;
re turn (0) ;

}

10.8 Mutexes

10.8.1 Introduction

When multiple threads share the same memory, the programmer must ensure that each thread sees
a consistent view of its data. If each thread uses variables that no other threads read or modify,
then there are no consistency problems with those variables. Similarly, if a variable is read-only,
there is no consistency problem if multiple threads read its value at the same time. The problem
occurs when one thread can modify a variable that other threads can read or modify. We saw earlier
that this can lead to race conditions. In this case the threads must be synchronized with respect to
the shared variable. The segment of code in which this shared variable is accessed within a thread,
whether for a read or a write, is called a critical section .

A simple example of a critical section occurs when each thread in a group of threads needs to
increment some shared counter, after which it does some work that depends on the value of that
counter. The main program would initialize the counter to zero, after which each thread would
increment the counter and use it to access the array element indexed by that value. The following
code typifies this scenario.

void ∗ work_on_ticker (void ∗ counter)
{

i n t i ;
i n t ∗ t i c k e r = (i n t ∗) counter ;
i n t temp ;

f o r (i = 0 ; i < NUM_UPDATES; i++) {
temp = ∗ t i c k e r ;
/∗ do something that takes some time here ∗/
us l e ep (100000) ;
∗ t i c k e r = temp + 1 ;
/∗ use the t i c k e r to do s t u f f here with A[∗ t i c k e r] ∗/

}
pthread_exit (NULL) ;

}

27

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

If the increment of *ticker is not executed in mutual exclusion, some threads may overwrite other
threads’ array data, and some array elements may remain unprocessed because the ticker skipped
over them. You will probably not see this effect if this code is executed on a single-processor
machine, as the threads will be time-sliced on the processor, and the likelihood of their being sliced
in the middle of the update to the ticker is very small, but if you run this on a multi-processor
machine, you will almost certainly see the effect.

There are various ways to enforce mutually exclusive access to an object. A mutex is one of the
provisions of Pthreads for providing mutually exclusive access to critical sections. A mutex is like
a software version of a lock. Its name derives from “mutual exclusion” because a mutex can only be
held, or owned, by one thread at a time. The typical use of a mutex is to surround a critical section
of code with a call to lock and then to unlock the mutex, as in

pthread_mutex_lock (&mutex);
/* critical section here */
pthread_mutex_unlock(&mutex);

Mutexes are a low-level form of critical section protection, providing the most rudimentary features.
They were intended as the building blocks of higher-level synchronization methods. Nonetheless,
they can be used in many cases to solve critical section problems. In the remainder of this section,
we describe the fundamentals of using mutexes.

10.8.2 Creating and Initializing Mutexes

A mutex is a variable of type pthread_mutex_t. It must be initialized before it can be used. There
are two ways to initialize a mutex:

1. Statically, when it is declared, using the PTHREAD_MUTEX_INITIALIZER macro, as in

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

2. Dynamically, with the pthread_mutex_init() routine:

int pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t *attr);

This function is given a pointer to a mutex and to a mutex attribute structure, and initializes
the mutex to have the properties of that structure. If one is willing to accept the default
mutex attributes, the attr argument may be NULL.

In both cases, the mutex is initially unlocked. The call

pthread_mutex_init(&mutex, NULL);

is equivalent to the static method except that no error-checking is done.

28

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

10.8.3 Locking a Mutex

To lock a mutex, one uses one of the functions

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);

We will begin with pthread_mutex_lock(). The semantics of this function are a bit complex,
in part because there are different types of mutexes. Here we describe the semantics of normal
mutexes, which are the default type, PTHREAD_MUTEX_NORMAL.

If the mutex is not locked, the call returns with the mutex object referenced by mutex in the locked
state with the calling thread as its owner. The return value will be 0. If the mutex is already locked
by another thread, this call will block the calling thread until the mutex is unlocked. If a thread
tries to lock a mutex that it has already locked, it causes deadlock. If a thread attempts to unlock
a mutex that it has not locked or a mutex which is unlocked, undefined behavior results. We will
discuss the other types of mutexes later.

In short, if several threads try to lock a mutex only one thread will be successful. The other threads
will be in a blocked state until the mutex is unlocked by its owner.

If a signal is delivered to a thread that is blocked on a mutex, when the thread returns from the
signal handler, it resumes waiting for the mutex as if it had not been interrupted.

The pthread_mutex_trylock() function behaves the same as the pthread_mutex_lock() function
except that it never blocks the calling thread. Specifically, if the mutex is unlocked, the calling
thread acquires it and the function returns a 0, and if the mutex is already locked by any thread,
the function returns the error value EBUSY.

10.8.4 Unlocking a Mutex

The call to unlock a mutex is

int pthread_mutex_unlock(pthread_mutex_t *mutex);

The pthread_mutex_unlock() function will unlock a mutex if it is called by the owning thread.
If a thread that does not own the mutex calls this function, it is an error. It is also an error to
call this function if the mutex is not locked. If there are threads blocked on the mutex object
referenced by mutex when pthread_mutex_unlock() is called, resulting in the mutex becoming
available, the scheduling policy determines which thread next acquires the mutex. If the mutex is a
normal mutex that used the default initialization, there is no specific thread scheduling policy, and
the underlying kernel scheduler makes the decision. The behavior of this function for non-normal
mutexes is different.

10.8.5 Destroying a Mutex

When a mutex is no longer needed, it should be destroyed using

29

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

int pthread_mutex_destroy(pthread_mutex_t *mutex);

The pthread_mutex_destroy() function destroys the mutex object referenced by mutex; the mutex
object becomes uninitialized. The results of referencing the mutex object after it has been destroyed
are undefined. A destroyed mutex object can be reinitialized using pthread_mutex_init().

10.8.6 Examples Using a Normal Mutex

Two examples will show how threads can use mutexes to protect their updates to a shared, global
variable. The first example will demonstrate how multiple threads can increment a shared counter
that serves as an index into a global array, so that no two threads access the same array element.
Each thread will then modify that array element. In the second example, the update to the shared
variable is on the back-end of the problem. Each thread is given an equal-size segment of two arrays,
computes a function of this pair of segments, and adds the value of that function to a shared, global
accumulator.

Example 1

Suppose that we want a function which, when given an integer N and an array roots of size N,
stores the square roots of the first N non-negative integers into roots. A sequential version of this
function would execute a loop of the form

for (i = 0; i < N; i++)
roots[i] = sqrt(i);

To make this program run faster when there are multiple processors available, we distribute the work
among multiple threads. Let P be the number of threads that will jointly solve this problem. Each
thread will compute the square roots of a set of N/P integers. These integers are not necessarily
consecutive. The idea is that each thread concurrently iterates a loop N times, incrementing a
shared, global counter mutually exclusively in each iteration. In each iteration, the thread computes
the square root of the current counter value and stores it in an array of roots at the position indexed
by the counter value.

The program is in Listing 10.8. All of the multi-threading is opaque to the main program because
it is encapsulated in a function. This way it can be ported easily to a different application.

To simplify the program, the array size and number of threads are hard-coded as macros in the
program. This is easily changed.

Listing 10.8: A multi-threaded program to compute the first N square roots.
#inc lude <uni s td . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude <sys / types . h>
#inc lude <pthread . h>
#inc lude <errno . h>
#inc lude <math . h>

30

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

#de f i n e NUM_THREADS 20 /∗ Number o f threads ∗/
#de f i n e NUMS_PER_THREAD 50 /∗ Number o f r oo t s per thread ∗/
#de f i n e SIZE (NUM_THREADS∗NUMS_PER_THREAD) /∗ Total r oo t s to compute ∗/

/∗ Dec lare a s t r u c tu r e to pass mu l t ip l e v a r i a b l e s to the threads in the
pthread_create () func t i on and f o r the thread rou t in e to a c c e s s in i t s s i n g l e
argument .

∗/
typede f s t r u c t _thread_data
{

i n t count ; /∗ shared counter , incremented by each thread ∗/
i n t s i z e ; /∗ l ength o f the roo t s array ∗/
i n t nums_per_thread ; /∗ number o f r oo t s computed by each thread ∗/
double ∗ roo t s ; /∗ po in t e r to the roo t s array ∗/

} thread_data ;

pthread_mutex_t update_mutex ; /∗ Dec lare a g l oba l mutex ∗/

/∗∗∗
Thread and Helper Functions

∗∗/

/∗∗ handle_error (num, mssge)
∗ A convenient e r r o r handl ing func t i on
∗ Pr in t s to standard e r r o r the system message a s s o c i a t ed with errno num
∗ as we l l as a custom message , and then e x i t s the program with EXIT_FAILURE
∗/

void handle_error (i n t num, char ∗mssge)
{

errno = num;
pe r ro r (mssge) ;
e x i t (EXIT_FAILURE) ;

}

/∗∗ calc_square_roots ()
∗ A thread rout in e that c a l c u l a t e s the square roo t s o f N i n t e g e r s
∗ and s t o r e s them in an array . The i n t e g e r s are not n e c e s s a r i l y cons e cu t i v e ;
∗ as i t depends how the threads are scheduled .
∗ @param [out] double data−>roo t s [] i s the array in which to s t o r e the roo t s
∗ @param [inout] i n t data−>count i s the f i r s t i n t e g e r whose root should be
∗ c a l c u l a t ed
∗ This increments data−>count N times .
∗
∗ Loops to waste time a b i t so that the threads may be scheduled out o f order .
∗/

void ∗ calc_square_roots (void ∗ data)
{

i n t i , j ;
i n t temp ;
i n t s i z e ;
i n t nums_to_compute ;

31

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

thread_data ∗t_data = (thread_data ∗) data ;

s i z e = t_data−>s i z e ;
nums_to_compute = t_data−>nums_per_thread ;

f o r (i = 0 ; i < nums_to_compute ; i++) {
pthread_mutex_lock (&update_mutex) ; /∗ lock mutex ∗/
temp = t_data−>count ;
t_data−>count = temp + 1 ;
pthread_mutex_unlock (&update_mutex) ; /∗ unlock mutex ∗/

/∗ updating the array can be done out s id e o f the CS s i n c e temp i s
a l o c a l v a r i a b l e to the thread . ∗/

t_data−>roo t s [temp] = sq r t (temp) ;

/∗ i d l e loop ∗/
f o r (j = 0 ; j < 1000 ; j++)

;
}
pthread_exit (NULL) ;

}

/∗∗ compute_roots ()
∗ computes the square roo t s o f the f i r s t num_threads∗ roots_per_thread many
∗ i n t e g e r s . I t h ide s the f a c t that i t uses mu l t ip l e threads to do t h i s .
∗/

void compute_roots (double s q r t s [] , i n t s i z e , i n t num_threads)
{

pthread_t threads [num_threads] ;
i n t t ;
i n t r e t v a l ;
s t a t i c thread_data t_data ;

t_data . count = 0 ;
t_data . s i z e = s i z e ;
t_data . nums_per_thread = s i z e / num_threads ;
t_data . r oo t s = &sq r t s [0] ;

/∗ I n i t i a l i z e the mutex ∗/
pthread_mutex_init(&update_mutex , NULL) ;

/∗ I n i t i a l i z e task_data f o r each thread and then c r ea t e the thread ∗/
f o r (t = 0 ; t < num_threads ; t++) {

r e t v a l = pthread_create(&threads [t] , NULL, calc_square_roots ,
(void ∗) &t_data) ;

i f (r e t v a l)
handle_error (r e tva l , " pthread_create ") ;

}

/∗ Join a l l threads and then pr in t sum ∗/
f o r (t = 0 ; t < num_threads ; t++)

pthread_join (threads [t] , (void ∗∗) NULL) ;
}

32

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

/∗∗∗
Main Program

∗∗/

i n t main (i n t argc , char ∗ argv [])
{

i n t t ;
double r oo t s [SIZE] ;

memset ((void ∗) &roo t s [0] , 0 , SIZE ∗ s i z e o f (double)) ;
compute_roots (roots , SIZE , NUM_THREADS) ;

f o r (t = 0 ; t < SIZE ; t++)
p r i n t f (" Square root o f %5d i s %6.3 f \n" , t , r oo t s [t]) ;

r e turn 0 ;

}

A slightly different approach to this program is to allow each thread to compute as many roots as it
can, as if the threads were in a race with each other. If the threads were scheduled on asymmetric
processors, some being much faster than others, or if some threads had faster access to memory
than others, so that they could do more work per unit time, then it would be advantageous to let
these threads do more, rather than limiting them to a fixed number of roots to compute. This is
the basis for the variation of calc_square_roots() from Listing 10.8 found in Listing 10.9.

The function in Listing 10.9 lets each thread iterate from 0 to size but it checks in each iteration
whether the value of the counter has exceeded the array size, and if it has, that thread terminates.
It has an extra feature that is used by the main program and requires a bit of extra code outside of
the function – it stores the id of the thread that computed the root in a global array that can be
printed to see how uniformly the work was distributed.

Listing 10.9: A “greedy” thread function.

/∗
This func t i on a l s o s t o r e s the id o f the thread that computed each
root in a g l oba l array so that the main program can pr in t the se
r e s u l t s . I f i t did not do th i s , the r e would be no need f o r the
l i n e s marked with /∗∗∗∗ .

∗/
void ∗ calc_square_roots (void ∗ data)
{

i n t i , j ;
i n t temp ; /∗ l o c a l copy o f counter ∗/
i n t s i z e ; /∗ l o c a l copy o f s i z e o f r oo t s array ∗/
i n t nums_to_compute ; /∗ l o c a l copy o f number o f r oo t s to compute ∗/
thread_data ∗t_data = (thread_data ∗) data ;

i n t my_id ; /∗∗∗∗ unique id f o r t h i s thread ∗/

/∗ Copy to l o c a l c op i e s f o r f a s t e r a c c e s s ∗/
s i z e = t_data−>s i z e ;

33

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

nums_to_compute = t_data−>nums_per_thread ;

/∗ Each thread ge t s a unique thread_id by l o ck ing t h i s mutex ,
captur ing the cur rent va lue o f t id , a s s i gn i ng i t to i t s own
l o c a l v a r i a b l e and then increment ing i t .

∗/
pthread_mutex_lock(&id_mutex) ; /∗∗∗∗ lock mutex ∗/
my_id = t i d ; /∗∗∗∗ copy t i d to l o c a l my_id ∗/
t i d++; /∗∗∗∗ increment t i d f o r next thread ∗/
pthread_mutex_unlock(&id_mutex) ; /∗∗∗∗ unlock mutex ∗/

i = 0 ;
whi l e (i < s i z e) {

pthread_mutex_lock (&update_mutex) ; /∗ lock mutex ∗/
temp = t_data−>count ;
t_data−>count = temp + 1 ;
pthread_mutex_unlock (&update_mutex) ; /∗ unlock mutex ∗/

/∗ Check i f the counter exceeds the roo t s array s i z e ∗/
i f (temp >= s i z e)

break ;

/∗ updating the ar rays can be done out s id e o f the CS s i n c e temp
and my_id are l o c a l v a r i a b l e s to the thread . ∗/

t_data−>roo t s [temp] = sq r t (temp) ;

/∗ Store the id o f the thread that j u s t computed t h i s root . ∗/
computed_by [temp] = my_id ; /∗∗∗∗ s t o r e the id ∗/

/∗ i d l e loop ∗/
f o r (j = 0 ; j < 1000 ; j++)

;
i++;

}
pthread_exit (NULL) ;

}

Example 2

The second example, in Listing 10.10, computes the inner product of two vectors V and W by
partitioning V and W into subvectors of equal sizes and giving the subproblems to separate threads.
Assume for simplicity that V and W are each of length N and that the number of threads, P , divides
N without remainder and let s = N/P. The actual code does not assume anything about N and
P . The main program creates P threads, with ids 0, 1, 2, ... P − 1. The thread with id k computes
the inner product of V [k · s · · · (k + 1) · s − 1] and W [k · s · · · (k + 1) · s − 1] and stores the result
in a temporary variable, temp_sum. It then locks a mutex and adds this partial sum to the global
variable sum and unlocks the mutex afterward.

34

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

This example uses the technique of declaring the vectors and the sum as static locals in the main
program.

Listing 10.10: Mutex example: Computing the inner product of two vectors.
#inc lude <pthread . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude < l i b i n t l . h>
#inc lude <l o c a l e . h>
#inc lude <math . h>
#inc lude <errno . h>

#de f i n e NUM_THREADS 20

typede f s t r u c t _task_data
{

i n t f i r s t ;
i n t l a s t ;
double ∗a ;
double ∗b ;
double ∗sum ;

} task_data ;

pthread_mutex_t mutexsum ; /∗ Dec lare the mutex g l o b a l l y ∗/

/∗∗∗
Thread and Helper Functions

∗∗/
void usage (char ∗ s)
{

char ∗p = s t r r c h r (s , ’ / ’) ;
f p r i n t f (s tde r r ,

" usage : %s l ength d a t a f i l e 1 d a t a f i l e 2 \n" , p ? p + 1 : s) ;
}

void handle_error (i n t num, char ∗mssge)
{

errno = num;
pe r ro r (mssge) ;
e x i t (EXIT_FAILURE) ;

}

/∗∗
This func t i on computes the inner product o f the sub−vec to r s
thread_data−>a [f i r s t . . l a s t] and thread_data−>b [f i r s t . . l a s t] ,
adding that sum to thread_data−>sum with in the c r i t i c a l s e c t i o n
protec ted by the shared mutex .

∗/
void ∗ inner_product (void ∗ thread_data)
{

task_data ∗t_data ;
i n t k ;

35

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

double temp_sum = 0 ;

t_data = (task_data ∗) thread_data ;

f o r (k = t_data−>f i r s t ; k <= t_data−>l a s t ; k++)
temp_sum += t_data−>a [k] ∗ t_data−>b [k] ;

pthread_mutex_lock (&mutexsum) ;
∗(t_data−>sum) += temp_sum ;
pthread_mutex_unlock (&mutexsum) ;

pthread_exit ((void ∗) 0) ;
}

/∗∗∗
Main Program

∗∗/

i n t main (i n t argc , char ∗ argv [])
{

s t a t i c double ∗a_vector ;
s t a t i c double ∗b_vector ;
FILE ∗ fp ;
f l o a t x ;
i n t num_threads = NUM_THREADS;
i n t l ength ;
i n t segment_size ;
s t a t i c double t o t a l ;
i n t k ;
i n t r e t v a l ;
i n t t ;
pthread_t ∗ threads ;
task_data ∗ thread_data ;
pthread_attr_t a t t r ;

i f (argc < 4) { /∗ Check usage ∗/
usage (argv [0]) ;
e x i t (1) ;

}

/∗ Get command l i n e args , no input va l i d a t i o n here ∗/
l ength = a to i (argv [1]) ;
a_vector = c a l l o c (length , s i z e o f (double)) ;
b_vector = c a l l o c (length , s i z e o f (double)) ;

/∗ Zero the two vec to r s ∗/
memset (a_vector , 0 , l ength ∗ s i z e o f (double)) ;
memset (b_vector , 0 , l ength ∗ s i z e o f (double)) ;

/∗ Open the f i r s t f i l e , do check f o r f a i l u r e and read the numbers
from the f i l e . Assume that i t i s in proper format

∗/
i f (NULL == (fp = fopen (argv [2] , " r ")))

36

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

handle_error (errno , " fopen ") ;
k = 0 ;
whi l e ((f s c a n f (fp , " %f " , &x) > 0) && (k < length))

a_vector [k++] = x ;
f c l o s e (fp) ;

/∗ Open the second f i l e , do check f o r f a i l u r e and read the numbers
from the f i l e . Assume that i t i s in proper format

∗/
i f (NULL == (fp = fopen (argv [3] , " r ")))

handle_error (errno , " fopen ") ;
k = 0 ;
whi l e ((f s c a n f (fp , " %f " , &x) > 0) && (k < length))

b_vector [k++] = x ;
f c l o s e (fp) ;

/∗ A l l o ca t e the array o f threads and task_data s t r u c t u r e s ∗/
threads = c a l l o c (num_threads , s i z e o f (pthread_t)) ;
thread_data = c a l l o c (num_threads , s i z e o f (task_data)) ;
i f (threads == NULL | | thread_data == NULL)

e x i t (1) ;

/∗ Compute the s i z e each thread w i l l get ∗/
segment_size = (i n t) c e i l (l ength ∗1 .0 / num_threads) ;

/∗ I n i t i a l i z e the mutex ∗/
pthread_mutex_init(&mutexsum , NULL) ;

/∗ Get ready −− i n i t i a l i z e the thread a t t r i b u t e s ∗/
pthread_attr_init (&a t t r) ;
pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_JOINABLE) ;

/∗ I n i t i a l i z e task_data f o r each thread and then c r ea t e the thread ∗/
f o r (t = 0 ; t < num_threads ; t++) {

thread_data [t] . f i r s t = t ∗ segment_size ;
thread_data [t] . l a s t = (t+1)∗ segment_size −1;
i f (thread_data [t] . l a s t > length −1)

thread_data [t] . l a s t = length − 1 ;
thread_data [t] . a = &a_vector [0] ;
thread_data [t] . b = &b_vector [0] ;
thread_data [t] . sum = &to t a l ;

r e t v a l = pthread_create(&threads [t] , &att r , inner_product ,
(void ∗) &thread_data [t]) ;

i f (r e t v a l)
handle_error (r e tva l , " pthread_create ") ;

}

/∗ Join a l l threads and pr in t sum ∗/
f o r (t = 0 ; t < num_threads ; t++) {

pthread_join (threads [t] , (void ∗∗) NULL) ;
}

37

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

p r i n t f ("The array t o t a l i s %8.2 f \n" , t o t a l) ;

/∗ Free a l l memory a l l o c a t e d to program ∗/
f r e e (threads) ;
f r e e (thread_data) ;
f r e e (a_vector) ;
f r e e (b_vector) ;

r e turn 0 ;
}

Example 3

We fix the “broken” program that estimates the value of π. The problem is that we need to protect
the unprotected update to the total that we had in that program to eliminate the race condition.
We use a mutex to do this. We need to modify The code follows.

#inc lude <s t r i n g . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <math . h>
#inc lude <pthread . h>

s t a t i c double t o t a l = 0 ; /∗ The shared va r i ab l e updated by threads ∗/
pthread_mutex_t update_mutex ; /∗ Dec lare a g l oba l mutex ∗/

typede f s t r u c t _task_data
{

i n t f i r s t ; /∗ index o f f i r s t element f o r task ∗/
i n t l a s t ; /∗ index o f l a s t element f o r task ∗/
i n t num_segments ; /∗ t o t a l number o f segments to be c a l c u l a t ed ∗/
double ∗sum ; /∗ po in t e r to t o t a l updated by a l l threads ∗/
pthread_t thread_id ; /∗ id returned by pthread_create () ∗/
i n t task_num ; /∗ program ’ s thread id ∗/

} task_data ;

/∗ Pr int usage statement ∗/
void usage (char ∗ s)
{

char ∗p = s t r r c h r (s , ’ / ’) ;
f p r i n t f (s tde r r ,

" usage : %s num_intervals numthreads \n" , p ? p + 1 : s) ;
}

void ∗ approximate_pi (void ∗ thread_data)
{

double dx , x ;
task_data ∗t_data ;
i n t k ;

38

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

t_data = (task_data ∗) thread_data ;

/∗ Set dx to the width o f each segment ∗/
dx = 1 .0 / (double) t_data−>num_segments ;

f o r (k = t_data−>f i r s t ; k <= t_data−>l a s t ; k++) {
x = dx ∗ ((double) k − 0 . 5) ; /∗ x i s midpoint o f segment i ∗/
double y = 4 .0 / (1 . 0 + x∗x) ;
pthread_mutex_lock (&update_mutex) ; /∗ lock mutex ∗/
∗(t_data−>sum) += y ; /∗ add new area to sum ∗/
pthread_mutex_unlock (&update_mutex) ; /∗ unlock mutex ∗/

}
pthread_exit ((void ∗) 0) ;

}

i n t main (i n t argc , char ∗ argv [])
{

i n t num_intervals ; /∗ number o f segments to sum ∗/
i n t num_threads ; /∗ number o f threads t h i s program w i l l use ∗/
i n t r e t v a l ;
i n t t ;
double dx ;
task_data ∗ thread_data ; /∗ dynamical ly a l l o c a t e d array o f thread data ∗/
pthread_attr_t a t t r ;

/∗ Make a l l threads j o i n ab l e ∗/
pthread_attr_ini t (&a t t r) ;
pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_JOINABLE) ;

i f (argc < 3) {
usage (argv [0]) ;
e x i t (1) ;

}

num_intervals = a t o i (argv [1]) ;
num_threads = a t o i (argv [2]) ;
i f ((0 == num_intervals) | | (0 == num_threads)) {

p r i n t f ("ERROR; i n s u f f i c i e n t memory\n ") ;
e x i t (1) ;

}

/∗ Set dx to the width o f each segment ∗/
dx = 1 .0 / (double) num_intervals ;

/∗ A l l o ca t e the array o f task_data s t r u c t u r e s on the heap .
This i s nece s sa ry because the array i s not g l oba l . ∗/

39

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

thread_data = c a l l o c (num_threads , s i z e o f (task_data)) ;

i f (thread_data == NULL)
e x i t (1) ;

/∗ I n i t i a l i z e the mutex ∗/
pthread_mutex_init(&update_mutex , NULL) ;

/∗ I n i t i a l i z e task_data f o r each thread and then c r ea t e the thread ∗/
f o r (t = 0 ; t < num_threads ; t++) {

thread_data [t] . f i r s t = (t ∗num_intervals)/ num_threads ;
thread_data [t] . l a s t = ((t+1)∗num_intervals)/ num_threads −1;
thread_data [t] . task_num = t ;
thread_data [t] . sum = &to t a l ; /∗ sum po in t s to t o t a l ∗/
thread_data [t] . num_segments = num_intervals ;

r e t v a l = pthread_create (&(thread_data [t] . thread_id) , &att r ,
approximate_pi , (void ∗) &thread_data [t]) ;

i f (r e t v a l) {
p r i n t f ("ERROR; return code from pthread_create () i s %d\n" , r e t v a l) ;
e x i t (−1);

}
}

/∗ Join a l l threads so that we can add up t h e i r p a r t i a l sums ∗/
f o r (t = 0 ; t < num_threads ; t++) {

pthread_join (thread_data [t] . thread_id , (void ∗∗) NULL) ;
}

t o t a l = t o t a l ∗dx ;
p r i n t f (" p i i s approximated to be %.16 f . The e r r o r i s %.16 f \n" ,
t o ta l , f abs (t o t a l − M_PI)) ;
f f l u s h (stdout) ;

pthread_mutex_destroy(&update_mutex) ;
/∗ Free a l l memory a l l o c a t e d to program ∗/
f r e e (thread_data) ;
r e turn 0 ;

}

This program has no race conditions. On the other hand, because the critical section

*(t_data->sum) += y;

protected by the locking and unlocking of the mutex provides the mutual exclusion, it implies that
if many threads are at the same point in their code, many might get blocked waiting for the mutex
to be unlocked and this can reduce performance.

40

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

To make this clear, suppose that there are 10,000 intervals and 20 threads, each computing the area
of 500 rectangles. In the above solution, the critical section is executed a total of 10,000 times, once
for each rectangle, and these updates must take place sequentially. From a performance standpoint,
this is not very efficient.

Is there another solution that can improve performance?

There is. Using this example, suppose that we revisit the very first solution and let the threads
produce their partial sums in the sum member variable passed to each thread on its stack:

t_data->sum += 4.0 / (1.0 + x*x);

Recall that there was an array of thread_data structs, one for each thread, and t_data was a cast
of that structure in the approximate_pi() function:

t_data = (task_data*) thread_data;

The main program had a loop to add the partial sums and store them in total:

/* Collect partial sums into a final total */
total = 0;
for (t = 0 ; t < num_threads; t++)

total += thread_data[t].sum;

With 10,000 intervals and 20 threads, the running time for adding up the areas is 500 local sums
followed by a loop of 20 sums, which was executed in mutual exclusion because only the main thread
performed the final summation.

What if, instead of the main program doing this, we could let the threads perform a parallel
reduction? Then instead of an O(p) loop to perform the addition in main(), we could have a
O(log p) summation performed by the threads. Pthreads does not have a reduction function, but
we could implement it. The problem is that we cannot start the reduction until all threads have
finished their tasks, so we need a way to detect this. Soon we will see that Pthreads has a barrier
synchronization instruction that will allow us to program this.

10.8.7 Other Types of Mutexes

The type of a mutex is determined by the mutex attribute structure used to initialize it. There are
four possible mutex types:

PTHREAD_MUTEX_NORMAL

PTHREAD_MUTEX_ERRORCHECK

PTHREAD_MUTEX_RECURSIVE

PTHREAD_MUTEX_DEFAULT

The default type is always PTHREAD_MUTEX_DEFAULT, which is usually equal to PTHREAD_MUTEX_NORMAL.
To set the type of a mutex, use

41

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type);

passing a pointer to the mutexattr structure and the type to which it should be set. Then you can
use this mutexattr structure to initialize the mutex.

There is no function that, given a mutex, can determine the type of that mutex. The best one can
do is to call

int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict attr,
int *restrict type);

which retrieves the mutex type from a mutexattr structure. But, since there is no function that
retrieves the mutexattr structure of a mutex, if you need to retrieve the type of the mutex, you
must access the mutexattr structure that was used to initialize the mutex to know the mutex type.

When a normal mutex is accessed incorrectly, undefined behavior or deadlock results, depending
on how the erroneous access took place. A thread will deadlock if it attempts to re-lock a mutex
that it already holds. But if the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking
takes place instead of deadlock or undefined behavior. Specifically, if a thread attempts to re-lock a
mutex that it has already locked, the EDEADLK error is returned, and if a thread attempts to unlock
a mutex that it has not locked or a mutex which is unlocked, an error is also returned.

Recursive mutexes, i.e., those of type PTHREAD_MUTEX_RECURSIVE, can be used when threads in-
voke recursive functions or when for some other reason, they need to repeatedly lock the mutex.
Basically, the mutex maintains a counter. When a thread first acquires the lock, the counter is
set to one. Unlike a normal mutex, when a recursive mutex is re-locked, rather than deadlocking,
the call succeeds and the counter is incremented. This is true regardless of whether it is a call to
pthread_mutex_trylock() or pthread_mutex_lock(). A thread can continue to re-lock the mutex,
up to some system-defined number of times. Each call to unlock the mutex by that same thread
decrements the counter. When the counter reaches zero, the mutex is unlocked and can be acquired
by another thread. Until the counter is zero, all other threads attempting to acquire the lock will
be blocked on calls to pthread_mutex_lock(). A thread attempting to unlock a recursive mutex
that another thread has locked is returned an error. A thread attempting to unlock an unlocked
recursive mutex also receives an error.

Listing 10.11 contains an example of a program with a recursive mutex. It does not do anything
other than print some diagnostic messages.

Listing 10.11: A program that uses a recursive mutex.
#inc lude <pthread . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>

#de f i n e NUM_THREADS 5 /∗ Fixed number o f threads ∗/

pthread_mutex_t mutex ;
i n t counter = 0 ;

void bar (i n t t i d) ;

void foo (i n t t i d)

42

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

{
pthread_mutex_lock(&mutex) ;
p r i n t f ("Thread %d : In foo () ; mutex locked \n" , t i d) ;
counter++;
p r i n t f ("Thread %d : In foo () ; counter = %d\n" , t id , counter) ;
bar (t i d) ;
pthread_mutex_unlock(&mutex) ;
p r i n t f ("Thread %d : In foo () ; mutex unlocked \n" , t i d) ;

}

void bar (i n t t i d)
{

pthread_mutex_lock(&mutex) ;
p r i n t f ("Thread %d : In bar () ; mutex locked \n" , t i d) ;
counter = 2∗ counter ;
p r i n t f ("Thread %d : In bar () ; counter = %d\n" , t id , counter) ;
pthread_mutex_unlock(&mutex) ;
p r i n t f ("Thread %d : In bar () ; mutex unlocked \n" , t i d) ;

}

void ∗ thread_rout ine (void ∗ data)
{

i n t t = (i n t) data ;
foo (t) ;
pthread_exit (NULL) ;

}

/∗∗∗
Main Program

∗∗/

i n t main (i n t argc , char ∗ argv [])
{

i n t r e t v a l ;
i n t t ;
pthread_t threads [NUM_THREADS] ;
pthread_mutexattr_t a t t r ;
pthread_mutexattr_settype(&attr , PTHREAD_MUTEX_RECURSIVE) ;
pthread_mutex_init(&mutex , &a t t r) ;

/∗ I n i t i a l i z e task_data f o r each thread and then c r ea t e the thread ∗/
f o r (t = 0 ; t < NUM_THREADS; t++) {

i f (0 != pthread_create(&threads [t] , NULL, thread_routine ,
(void ∗) t)) {

pe r ro r (" Creat ing thread ") ;
e x i t (EXIT_FAILURE) ;

}
}

f o r (t = 0 ; t < NUM_THREADS; t++)
pthread_join (threads [t] , (void ∗∗) NULL) ;

re turn 0 ;
}

43

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

10.9 Condition Variables

Mutexes are not sufficient to solve all synchronization problems efficiently. One problem is that they
do not provide a means for one thread to signal another3. Consider the classical producer-consumer
problem. In this problem, there are one or more “producer” threads that produce data that they
place into a shared, finite pool of buffers, and one or more “consumer” threads that consume the
data in those buffers. We think of the data as being “consumed” because once it is read, no other
thread should be able to read it. Synchronization was needed to ensure that

• different producers did not write into the same buffer,

• producers did not overwrite buffers when no empty buffers were available,

• different consumers did not read from the same buffer, and

• consumers did not try to read from empty buffers.

Suppose that the data chunks are fixed size, each fitting into exactly one buffer, and that the buffer
pool has N buffers. A consumer thread needs to be able to retrieve a data chunk from a buffer as
long as one available, but if all buffers are empty, it should wait until one is non-empty. Assume
the following shared variables:

int in = 0; /* index of next empty buffer */
int out = 0; /* index of next full buffer */
const int NUM_BUFFERS = N; /* number of buffers */

A producer essentially executes an infinite loop of the form:

producer ()
{

item next_item ; /∗ ho lds next item produced ∗/

whi l e (t rue) {
/∗ produce an item and s t o r e in to next_item ∗/
next_item = produce_new_item () ;

/∗ keep t e s t i n g whether bu f f e r pool i s f u l l ∗/
whi l e (((in + 1) % NUM_BUFFERS) == out)

; /∗ do nothing because bu f f e r pool i s f u l l ∗/

/∗ bu f f e r [in] i s not f u l l ∗/
bu f f e r [in] = next_item ;
in = (in + 1) % NUM_BUFFERS; /∗ advance in ∗/

}
}

3You might think that a call to pthread_mutex_unlock() can be used to signal another thread that is waiting on
a mutex. This is not the way that a mutex can be used. The specification states that if a thread tries to unlock a
mutex that it has not locked, undefined behavior results.

44

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

and a consumer executes an infinite loop of the form

consumer ()
{

item next_item ; /∗ f o r s t o r i n g item r e t r i e v e d from bu f f e r ∗/

whi l e (t rue) {
/∗ keep t e s t i n g whether a l l b u f f e r s are empty ∗/
whi le (in == out)

; /∗ do nothing because a l l b u f f e r s are empty ∗/

/∗ bu f f e r i s not empty ∗/
next_item = bu f f e r [out] ;
out = (out + 1) % NUM_BUFFERS;

/∗ consume the item that was copied in to next_item ∗/
consume_item (next_item) ;

}
}

In the above code, both producers and consumers execute busy-waiting loops in which they
repeatedly check some condition until it is false. They continuously check whether a buffer is non-
empty or empty. This is an inefficient solution that wastes CPU cycles. Therefore, for efficiency, a
consumer should block itself if all buffers are empty. Similarly, a producer thread should be able to
write a chunk into an empty buffer but block if all buffers are full.

These two conditions, no empty buffers and no full buffers, require that consumers be able to signal
producers and vice versa when the a buffer changes state from empty to full and full to non-empty.
In short, this type of problem requires that threads have the ability to signal other threads when
certain conditions hold.

Condition variables solve this problem. They allow threads to wait for certain conditions to occur
and to signal other threads that are waiting for the same or other conditions. Consider a version of
the producer-consumer problem with a single producer and a single consumer. The producer thread
would need to execute something like the following pseudo-code:

1. generate data to store into the buffer

2. try to lock a mutex (blocking if it is locked)

3. if all buffers are full (bufferpool is full)

4. atomically release the mutex and wait for the condition “bufferpool is not full”

5. when the bufferpool is not full:

6. re-acquire the mutex lock

7. add the data to an empty buffer

8. unlock the mutex

9. signal the consumer that there is data in the bufferpool

45

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

Steps 4, 5, and 9 involve condition variables. The above pseudo-code would become

generate data_chunk to store into the buffer ;
pthread_mutex_lock(&buffer_mutex);
if (bufferpool_is_full()) {

pthread_cond_wait(&bufferpool_has_space, &buffer_mutex);
}
add data chunk to buffer;
pthread_mutex_unlock(&buffer_mutex);
pthread_cond_signal(&data_is_available);

The logic of the above code is that

1. A producer first locks a mutex to access the shared bufferpool. It may get blocked at this
point if the mutex is locked already, but eventually it acquires the lock and advances to the
following if-statement.

2. In the if-statement, it then tests whether the boolean predicate “bufferpool_is_full” is true.

3. If so, it blocks itself on the condition variable named bufferpool_has_space. Notice that
the call to block on a condition variable has a second argument which is a mutex. This is
important. Condition variables are only used in conjunction with mutexes. When the thread
calls this function, the mutex lock is taken away from it , freeing the lock, and the thread
instead gets blocked on the condition variable.

4. Now assume that when a consumer empties a slot in the buffer, it issues a signal on the
condition variable bufferpool_has_space. When this happens, the producer is woken up
and re-acquires the mutex in a single atomic step. In other words, the magic of the condition
variable is that when a process is blocked on it and is later signaled, it is given back the lock
that was taken away from it.

5. The producer thread next adds its data to the buffer, unlocks the mutex, and signals the
condition variable data_is_available, which is a condition variable on which the consumer
might be waiting in case it tried to get data from an empty buffer.

An important observation is that the thread waits on the condition variable bufferpool_has_space
only within the true-branch of the if-statement. A thread should make the call to pthread_cond_wait()
only when it has ascertained that the logical condition associated with the condition variable is false
(so that it is guaranteed to wait.) It should never call this unconditionally. Put another way, associ-
ated with each condition variable is a programmer-defined boolean predicate that should be evaluated
to determine whether a thread should wait on that condition.

We now turn to the programming details.

10.9.1 Creating and Destroying Condition Variables

A condition variable is a variable of type pthread_cond_t. Condition variable initialization is
similar to mutex initialization. There are two ways to initialize a condition variable:

46

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

1. Statically, when it is declared, using the PTHREAD_COND_INITIALIZER macro, as in

pthread_cond_t condition = PTHREAD_COND_INITIALIZER;

2. Dynamically, with the pthread_cond_init() routine:

int pthread_cond_init(pthread_cond_t *restrict cond,
const pthread_condattr_t *restrict attr);

• This function is given a pointer to a condition variable and to a condition attribute
structure, and initializes the condition variable to have the properties of that structure.
If the attr argument is NULL, the condition is given the default properties. Attempting
to initialize an already initialized condition variable results in undefined behavior.

• The call

pthread_cond_init(&cond, NULL);

is equivalent to the static method except that no error-checking is done.

• On success, pthread_cond_init() returns zero.

Because the condition variable must be accessed by multiple threads, it should either be global or
it should be passed by address into each thread’s thread function. In either case, the main thread
should create it.

To destroy the condition variable, use

int pthread_cond_destroy(pthread_cond_t *cond);

The pthread_cond_destroy() function destroys the given condition variable cond after which it
becomes, in effect, uninitialized. A thread can only destroy an initialized condition variable if no
threads are currently blocked on it. Attempting to destroy a condition variable on which other
threads are currently blocked results in undefined behavior.

10.9.2 Waiting on Conditions

There are two functions that a thread can call to wait on a condition, an untimed wait and a
timed wait :

int pthread_cond_wait (pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex);

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex,
const struct timespec *restrict abstime);

The meaning of the restrict qualifier will be explained shortly. Before a thread calls either of
these functions, it must first lock the mutex argument, otherwise the effect of the call is undefined.
Calling either function causes the following two actions to take place atomically:

47

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

1. mutex is released, and

2. the thread is blocked on the condition variable cond.

In the case of the untimed pthread_cond_wait(), the calling thread remains blocked in this call
until some other thread signals cond using either of the two signaling functions described in Section
10.9.3 below. The signal wakes up the blocked thread and the call returns with the value zero, with
mutex locked and owned by the now-unblocked thread.

In the case of pthread_cond_timedwait(), the calling thread remains blocked in this call until

• either some other thread signals cond, or

• the absolute time specified by abstime is passed.

In either case the effect is the same as that of pthread_cond_wait(), but if the time specified by
abstime is passed first, the call returns with the error ETIMEDOUT, otherwise it returns zero.

The restrict Qualifier in C

The precise definition of the restrict qualifier is complex. Simply put, when a pointer
variable is restrict-qualified (it has the restrict qualifier), the object that it points to
can only be accessed through that pointer in that program; there cannot be another way
to access the object. This allows a compiler to optimize code more efficiently.

Condition variables hold no state; they have no record of how many signals have been received at
any given time. Therefore, if a thread T1 signals a condition cond before another thread T2 issues
a wait on cond, thread T2 will still wait on cond because the signal will have been lost; it is not
saved. Only a signal that arrives after a thread has called one of the wait functions can wake up
that waiting thread. This is why we need to clarify the sense in which pthread_cond_wait() is
atomic.

When a thread T1 calls pthread_cond_wait(), as in

pthread_cond_wait(&buf_cond, &buf_mutex);

the mutex buf_mutex is unlocked and then the thread is blocked on the condition variable buf_cond.
It is possible for another thread T2 to acquire the mutex after thread T1 has released it, but before
T1 is blocked on the condition. If a third thread T3 signals this condition variable after this mutex
has been acquired by T2, then thread T1 will respond to the signal as if it had taken place after it
had been blocked. This means that it will re-acquire the mutex from T2 as soon as it can and its
call to pthread_cond_wait(&buf_cond, &buf_mutex) will return.

The fact that a thread returns from a wait on a condition variable does not imply anything about
the boolean predicate associated with this condition variable. It might be true or false. This might
occur for reasons such as the following:

• The blocked thread is awakened due to a signal delivered to it because of a programming
error.

48

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

• Several threads are waiting for the same signal and they take turns acquiring the mutex, in
which case any one of them can then modify the condition they all waited for.

• A Pthreads library implementation is permitted to issue spurious wakeups to a waiting thread
without violating the Pthreads standard. This can occur when Pthreads programs are run on
multi-processors.

Therefore, calls to wait on condition variables should be inside a loop, not in a simple if-statement.
For example, the above producer code should be written as

generate data_chunk to store into the buffer ;
pthread_mutex_lock(&buffer_mutex);
while (bufferpool_is_full()) {

pthread_cond_wait(&bufferpool_has_space, &buffer_mutex);
}
add data chunk to buffer;
pthread_mutex_unlock(&buffer_mutex);
pthread_cond_signal(&data_is_available);

It is in general safer to code with a loop rather than an if-statement, because if you made a logic error
elsewhere in your code and it is possible that a thread can be signaled even though the associated
predicate is not true, then the loop prevents the thread from being woken up erroneously.

10.9.3 Waking Threads Blocked on Conditions

A thread can send a signal on a condition variable in one of two ways:

int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);

Both of these functions unblock threads that are blocked on a condition variable. The difference is
that pthread_cond_signal() unblocks (at least) one of the threads that are blocked on the con-
dition variable whereas pthread_cond_broadcast() unblocks all threads blocked by the condition
variable. Under normal circumstances, pthread_cond_signal() will unblock a single thread, but
implementations of this function may at times wake up more than one, if more than one are waiting.
As noted above, this is allowed by the POSIX standard; these are the spurious wake-ups mentioned
above. Both functions return zero on success or an error code on failure.

Other points to remember about these two functions include:

• When multiple threads blocked on a condition variable are all unblocked by a broadcast, the
order in which they are unblocked depends upon the scheduling policy. As noted in Section
10.9.2 above, when they become unblocked, they re-acquire the mutex associated with the
condition variable. Therefore, the order in which they re-acquire the mutex is dependent on
the scheduling policy. Only one can hold the mutex at a given time of course.

49

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

• Although any thread can call pthread_cond_signal() or pthread_cond_broadcast() on a
condition variable cond, only a thread that has locked the mutex associated with the condition
variable cond should make this call, otherwise the scheduling of threads will be unpredictable,
even knowing the scheduling policy.

The pthread_cond_broadcast() function has several applications. One use is when a producer
thread produces many items and stores them in successive buffer locations, but consumers only
remove one at a time for processing. When the buffer is empty and consumers are all waiting on
a condition variable such as data_available, a producer that fills many buffer locations all at once
can call pthread_cond_broadcast() to wake up the waiting consumers. Another application is to
implement a form of barrier synchronization, which is described in Section 10.10 below.

Listing 10.12: Example using pthread_cond_broadcast

#de f i n e NUM_THREADS 8
#de f i n e NUM_ITERATIONS 4

pthread_mutex_t mutex ;
pthread_cond_t ready = PTHREAD_COND_INITIALIZER;

pthread_mutex_t count_mutex ;
i n t c l i ent_count ;

/∗∗∗
Thread Functions

∗∗∗/

void ∗ c l i e n t (void ∗ data)
{

i n t i ;
pthread_t id = (pthread_t) data ;

f o r (i = 1 ; i <= NUM_ITERATIONS; i++) {
pthread_mutex_lock(&mutex) ;
pthread_cond_wait(&ready , &mutex) ;
pthread_mutex_unlock(&mutex) ;
u s l e ep (200000) ; /∗ de lay a b i t to s imulate work ∗/

}

pthread_mutex_lock(&count_mutex) ;
c l ient_count −−;
pthread_mutex_unlock(&count_mutex) ;
pthread_exit (NULL) ;

}

void ∗ s e r v e r (void ∗ data)
{

whi l e (1) {
pthread_mutex_lock(&count_mutex) ;

50

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

i n t temp = cl i ent_count ;
pthread_mutex_unlock(&count_mutex) ;
i f (temp > 0) {

pthread_cond_broadcast(&ready) ;
}
e l s e

break ;

u s l e ep (1000000) ; /∗ de lay a b i t to s imulate work ∗/
}
pthread_exit (NULL) ;

}

/∗∗∗
Main Program

∗∗∗/

i n t main (i n t argc , char ∗ argv [])
{

long t ;
pthread_t threads [NUM_THREADS] ;
pthread_t server_id ;
pthread_mutexattr_t a t t r ;

pthread_mutexattr_settype(&attr , PTHREAD_MUTEX_ERRORCHECK) ;
pthread_mutex_init(&mutex , &a t t r) ;
pthread_mutex_init(&count_mutex , NULL) ;

/∗ Create the threads that w i l l a cqu i r e a mutex and then wait on the
cond i t i on va r i ab l e . ∗/

c l i ent_count = NUM_THREADS;
f o r (t = 0 ; t < NUM_THREADS; t++)

pthread_create(&threads [t] , NULL, c l i e n t , (void ∗) t) ;

/∗ Create the thread that w i l l broadcast on the cond i t i on va r i ab l e ∗/
pthread_create(&server_id , NULL, se rver , NULL) ;

/∗ Main thread waits f o r the o the r s to e x i t . ∗/
f o r (t = 0 ; t < NUM_THREADS; t++)

pthread_join (threads [t] , (void ∗∗) NULL) ;
pthread_join (server_id , (void ∗∗) NULL) ;

/∗ Clean−up ∗/
pthread_mutexattr_destroy(&a t t r) ;
pthread_mutex_destroy(&mutex) ;
pthread_cond_destroy(&ready) ;

51

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

pthread_exit (NULL) ;
}

10.9.4 Condition Attributes

The only attributes that conditions have are the process-shared attribute and the clock attribute.
These are advanced topics that are not covered here. There are several functions related to condition
attributes, specifically the getting and setting of these properties, and they are described by the
respective man pages:

int pthread_condattr_destroy (pthread_condattr_t *attr);
int pthread_condattr_init (pthread_condattr_t *attr);
int pthread_condattr_getclock (const pthread_condattr_t *restrict attr,

clockid_t *restrict clock_id);
int pthread_condattr_setclock (pthread_condattr_t *attr,

clockid_t clock_id);
int pthread_condattr_getpshared(const pthread_condattr_t *restrict attr,

int *restrict pshared);
int pthread_condattr_setpshared(pthread_condattr_t *attr,

int pshared);

10.9.5 Example

Listing 10.13 contains a multi-threaded solution to the single-producer/single-consumer problem
that uses a mutex and two condition variables. For simplicity, it is designed to terminate after a
fixed number of iterations of each thread. It sends output messages to a file named prodcons_mssges
in the working directory. The buffer routines add a single integer and remove a single integer from
a shared global buffer. The calls to these functions in the producer and consumer are within the
region protected by the mutex buffer_mutex.

The consumer logic is a bit more complex because the producer may exit when the buffer is empty.
Therefore, the consumer thread has to check whether the producer is still alive before it blocks itself
on the condition data_available, otherwise it will hang forever without terminating, and so will
main().

It is not enough for the producer to set the flag producer_exists to zero when it exits, because
the consumer might check its value just prior to the producer’s setting it to zero, and seeing
producer_exists == 1, block itself on the data_available condition. That is why the producer
executes the lines

pthread_mutex_lock(&buffer_mutex);
producer_exists = 0;
pthread_cond_signal(&data_available);
pthread_mutex_unlock(&buffer_mutex);

when it exits. It first locks the buffer_mutex. If the consumer holds the lock, it will block until the
consumer releases the lock. This implies that either the consumer has just acquired the mutex and

52

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

is about to block itself on the data_available condition or that it is getting data from the buffer
and will unlock the mutex soon. In either case, the consumer will release the lock and the producer
will set producer_exists to zero and then signal data_available. If the consumer blocked itself
on data_available, then the signal will wake it up, it will see that producer_exists is zero, and
it will exit. If it was getting data from the buffer and then released the mutex lock, after which the
producer acquired it, then when it gets it again, producer_exists will be zero, and it will exit if
the buffer is empty.

Listing 10.13: Single-producer/single-consumer multithreaded program.
#inc lude <sys / time . h>
#inc lude <sys / types . h>
#inc lude <s td i o . h>
#inc lude <pthread . h>
#inc lude <s t d l i b . h>
#inc lude <errno . h>

/∗∗∗
Global , Shared Data

∗∗∗/

#de f i n e NUM_ITERATIONS 500 /∗ number o f l oops each thread i t e r a t e s ∗/
#de f i n e BUFFER_SIZE 20 /∗ s i z e o f bu f f e r ∗/

/∗ buffer_mutex c on t r o l s bu f f e r a c c e s s ∗/
pthread_mutex_t buffer_mutex = PTHREAD_MUTEX_INITIALIZER;

/∗ space_ava i l ab l e i s a cond i t i on that i s t rue when the bu f f e r i s not f u l l ∗/
pthread_cond_t space_ava i l ab l e = PTHREAD_COND_INITIALIZER;

/∗ data_ava i lab le i s a cond i t i on that i s t rue when the bu f f e r i s not empty ∗/
pthread_cond_t data_ava i lab le = PTHREAD_COND_INITIALIZER;

i n t producer_ex i s t s ; /∗ t rue when producer i s s t i l l running ∗/
FILE ∗ fp ; /∗ log f i l e po in t e r f o r messages ∗/

/∗∗∗
Buf f e r Object

∗∗∗/

i n t bu f f e r [BUFFER_SIZE] ; /∗ the bu f f e r o f data −− ju s t i n t s here ∗/
i n t bu f s i z e ; /∗ number o f f i l l e d s l o t s in bu f f e r ∗/

void add_buffer (i n t data)
{

s t a t i c i n t r ea r = 0 ;
bu f f e r [r ea r] = data ;
r ea r = (r ea r + 1) % BUFFER_SIZE;
bu f s i z e++;

}

i n t get_buf fe r ()
{

s t a t i c i n t f r on t = 0 ;

53

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

i n t i ;
i = bu f f e r [f r on t] ;
f r on t= (f r on t + 1) % BUFFER_SIZE;
bu f s i z e −−;
return i ;

}

/∗∗∗
Error Handling Function

∗∗∗/

void handle_error (i n t num, char ∗mssge)
{

errno = num;
pe r ro r (mssge) ;
e x i t (EXIT_FAILURE) ;

}

/∗∗
Thread Functions

∗∗∗/

void ∗ producer (void ∗ data)
{

i n t i ;
f o r (i = 1 ; i <= NUM_ITERATIONS; i++) {

pthread_mutex_lock(&buffer_mutex) ;
whi l e (BUFFER_SIZE == bu f s i z e) {

pthread_cond_wait(&space_avai lab le ,&buffer_mutex) ;
}
add_buffer (i) ;
f p r i n t f (fp , " Producer added %d to bu f f e r ; bu f f e r s i z e = %d .\ n" ,

i , b u f s i z e) ;
pthread_cond_signal(&data_ava i lab le) ;
pthread_mutex_unlock(&buffer_mutex) ;

}

pthread_mutex_lock(&buffer_mutex) ;
producer_ex i s t s = 0 ;
pthread_cond_signal(&data_ava i lab le) ;
pthread_mutex_unlock(&buffer_mutex) ;

pthread_exit (NULL) ;
}

void ∗consumer (void ∗ data)
{

i n t i ;
f o r (i = 1 ; i <= NUM_ITERATIONS; i++) {

pthread_mutex_lock(&buffer_mutex) ;
whi l e (0 == bu f s i z e) {

i f (producer_ex i s t s) {
pthread_cond_wait(&data_avai lable ,&buffer_mutex) ;

54

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

}
e l s e {

pthread_mutex_unlock(&buffer_mutex) ;
pthread_exit (NULL) ;

}
}
i = get_buf fe r () ;
f p r i n t f (fp , " Consumer got data element %d ; bu f f e r s i z e = %d .\ n" ,

i , b u f s i z e) ;
pthread_cond_signal(&space_ava i l ab l e) ;
pthread_mutex_unlock(&buffer_mutex) ;

}
pthread_exit (NULL) ;

}

/∗∗
Main Program

∗∗∗/

i n t main (i n t argc , char ∗ argv [])
{

pthread_t producer_thread ;
pthread_t consumer_thread ;

producer_ex i s t s = 1 ;
bu f s i z e = 0 ;

i f (NULL == (fp = fopen (" . / prodcons_mssges " , "w")))
handle_error (errno , "prodcons_mssges ") ;

pthread_create(&consumer_thread , NULL, consumer , NULL) ;
pthread_create(&producer_thread , NULL, producer , NULL) ;

pthread_join (producer_thread , NULL) ;
pthread_join (consumer_thread , NULL) ;

f c l o s e (fp) ;
r e turn 0 ;

}

10.10 Barrier Synchronization

10.10.1 Motivation

Some types of parallel programs require that the individual threads or processes proceed in a lockstep
manner, each performing a task in a given phase and then waiting for all other threads to complete
their tasks before continuing to the next phase. This is typically due to mutual dependencies on
the data written during the previous phase by the threads. Many simulations have this property.
One simple example is a multithreaded version of Conway’s Game of Life.

The Game of Life simulates the growth of a colony of organisms over time. Imagine a finite, two-
dimensional grid in which each cell represents an organism. Time advances in discrete time steps,

55

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

t0, t1, t2, ad infinitum. Whether or not an organism survives in cell (i, j) at time tk+1 depends on
how many organisms are living in the adjacent surrounding cells at time tk. Whether or not an
organism is born into an empty cell (i, j) is also determined by the state of the adjacent cells at the
given time. The exact rules are not relevant.

A simple method of simulating the progression of states of the grid is to create a unique thread to
simulate each individual cell, and to create two grids, A and B, of the same dimensions. The initial
state of the population is assigned to grid A. At each time step tk, the thread responsible for cell
(i, j) would perform the following task:

1. For cell A[i,j], examine the states of each of its eight neighboring cells A[m,n] and set the
value of B[i,j] accordingly.

2. When all other cells have finished their step 1, copy B[i,j] to A[i,j], and repeat steps 1
and 2.

Notice that this solution requires that each cell wait for all other cells to reach the same point in
the code. This could be achieved with a combination of mutexes and condition variables. The
main program would initialize the value of a counter variable, count, to zero. Assuming there are
N threads, each would execute a loop of the form

loop forever {
update cell (i,j);

pthread_mutex_lock (&update_mutex);
count++;
while (count < N)

pthread_cond_wait(&all_threads_ready,&update_mutex);
/* count reached N so all threads proceed */
pthread_cond_broadcast(&all_threads_ready);
count --;
pthread_mutex_unlock (&update_mutex);
pthread_mutex_lock (&count_mutex);
while (count > 0)

pthread_cond_wait(&all_threads_at_start, &count_mutex);
pthread_cond_broadcast(&all_threads_at_start);
pthread_mutex_unlock (&count_mutex);

}

After each thread updates its cell, it tries to acquire a mutex named update_mutex. The cell that ac-
quires the mutex increments count and then waits on a condition variable named all_threads_ready
associated with the predicate count < N. As it releases update_mutex, the next thread does the
same, and so on until all but one thread has been blocked on the condition variable. Eventually
the Nth thread acquires the mutex, increments count and, finding count == N, issues a broadcast
on all_threads_ready, unblocking all of the waiting threads, one by one.

One by one, each thread then decrements count. If each were allowed to cycle back to the top of the
loop, this code would not work, because one thread could quickly speed around, increment count
so that it equaled N again even though the others had not even started their updates. Instead, no

56

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

thread is allowed to go back to the top of the loop until count reaches zero. This is achieved by
using a second condition variable, all_threads_at_start. All threads will block on this condition
except the one that sets the value of count to zero when it decrements it. When that happens,
every thread is unblocked and they all start this cycle all over again.

Now as you can see, this adds so much serial code to the parallel algorithm that it defeats the purpose
of using multiple threads in the first place. In addition, it ignores the possibility of spurious wake-
ups and would be even more complex if these were taken into account. Fortunately, there is a
simpler solution; the Pthread library has a barrier synchronization primitive that solves this
synchronization problem efficiently and elegantly.

A barrier synchronization point is an instruction in a program at which the executing thread
must wait until all participating threads have reached that same point. If you have ever been in a
guided group of people being taken on a tour of a facility or an institution of some kind, then you
might have experienced this type of synchronization. The guide will wait for all members of the
group to reach a certain point, and only then will he or she allow the group to move to the next set
of locations.

10.10.2 PThreads Barriers

The Pthreads implementation of a barrier lets the programmer initialize the barrier to the number
of threads that must reach the barrier in order for it to be opened. A barrier is declared as a variable
of type pthread_barrier_t. The function to initialize a barrier is

int pthread_barrier_init(pthread_barrier_t *restrict barrier,
const pthread_barrierattr_t *restrict attr, unsigned count);

It is given the address of a barrier, the address of a barrier attribute structure, which may be NULL
to use the default attributes, and a positive value count. The count argument specifies the number
of threads that must reach the barrier before any of them successfully return from the call. If the
function succeeds it returns zero.

A thread calls

int pthread_barrier_wait(pthread_barrier_t *barrier);

to wait at the barrier given by the argument. When the required number of threads have called
pthread_barrier_wait() specifying the barrier, the constant PTHREAD_BARRIER_SERIAL_THREAD is
returned to exactly one unspecified thread and zero is returned to each of the remaining threads. At
this point, the barrier is reset to the state it had as a result of the most recent pthread_barrier_init()
function that referenced it. Some programs may not need to take advantage of the fact that a single
thread received the value PTHREAD_BARRIER_SERIAL_THREAD, but others may find it useful, particu-
larly if exactly one thread has to perform a task when the barrier has been reached. One can check
for errors at the barrier with the code

retval = pthread_barrier_wait(&barrier);
if (PTHREAD_BARRIER_SERIAL_THREAD != retval && 0 != retval)

pthread_exit((void*) 0);

57

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

which will force a thread to exit if it did not get one of the non-error values.

Finally, a barrier is destroyed using

int pthread_barrier_destroy(pthread_barrier_t *barrier);

which destroys the barrier and releases any resources used by it. The effect of subsequent use of the
barrier is undefined until the barrier is reinitialized by another call to pthread_barrier_init().
The results are undefined if pthread_barrier_destroy() is called when any thread is blocked on
the barrier, or if this function is called with an uninitialized barrier.

10.10.3 Example

Consider the problem of adding the elements of an array of N numbers, where N is extremely
large. The serial algorithm would take O(N) steps. Suppose that a processor has P subprocessors
and that we want to use P threads to reduce the total running time of the problem. Assume for
simplicity that N is a multiple of P . We can decompose the array into P segments of N/P elements
each and let each thread sum its set of N/P numbers. But then how can we collect the partial sums
calculated by the threads?

Let us create an array, sums, of length P . The partial sum computed by thread k is stored in
sums[k]. To compute the sum of all numbers, we let the main program add the numbers in the
sums array and store the result in sums[0]. In other words, we could execute a loop of the form

for (i = 1; i < P; i++)
sums[0] += sums[i];

This would run in time proportional to the number of threads. Alternatively, we could have each
thread add its partial sum directly to a single accumulator, but we would need to serialize this by
enclosing it in a critical section. The performance is the same, since there would still be P sequential
additions.

Another solution is to use a parallel reduction algorithm to add the partial sums. In Chapter
3 we introduced parallel reduction. Given a set of n values a0, a1, a2, ..., an−1, and any associative
binary operator ⊕, reduction is the process of computing a0 ⊕ a1 ⊕ a2 ⊕ · · · ⊕ an−1. A parallel
reduction algorithm is a binary divide-and-conquer solution. We have been using parallel reductions
based on a binomial tree communication pattern. We will do the same here. Before the reduction
can begin, each thread must have computed its partial sum. Therefore, every thread must wait at
a barrier until all other threads have also computed their partial sums. At this point the parallel
reduction algorithm proceeds in stages.

Parallel Reduction Algorithm

The set of thread ids is divided in half. Every thread in the lower half has a mate in
the upper half, except possibly one odd thread. For example, if there are 100 threads,
then thread 0 is mated to thread 50, thread 1 to thread 51, and so on, and thread 49 to
thread 99. In each stage, each thread in the lower half of the set adds its mate’s sum
to its own. At the end of each stage, the upper half of threads is no longer needed, so

58

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

the set is cut in half. The lower half becomes the new set and the process is repeated.
For example, there would be 50 threads numbered 0 to 49, with threads 0 through 24
forming the lower half and threads 25 to 49 in the upper half. As this happens, the
partial sums are being accumulated closer and closer to sums[0].

Eventually the set becomes size 2, and thread 0 adds sums[0] and sums[1] into sums[0],
which is the sum of all array elements. This approach takes O(log(P)) steps. The entire
running time is thus O((N/P) + log(P)).

Listing 10.14 contains the code.

Listing 10.14: Reduction algorithm with barrier synchronization.
#inc lude <pthread . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>
#inc lude < l i b i n t l . h>
#inc lude <l o c a l e . h>
#inc lude <math . h>

/∗∗∗
Data Types and Constants

∗∗/

double ∗sum ; /∗ array o f p a r t i a l sums o f data ∗/
double ∗ array ; /∗ dynamical ly a l l o c a t e d array o f data ∗/
i n t num_threads ; /∗ number o f threads t h i s program w i l l use ∗/
pthread_barrier_t b a r r i e r ;

/∗
a task_data s t r u c tu r e conta in s the data r equ i r ed f o r a thread to compute
the sum of the segment o f the array i t has been de l egated to to ta l , s t o r i n g
the sum in i t s c e l l in an array o f sums . The data array and the sum array
are a l l o c a t e d on the heap . The threads get the s t a r t i n g addre s s e s o f each ,
and t h e i r task number and the f i r s t and l a s t e n t r i e s o f t h e i r segments .

∗/
typede f s t r u c t _task_data
{

i n t f i r s t ; /∗ index o f f i r s t element f o r task ∗/
i n t l a s t ; /∗ index o f l a s t element f o r task ∗/
i n t task_id ; /∗ id o f thread ∗/

} task_data ;

/∗∗∗
Thread and Helper Functions

∗∗/

/∗ Pr int usage statement ∗/
void usage (char ∗ s)
{

char ∗p = s t r r c h r (s , ’ / ’) ;
f p r i n t f (s tde r r ,

59

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

"usage : %s a r r a y s i z e numthreads \n" , p ? p + 1 : s) ;
}

/∗∗
The thread rou t in e .

∗/
void ∗add_array (void ∗ thread_data)
{

task_data ∗t_data ;
i n t k ;
i n t t i d ;
i n t h a l f ;
i n t r e t v a l ;

t_data = (task_data ∗) thread_data ;
t i d = t_data−>task_id ;

sum [t i d] = 0 ;
f o r (k = t_data−>f i r s t ; k <= t_data−>l a s t ; k++)

sum [t i d] += array [k] ;

h a l f = num_threads ;
whi l e (h a l f > 1) {

r e t v a l = pthread_barrier_wait(& ba r r i e r) ;
i f (PTHREAD_BARRIER_SERIAL_THREAD != r e t v a l &&

0 != r e t v a l)
pthread_exit ((void ∗) 0) ;

i f (h a l f % 2 == 1 && t id == 0)
sum [0] = sum [0] + sum [ha l f −1] ;

h a l f = ha l f /2 ; // i n t e g e r d i v i s i o n
i f (t i d < ha l f)

sum [t i d] = sum [t i d] + sum [t i d+ha l f] ;
}

pthread_exit ((void ∗) 0) ;

}

/∗∗∗
Main Program

∗∗/
i n t main (i n t argc , char ∗ argv [])
{

i n t array_s ize ;
i n t s i z e ;
i n t k ;
i n t r e t v a l ;
i n t t ;
pthread_t ∗ threads ;
task_data ∗ thread_data ;
pthread_attr_t a t t r ;

/∗ Ins tead o f assuming that the system c r e a t e s threads as j o i n ab l e by

60

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

de fau l t , t h i s s e t s them to be j o i n ab l e e x p l i c i t l y .
∗/
pthread_attr_init (&a t t r) ;
pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_JOINABLE) ;

i f (argc < 3) {
usage (argv [0]) ;
e x i t (1) ;

}

/∗ Get command l i n e arguments , convert to in t s , and compute s i z e o f each
thread ’ s segment o f the array

∗/
errno = 0 ;
array_s ize = s t r t o l (argv [1] , ’ \0 ’ , 0) ;
i f (e r rno != 0)

e x i t (1) ;

e r rno = 0 ;
num_threads = s t r t o l (argv [2] , ’ \0 ’ , 0) ;
i f (e r rno != 0)

e x i t (1) ;

i f (0 >= num_threads | | 0 >= array_s ize) {
usage (argv [0]) ;
e x i t (1) ;

}
s i z e = (i n t) c e i l (a r ray_s ize ∗1 .0/ num_threads) ;

/∗ A l l o ca t e the array o f threads , task_data s t ruc tu r e s , data and sums ∗/
threads = c a l l o c (num_threads , s i z e o f (pthread_t)) ;
thread_data = c a l l o c (num_threads , s i z e o f (task_data)) ;
array = c a l l o c (array_size , s i z e o f (double)) ;
sum = c a l l o c (num_threads , s i z e o f (double)) ;

i f (threads == NULL | | thread_data == NULL | |
array == NULL | | sum == NULL)

e x i t (1) ;

/∗ Synthes i z e array data here ∗/
f o r (k = 0 ; k < array_s ize ; k++)

array [k] = (double) k ;

/∗ I n i t i a l i z e a b a r r i e r with a count equal to the number o f threads ∗/
pthread_barr i e r_in i t (&ba r r i e r , NULL, num_threads) ;

/∗ I n i t i a l i z e task_data f o r each thread and then c r ea t e the thread ∗/
f o r (t = 0 ; t < num_threads ; t++) {

thread_data [t] . f i r s t = t ∗ s i z e ;
thread_data [t] . l a s t = (t+1)∗ s i z e −1;
i f (thread_data [t] . l a s t > array_s ize −1)

thread_data [t] . l a s t = array_s ize − 1 ;
thread_data [t] . task_id = t ;

61

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

r e t v a l = pthread_create(&threads [t] , &att r , add_array ,
(void ∗) &thread_data [t]) ;

i f (r e t v a l) {
p r i n t f ("ERROR; return code from pthread_create () i s %d\n" , r e t v a l) ;
e x i t (−1);

}
}

/∗ Join a l l threads so that we can add up t h e i r p a r t i a l sums ∗/
f o r (t = 0 ; t < num_threads ; t++) {

pthread_join (threads [t] , (void ∗∗) NULL) ;
}

pthread_barr ier_destroy(& ba r r i e r) ;

p r i n t f ("The array t o t a l i s %7.2 f \n" , sum [0]) ;

/∗ Free a l l memory a l l o c a t e d to program ∗/
f r e e (threads) ;
f r e e (thread_data) ;
f r e e (array) ;
f r e e (sum) ;

re turn 0 ;
}

Although the solution in Listing 10.14 is asymptotically faster than the solution in which the threads
add their partial sums to a running total in a critical section, it may not be faster in practice, because
the final accumulation of partial sums must wait until all threads have calculated their partial sums.
If the number of threads is very large, and there is one very slow thread, then the log(P) steps will
be delayed until the slow thread completes. On the other hand, if the other solution is used, then all
threads will have added their partial sums to the total while the slow thread was still working, and
when it finishes, a single addition will complete the task. The performance gain of this reduction
algorithm depends upon the threads running on symmetric processors.

This same strategy can be used in the pi estimation program. The code is similar to the above.

#inc lude <s t r i n g . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <math . h>
#inc lude <pthread . h>

in t num_threads ; /∗ number o f threads t h i s program w i l l use ∗/
pthread_barr ier_t b a r r i e r ;
double ∗sum ;

typede f s t r u c t _task_data
{

i n t f i r s t ; /∗ index o f f i r s t element f o r task ∗/

62

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

i n t l a s t ; /∗ index o f l a s t element f o r task ∗/
i n t num_segments ; /∗ t o t a l number o f segments to be c a l c u l a t ed ∗/
pthread_t thread_id ; /∗ id returned by pthread_create () ∗/
i n t task_num ; /∗ program ’ s thread id ∗/

} task_data ;

/∗ Pr int usage statement ∗/
void usage (char ∗ s)
{

char ∗p = s t r r c h r (s , ’ / ’) ;
f p r i n t f (s tde r r ,

" usage : %s num_intervals numthreads \n" , p ? p + 1 : s) ;
}

void ∗ approximate_pi (void ∗ thread_data)
{

double dx , x ;
i n t h a l f ;
i n t r e t v a l ;
task_data ∗t_data ;
i n t k ;
t_data = (task_data ∗) thread_data ;

/∗ Set dx to the width o f each segments ∗/
dx = 1 .0 / (double) t_data−>num_segments ;

i n t t i d = t_data−>task_num ;

/∗ I n i t i a l i z e sum f o r t h i s thread ∗/
sum [t i d] = 0 ;

/∗ Compute p a r t i a l sum in sum [t i d] ∗/
f o r (k = t_data−>f i r s t ; k <= t_data−>l a s t ; k++) {

x = dx ∗ ((double) k − 0 . 5) ; /∗ x i s midpoint o f segment i ∗/
sum [t i d] += 4 .0 / (1 . 0 + x∗x) ; /∗ add new area to sum ∗/

}
sum [t i d] = dx ∗ sum [t i d] ;

/∗ t h i s thread has f i n i s h e d computed i t s p a r t i a l sum ∗/
ha l f = num_threads ;
whi l e (h a l f > 1) {

r e t v a l = pthread_barrier_wait(& ba r r i e r) ;
i f (PTHREAD_BARRIER_SERIAL_THREAD != r e t v a l &&

0 != r e t v a l)
pthread_exit ((void ∗) 0) ;

i f (h a l f % 2 == 1 && t_data−>task_num == 0)
sum [0] = sum [0] + sum [ha l f −1] ;

63

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

ha l f = ha l f /2 ;
i f (t_data−>task_num < ha l f)

sum [t i d] = sum [t i d] + sum [t i d + ha l f] ;
}
pthread_exit ((void ∗) 0)

}

i n t main (i n t argc , char ∗ argv [])
{

i n t num_intervals ; /∗ number o f segments to sum ∗/
i n t r e t v a l ;
i n t t ;

task_data ∗ thread_data ; /∗ dynamical ly a l l o c a t e d array o f thread data ∗/
pthread_attr_t a t t r ;

/∗ Make a l l threads j o i n ab l e ∗/
pthread_attr_ini t (&a t t r) ;
pthread_attr_setdetachstate (&attr , PTHREAD_CREATE_JOINABLE) ;

i f (argc < 3) {
usage (argv [0]) ;
e x i t (1) ;

}

/∗ Get command l i n e arguments , convert to in t s , and compute s i z e o f each
thread ’ s segment o f the array

∗/
num_intervals = a t o i (argv [1]) ;
num_threads = a t o i (argv [2]) ;
i f ((0 == num_intervals) | | (0 == num_threads)) {

p r i n t f ("ERROR; i n s u f f i c i e n t memory\n ") ;
e x i t (1) ;

}

/∗ A l l o ca t e the array o f task_data s t r u c t u r e s on the heap .
This i s nece s sa ry because the array i s not g l oba l . ∗/

thread_data = c a l l o c (num_threads , s i z e o f (task_data)) ;

/∗ A l l o ca t e the sum array ∗/
sum = c a l l o c (num_threads , s i z e o f (double)) ;

/∗ I n i t i a l i z e a b a r r i e r with a count equal to the number o f threads ∗/
pthread_barr i e r_in i t (&ba r r i e r , NULL, num_threads) ;

i f (thread_data == NULL)
e x i t (1) ;

64

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

/∗ I n i t i a l i z e task_data f o r each thread and then c r ea t e the thread ∗/
f o r (t = 0 ; t < num_threads ; t++) {

thread_data [t] . f i r s t = (t ∗num_intervals)/ num_threads ;
thread_data [t] . l a s t = ((t+1)∗num_intervals)/ num_threads −1;
thread_data [t] . task_num = t ;
thread_data [t] . num_segments = num_intervals ;

r e t v a l = pthread_create (&(thread_data [t] . thread_id) , &att r ,
approximate_pi , (void ∗) &thread_data [t]) ;

i f (r e t v a l) {
p r i n t f ("ERROR; return code from pthread_create () i s %d\n" , r e t v a l) ;
e x i t (−1);

}
}

/∗ Join a l l threads ∗/
f o r (t = 0 ; t < num_threads ; t++) {

pthread_join (thread_data [t] . thread_id , (void ∗∗) NULL) ;
}

p r i n t f (" p i i s approximated to be %.16 f . The e r r o r i s %.16 f \n" ,
sum [0] , f abs (sum [0] − M_PI)) ;

/∗ Free a l l memory a l l o c a t e d to program ∗/
f r e e (thread_data) ;
f r e e (sum) ;
re turn 0 ;

}

10.11 Reader/Writer Locks

10.11.1 Introduction

A mutex has the property that it has just two states, locked and unlocked, and only one thread can
lock it at a time. For many problems this is fine, but for many others, it is not. Consider a problem
in which one thread updates a database of some kind and multiple threads look up information in
that database. For example, a web search engine might consist of thousands of “reading” threads
that need to read the database of search data to deliver pages of search results to client browsers,
and other “writing” threads that crawl the web and update the database with new data. When
the database is not being updated, the reading threads should be allowed simultaneous access to
the database, but when a writing thread is modifying the database, it needs to do so in mutual
exclusion, at least on the parts of it that are changing.

To support this paradigm, POSIX provides reader/writer locks. Multiple readers can lock a read-
er/writer lock without blocking each other, but blocking writers from accessing it, and when a single

65

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

writer acquires the lock, it obtains exclusive access to the resource; in this case any thread, whether
a reader or a writer, will be blocked if it attempts to acquire the lock while a writer holds the lock.

Clearly, reader/writer locks allow for a higher degree of parallelism than does a mutex. Unlike
mutexes, they have three possible states:

• locked in read mode,

• locked in write mode, and

• unlocked.

Multiple threads can hold a reader/writer lock in read mode, but only a single thread can hold a
reader/writer lock in write mode.

Think of a reader/writer lock as the key to a large room. If the reader/writer lock is not currently
held by any thread and a reader acquires it, then it enters the room and leaves a guard at the door.
If an arriving thread wants to write, the guard makes it wait on a line outside of the door until the
reader leaves the room, or possibly later. All arriving writers will wait on this line while the reader
is in the room. If an arriving thread wants to read, whether or not it is let into the room depends
on how Pthreads has been configured.

Some systems support a Pthreads option known as the Thread Execution Scheduling, or TES, option.
This option allows the programmer to control how threads are scheduled. If the system does not
support this option, and a reader arrives at the door, and there are writers standing in line, it is
up to the implementation as to whether the reader must stand at the end of the line, behind the
waiting writer(s), or can be allowed to enter the room immediately. If TES is supported, then the
decision is based on which scheduling policy is in force. If either FIFO, round-robin, or sporadic4

scheduling is in force, then an arriving reader will stand in line behind all writers (and any readers
who have set their priorities higher than the arriving reader’s.)

These decisions about who must wait for whom when threads are blocked on a lock can lead to
unfair scheduling and even starvation. A detailed discussion of this topic is outside of the scope
of this chapter, but you should at least have the understanding that, if the implementation gives
arriving readers precedence over writers that are blocked when a reader has the lock, then a steady
stream of readers could prevent a writer from ever writing. This is not good. Usually, a writer has
something important to do, updating information, and it should be given priority over readers. This
is why the TES option allows this type of behavior, and why some implementations always give
waiting writers priority over waiting readers. For this reason, it is also possible that a stream of
writers will starve all of the readers, so if for some reason, there must be multiple writers, the code
itself must ensure that they do not starve the readers, using mutexes and conditions to prevent this
possibility.

10.11.2 Using Reader/Writer Locks

It is natural that, as a result of their increased complexity, there are more functions for locking
and unlocking reader/writer locks than for manipulating simple mutexes. The prototypes for the
functions in the API related to these locks, listed by category, are:

4This is also an option to PThreads that may not be available in a given implementation.

66

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

Initialization and destruction:

int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,
const pthread_rwlockattr_t *restrict attr);5

pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

Locking for reading:

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,

const struct timespec *restrict abstime);

Locking for writing:

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,

const struct timespec *restrict abstime);

Unlocking:

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

Working with attributes:

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr);
int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);
int pthread_rwlockattr_getpshared(const pthread_rwlockattr_t

*restrict attr, int *restrict pshared);
int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr,

int pshared);

As with all of the other locks and synchronization objects described here so far, the first step is to ini-
tialize the reader/writer lock. This is done using either the function pthread_rwlock_init() or the
initializer macro PTHREAD_RWLOCK_INITIALIZER, which is equivalent to using pthread_rwlock_init()
with a NULL second argument. There are not many attributes that can be configured; the process-
shared attribute is not required to be implemented by a POSIX-compliant system, and there are
no others that can be modified. Therefore, it is fine to accept the defaults.

Notice that a thread wishing to use the lock for reading uses a different set of primitives than
one that wants to write. For reading, a thread can use pthread_rwlock_rdlock(), which has the
semantics described in the introduction above. If you do not want the thread to block in those

5The restrict qualifier in C was introduced in C99 to assist in compiler optimization. It has the following
meaning: Objects referenced through a restrict-qualified pointer have a special association with that pointer. All
references to that object must directly or indirectly use the value of this pointer. In the absence of this qualifier,
other pointers can alias this object.

67

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

cases where it might, use pthread_rwlock_tryrdlock(), which will return the error value EBUSY
whenever it would block.

The pthread_rwlock_timedrdlock() function is like the pthread_rwlock_rdlock() function, ex-
cept that, if the lock cannot be acquired without blocking, the wait is terminated when the specified
timeout expires. The timeout expires when the absolute time specified by abstime passes, as mea-
sured by the real time clock (CLOCK_REALTIME) or if the absolute time specified by abstime has
already been passed at the time of the call. Note that the time specification is not an interval, but
what you might call “clock time”, as the system perceives it. The timespec data type is defined in
the <time.h> header file. The function does not fail if the lock can be acquired immediately, and
the validity of the abstime parameter is not checked if the lock can be acquired immediately.

The same statements apply to the three functions for acquiring a writer lock, and so they are not
repeated. As for unlocking, there is only one function to unlock. It does not matter whether the
thread holds the lock for reading or writing – it calls pthread_rwlock_unlock() in either case.

10.11.3 Further Details

This section answers some more subtle, advanced questions about reader/writer locks.

• If the calling thread already holds a shared read lock on the reader/writer lock, another read
lock can be successfully acquired by the calling thread. If more than one shared read lock is
successfully acquired by a thread on a reader/writer lock, that thread is required to successfully
call pthread_rwlock_unlock() a matching number of times.

• Some implementations of Pthreads will allow a thread that already holds an exclusive write
lock on a reader/writer lock to acquire another write lock on that same lock. In these im-
plementations, if more than one exclusive write lock is successfully acquired by a thread on
a reader/writer lock, that thread is required to successfully call pthread_rwlock_unlock() a
matching number of times. In other implementations, the attempt to acquire a second write
lock will cause deadlock.

• If while either of pthread_rwlock_wrlock() or pthread_rwlock_rdlock() is waiting for the
shared read lock, the reader/writer lock is destroyed, then the EDESTROYED error is returned.

• If a signal is delivered to the thread while it is waiting for the lock for either reading or writing,
if a signal handler is registered for this signal, it runs, and the thread resumes waiting.

• If a thread terminates while holding a write lock, the attempt by another thread to acquire a
shared read or exclusive write lock will not succeed. In this case, the attempt to acquire the
lock does not return and will deadlock. If a thread terminates while holding a read lock, the
system automatically releases the read lock.

• If a thread calls pthread_rwlock_wrlock() and currently holds a shared read lock on the
reader/writer lock and no other threads are holding a shared read lock, the exclusive write
request is granted. After the exclusive write lock request is granted, the calling thread holds
both the shared read and the exclusive write lock for the specified reader/writer lock.

• In an implementation in which a thread can hold multiple read and write locks on the same
reader/writer lock, if a thread calls pthread_rwlock_unlock() while holding one or more

68

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

shared read locks and one or more exclusive write locks, the exclusive write locks are unlocked
first. If more than one outstanding exclusive write lock was held by the thread, a matching
number of successful calls to pthread_rwlock_unlock() must be completed before all write
locks are unlocked. At that time, subsequent calls to pthread_rwlock_unlock() will unlock
the shared read locks.

10.11.4 Example

The program in Listing 10.15 demonstrates the use of reader/writer locks. It would be very simple
if we did not attempt to prevent starvation, either of readers or writers, but this program uses the
GNU extension to the standard, pthread_rwlockattr_setkind_np(), which can be used to change
the priorities given to readers and writers. The call

pthread_rwlockattr_setkind_np(&rwlock_attributes,
PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);

sets the reader/writer attribute so that it gives preference to waiting writers, meaning that as long
as there is a writer waiting, when the lock becomes available, it will be given to the next waiting
writer. In contrast,

pthread_rwlockattr_setkind_np(&rwlock_attributes,
PTHREAD_RWLOCK_PREFER_READER_NP);

sets the reader/writer attribute so that it gives preference to waiting readers.

The program uses barrier synchronization to ensure that no thread enters its main loop until after
all threads have been created. Without the barrier, the first threads that would be created in the
main program would get the lock first, and if these are writers, the readers would starve.

In the listing below, writers are given preference. This being the case, if the number of writers is
changed to be greater than one, they will starve the readers whenever the first writer grabs the lock,
because there will always be at least one writer waiting. If the sleep() in the writer code outside of
the critical section is lengthened enough, then there is a chance that the readers will not be starved.
This program can be used to experiment with the likelihood of starvation.

Listing 10.15: Reader/writer locks: A simple example.
#de f i n e _GNU_SOURCE
#inc lude <pthread . h>
#inc lude <s td i o . h>
#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <errno . h>

/∗∗∗
Data Types and Constants

∗∗/

#de f i n e NUM_READERS 10
#de f i n e NUM_WRITERS 1

69

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

pthread_rwlock_t rwlock ; /∗ the reader / wr i t e r l o ck ∗/
pthread_barrier_t b a r r i e r ; /∗ to t ry to improve f a i r n e s s ∗/

i n t done ; /∗ to terminate a l l threads ∗/
i n t num_threads_in_lock ; /∗ f o r the monitor code ∗/

/∗∗∗
Thread and Helper Functions

∗∗/
/∗∗ handle_error (num, mssge)

Pr in t s to standard e r r o r the system message a s s o c i a t ed with e r r o r number num
as we l l as a custom message , and then e x i t s the program with EXIT_FAILURE

∗/
void handle_error (i n t num, char ∗mssge)
{

errno = num;
pe r ro r (mssge) ;
e x i t (EXIT_FAILURE) ;

}

/∗∗ reader ()
∗ A reader r epea t ed ly ge t s the lock , s l e e p s a bit , and then r e l e a s e s the lock ,
∗ un t i l done becomes t rue .
∗/

void ∗ reader (void ∗ data)
{

i n t rc ;
i n t t = (i n t) data ;

/∗ Wait here u n t i l a l l threads are c rea ted ∗/
rc = pthread_barrier_wait(& ba r r i e r) ;
i f (PTHREAD_BARRIER_SERIAL_THREAD != rc && 0 != rc)

handle_error (rc , " pthread_barrier_wait ") ;

/∗ repeat u n t i l user says to qu i t ∗/
whi l e (! done) {

rc = pthread_rwlock_rdlock(&rwlock) ;
i f (rc) handle_error (rc , "pthread_rwlock_rdlock ") ;
p r i n t f (" Reader %d got the read lock \n" , t) ;
s l e e p (1) ;
rc = pthread_rwlock_unlock(&rwlock) ;
i f (rc) handle_error (rc , "pthread_rwlock_unlock ") ;
s l e e p (1) ;

}
pthread_exit (NULL) ;

}

/∗∗ wr i t e r ()
∗ A wr i t e r does the same th ing as a reader −− i t r epea t ed ly ge t s the lock ,
∗ s l e e p s a bit , and then r e l e a s e s the lock , u n t i l done becomes t rue .
∗/

void ∗ wr i t e r (void ∗ data)
{

70

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

i n t rc ;
i n t t = (i n t) data ;

/∗ Wait here u n t i l a l l threads are c rea ted ∗/
rc = pthread_barrier_wait(& ba r r i e r) ;
i f (PTHREAD_BARRIER_SERIAL_THREAD != rc && 0 != rc)

handle_error (rc , " pthread_barrier_wait ") ;

/∗ repeat u n t i l user says to qu i t ∗/
whi l e (! done) {

rc = pthread_rwlock_wrlock(&rwlock) ;
i f (rc) handle_error (rc , "pthread_rwlock_wrlock ") ;
p r i n t f (" Writer %d got the wr i t e l ock \n" , t) ;
s l e e p (2) ;

rc = pthread_rwlock_unlock(&rwlock) ;
i f (rc) handle_error (rc , "pthread_rwlock_unlock ") ;
s l e e p (2) ;

}
pthread_exit (NULL) ;

}

/∗∗∗
Main Program

∗∗/

i n t main (i n t argc , char ∗ argv [])
{

pthread_t threads [NUM_READERS+NUM_WRITERS] ;
i n t r e t v a l ;
i n t t ;
unsigned i n t num_threads = NUM_READERS+NUM_WRITERS;

done = 0 ;
p r i n t f (" This program w i l l s t a r t up a number o f threads that w i l l run \n"

" un t i l you ente r a charac t e r . Type any charac t e r to qu i t \n ") ;

pthread_rwlockattr_t rwlock_att r ibute s ;
pthread_rwlockattr_in i t (&rwlock_att r ibute s) ;
/∗ The f o l l ow i ng non−por tab l e func t i on i s a GNU extens i on that a l t e r s the

thread p r i o r i t i e s when reade r s and wr i t e r s are both wai t ing on a rwlock ,
g i v ing p r e f e r en c e to w r i t e r s .

∗/
pthread_rwlockattr_setkind_np(&rwlock_attr ibutes ,

PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) ;
pthread_rwlock_init(&rwlock , &rwlock_att r ibute s) ;

/∗ I n i t i a l i z e a b a r r i e r with a count equal to the numebr o f threads ∗/
r e t v a l = pthread_barr i e r_in i t (&ba r r i e r , NULL, num_threads) ;
i f (r e t v a l) handle_error (r e tva l , " pthread_barr i e r_in i t ") ;

f o r (t = 0 ; t < NUM_READERS; t++) {
r e t v a l = pthread_create(&threads [t] , NULL, reader , (void ∗) t) ;
i f (r e t v a l) handle_error (r e tva l , " pthread_create ") ;

71

CSci 493.65 Parallel Computing
Chapter 10 Shared Memory Parallel Computing

Prof. Stewart Weiss

}

f o r (t = NUM_READERS ; t < NUM_READERS+NUM_WRITERS; t++) {
r e t v a l = pthread_create(&threads [t] , NULL, wr i te r , (void ∗) t) ;
i f (r e t v a l) handle_error (r e tva l , " pthread_create ") ;

}

getchar () ;
done = 1 ;

f o r (t = 0 ; t < NUM_READERS+NUM_WRITERS; t++)
pthread_join (threads [t] , NULL) ;

re turn 0 ;
}

Notes.

• The messages printed by the various printf statements will not necessarily appear in the
order in which printf was called by the threads.

10.12 Topics Not Covered

Any serious multi-threaded program must deal with signals and their interactions with threads. The
man pages for the various thread-related functions usually have a section on how signals interact
with those functions. Spin locks are another synchronization primitive not discussed here; they
have limited use. Real-time threads and thread scheduling, where supported, provide the means to
control how threads are scheduled for more accurate performance control. Thread keys are a way
to create thread-specific data that is visible to all threads in the process.

72

	10 Shared Memory Parallel Computing With Pthreads
	10.1 Introduction
	10.2 Thread Concepts
	10.3 Examples of Thread Creation
	10.4 Race Conditions
	10.5 Program Design Using Threads
	10.5.1 Master/Worker Paradigm
	10.5.2 Peer or WorkCrew Paradigm
	10.5.3 Pipeline

	10.6 Overview of the Pthreads Library
	10.7 Thread Management
	10.7.1 Creating Threads
	10.7.2 Thread Identification
	10.7.3 Thread Termination
	10.7.4 Thread Joining and Joinability
	10.7.5 Detached Threads
	10.7.6 Example: Calculating Pi
	10.7.7 Thread Cancellation
	10.7.8 Thread Properties
	10.7.8.1 Stack Size

	10.8 Mutexes
	10.8.1 Introduction
	10.8.2 Creating and Initializing Mutexes
	10.8.3 Locking a Mutex
	10.8.4 Unlocking a Mutex
	10.8.5 Destroying a Mutex
	10.8.6 Examples Using a Normal Mutex
	10.8.7 Other Types of Mutexes

	10.9 Condition Variables
	10.9.1 Creating and Destroying Condition Variables
	10.9.2 Waiting on Conditions
	10.9.3 Waking Threads Blocked on Conditions
	10.9.4 Condition Attributes
	10.9.5 Example

	10.10 Barrier Synchronization
	10.10.1 Motivation
	10.10.2 PThreads Barriers
	10.10.3 Example

	10.11 Reader/Writer Locks
	10.11.1 Introduction
	10.11.2 Using Reader/Writer Locks
	10.11.3 Further Details
	10.11.4 Example

	10.12 Topics Not Covered

