
CSci 493.65 Parallel Computing
Chapter 1 Motivation, Background, and Key Concepts

Prof. Stewart Weiss

Chapter 1 Motivation, Background, and Key Concepts

"'If you build it, they will come.' And so we built them. Multiprocessor workstations, massively
parallel supercomputers, a cluster in every department ... and they haven't come. ... The com-
puter industry is ready to �ood the market with hardware that will only run at full speed with
parallel programs. But who will write these programs?� Mattson et al, 2004 [1]

�We stand at the threshold of a many core world. The hardware community is ready to cross this
threshold. The parallel software community is not.� Mattson, 2011 [2]

1.1 Introduction

Humans are an insatiable species. Fast is never fast enough, and enough is never enough. We want to do
things faster and faster, and we want to accomplish more and more. People invented computers to solve
problems faster than they could be solved by hand, and people have made the individual processors faster
and faster, trying all the while to reduce their power consumption, their cost, and their size. In 1965,
Gordon Moore predicted that the number of transistors on an integrated circuit would double every eighteen
to twenty-four months, and so it has [3].

Be that as it may, these individual processors are not capable of solving the most signi�cant computational
problems, nor will they ever be, because of their inherent complexity. It is only natural then, that someone
came along with the idea of putting multiple processors to work to solve a single problem, and thus was born
the idea of parallel computing.

The idea of doing things in parallel on a computer made its �rst major appearance in the early supercomputers
of the 1970s. The Cray-1 supercomputer, designed by Seymour Cray and installed in the Los Alamos National
Laboratory in 1976, harnessed parallelism within the processor itself, using pipelining and vector operations.
But supercomputers were not really parallel computers back then. They were essentially just super-fast,
single-CPU machines.

Using multiple processors together became feasible when the microprocessor was invented, as this made it
possible to create machines with many cheap, small processors working together. But connecting multiple
processors to each other by itself does little good unless we know how to design algorithms that can use
them correctly and e�ciently, and while this may seem like it is easy enough to do, it is not.

The purpose of these notes is to provide an introduction to parallel algorithms, parallel programming,
and their analysis. They are intended to accompany the very �ne textbook written by Michael J. Quinn,
Parallel Programming in C with MPI and OpenMPI [4]. They begin with an overview of the basic concepts,
followed by a bit about parallel computer architectures. They then cover parallel design methodology,
and use that methodology in the design of various parallel algorithms to solve problems such as matrix-
vector multiplication, Monte Carlo methods, solving linear systems, classifying documents, sorting, and
�nite di�erence methods.

1.2 Basic Concepts

De�nition 1. Parallel computing is the use of parallel computers to reduce the time needed to solve a
single computational problem.

This begs the question, of course � what is a parallel computer? We will de�ne them as follows.

1

CSci 493.65 Parallel Computing
Chapter 1 Motivation, Background, and Key Concepts

Prof. Stewart Weiss

De�nition 2. A parallel computer is a computer containing more than one processor. Parallel computers
can be categorized as either multicomputers or centralized multiprocessors.

De�nition 3. A multicomputer is a computer that contains two or more computers connected by an
interconnection network.

De�nition 4. A centralized multiprocessor, also known as a symmetrical multiprocessor (SMP),
is a computer in which the processors share access to a single, global memory. A multi-core processor

is a particular type of multiprocessor in which the individual processors (called "cores") are in a single
integrated circuit.

De�nition 5. Parallel programming is programming in a language that allows one to explicitly indicate
how the di�erent parts of the computation can be executed concurrently by di�erent processors.

1.3 Scienti�c Problems and Methodology: Need for Parallel Com-

puting

The nature of scienti�c exploration and discovery has changed dramatically since the dawn of the age of
computing. Computers are now used to discover new scienti�c results, rather than just to validate or re�ne
existing ones. In fact, in 2005, the President's Information Technology Advisory Committee (PITAC) issued
a report in which they stated [5],

�Together with theory and experimentation, computational science now constitutes the �third
pillar� of scienti�c inquiry, enabling researchers to build and test models of complex phenomena
� such as multi-century climate shifts, multidimensional �ight stresses on aircraft, and stellar
explosions � that cannot be replicated in the laboratory, and to manage huge volumes of data
rapidly and economically.�

Parallel computing makes it possible to speed up computations a hundred, a thousand, or even tens of
thousands times. There are those who will argue that this does not make it possible to solve problems
that are untractable, i.e., NP-hard problems, as it only allows solving negligibly larger instances of such
problems. While this is theoretically true, such statements ignore the practical aspect of these problems, as
is best characterized by the following statement from the PITAC report [5]:

�The practical di�erence between obtaining results in hours, rather than weeks or years, is sub-
stantial � it qualitatively changes the range of studies one can conduct. For example, climate
change studies, which simulate thousands of Earth years, are feasible only if the time to simulate
a year of climate is a few hours.�

This is just one of many examples of how the ability to solve a problem in hours or days rather than years
can make a qualitative di�erence in scienti�c accomplishment. The Human Genome Project, started in 1990
and completed in 2001, was the �rst example, and it made scientists realize that computational science could
be used to a far greater extent than had been imagined before.

The Human Genome Project was one of many grand challenge problems identi�ed back then. In 1989,
over one hundred scientists from major universities, national laboratories, and industrial research centers
gathered on the Hawaiian island of Molokai to discuss and identify the need for greater computational power
to solve what they called the �grand challenge� problems of science [6]. These were categorized as

• Quantum chemistry, statistical mechanics, and relativistic physics

• Cosmology and astrophysics

• Computational �uid dynamics and turbulence

• Materials design and superconductivity

2

CSci 493.65 Parallel Computing
Chapter 1 Motivation, Background, and Key Concepts

Prof. Stewart Weiss

• Biology, pharmacology, genome sequencing, genetic engineering, protein folding, enzyme activity, and
cell modeling

• Medicine, and modeling of human organs and bones, and

• Global weather and environmental modeling.

Some of these projects were incorporated into the 1992 �Blue Book�, a publication of the O�ce of Science
and Technology Policy, an agency of the U.S. government, describing a strategic initiative to develop the
computational resources to solve these problems in the long term [7]. Since then many more grand chal-
lenges have been identi�ed, and they all require massive amounts of computation to solve. Without parallel
computing, this is not possible.

1.4 The Landscape of Parallel Computers

Parallel computers have existed since the 1970's. Their cost was greatly diminished as the result of Very Large
Scale Integration (VLSI) technology, which made it possible to reduce the chip count, thereby making reliable
parallel computers within the �nancial reach of many more customers. Many of the parallel computers and
the companies that built them no longer exist. Many experimental machines were invented and developed,
many ideas tried, and many abandoned. Government projects partly spurred their development, among them
the most important being the U.S. Department of Energy's Accelerated Strategic Computing Initiative

(ASCI)1, which resulted in the installation of a series of extremely powerful parallel computers named ASCI
Red, Blue Paci�c, Blue Mountain, White, Q, and Purple. These massively powerful computers were built
primarily for the simulation of nuclear testing.

Commercial development has led to a vast array of parallel computers, from those that sit on the average
person's desktop, containing anywhere from two to eight cores, to those installed at high performance
computing centers around the world, ranging from small centers such as the CUNY High Performance
Computing Center, which has a collection of �ve di�erent parallel computing systems, ranging from 24 up
to 1284 cores [8], to more powerful centers, such as the Texas Advanced Computing Center at the University
of Texas at Austin, which has systems with over 100,000 cores [9]. In addition, commercial development has
led to the creation of a class of parallel computers that harness large arrays of graphical processing units
(GPUs), mostly developed by NVidia Inc. These GPU-based parallel computers range in size from just a
few dozen GPU cores, to many thousands of GPU cores.

There are too many commercial parallel computers to list them all. One can �nd a long list of centralized
multiprocessors at the Wikipedia page http://en.wikipedia.org/wiki/Multi-core_processor. To get
a sense of the current state of massively parallel computing, one can visit the TOP500 project website
(http://www.top500.org.) The TOP500 project ranks and details the 500 most powerful non-distributed
computer systems in the world. The project publishes an updated list of these supercomputers twice a year,
in June and November. These are generally parallel computers of various architectures. The November 2014
list can be found at http://www.top500.org/list/2014/11/.

To give you an idea of the scale of these computers and their processing capabilities, this is a short list:

• Tianhe-2 is a 33.86 peta�ops2 supercomputer located in Sun Yat-sen University, Guangzhou, China.
In 2014 it was the world's fastest supercomputer according to the TOP500 list. It has 16,000 computer
nodes, each comprising two Intel Ivy Bridge Xeon processors and three Xeon Phi chips, for a total of
3,120,000 cores.

• Cielo is a supercomputer located at Los Alamos National Laboratory in New Mexico, USA built by Cray
Inc. It has over 143,104 cores and a theoretical peak performance of 1,374 tera�ops (1.374 peta�ops.)

• Titan is a supercomputer built by Cray at Oak Ridge National Laboratory for use in a variety of science
projects. Titan uses graphics processing units in addition to conventional central processing units. It

1Subsequently renamed the Advanced Simulation and Computing Program (ASCP).
2One peta�op is 1,000 tera�ops, or 1015 �oating-point operations per second.

3

http://en.wikipedia.org/wiki/Multi-core_processor
http://www.top500.org
http://www.top500.org/list/2014/11/

CSci 493.65 Parallel Computing
Chapter 1 Motivation, Background, and Key Concepts

Prof. Stewart Weiss

is the �rst such hybrid to perform over 10 peta�ops. Titan has 18,688 CPUs paired with an equal
number of GPUs to perform at a theoretical peak of 27 peta�ops.

• IBM Sequoia is a petascale Blue Gene/Q supercomputer constructed by IBM for the National Nuclear
Security Administration as part of the Advanced Simulation and Computing Program. It contains
1,572,864 processor cores and has achieved a performance of 16.32 peta�ops on some benchmarks.

1.5 Identifying Parallelism

Designing a parallel program to solve a given problem is only possible if the parallelism in the problem's
solution can be identi�ed. There are a few di�erent ways to identify this parallelism.

1.5.1 Data Dependence Graphs

One way to discover the parallelism in any activity, not just a computation, is by its data dependence

graph. A data dependence graph is a directed graph G =< V, E > in which each vertex represents a task
to be completed, and an edge from vertex s to vertex t exists if and only if task s must be completed before
task t can sbe started. When a graph has an edge (s, t), we say that t depends on s. (For those unfamiliar
with directed graphs, see Appendix D.)

M121

CS127

M125

M150 M160

CS150

M155 CS235 CS265 CS385

CS335CS340CS360 CS355

CS460

ST113ST213

CS135 CS232

CS260

CS132 CS133

CS267

CS136

CS160

CS350

CS450

CS365

CS405CS415 CS435

CS485

Figure 1.1: A data dependence graph. In this graph, the vertices represent courses o�ered in the Computer
Science Department at Hunter College. Vertices with double-lines are required. In this context, data
dependence indicates which course is a prerequisite to which other course.

An example of a data dependence graph is given in Figure 1.5. The overall mission is to complete a degree in
computer science at Hunter College, and the graph shows the dependencies among the courses o�ered in the
department, as well as those outside of the department that are required. Highlighted courses are required
courses in the department; those with doubled circumferences are required to graduate. The tasks, a.k.a.
courses, are aligned in horizontal rows to show which should be taken earlier than others in order to complete
the mission in the least time. As such, the graph helps identify which tasks (courses to be completed) can

4

CSci 493.65 Parallel Computing
Chapter 1 Motivation, Background, and Key Concepts

Prof. Stewart Weiss

be done in parallel. It also shows the minimum amount of time necessary to complete the mission, if there
were no constraints limiting how many tasks could be carried out in parallel (such as time to sleep, or pay
the bills), which in this case is six semesters.

1.5.2 Data Parallelism

A data dependence graph exhibits data parallelism when it contains instances of a task that applies the
same sequence of operations to di�erent elements of a data set. The program whose data dependence graph
is displayed in Figure 1.2 exhibits coarse-grained data parallelism, because a single function, sort(), is
applied to di�erent data items in parallel. Data parallelism is coarse-grained when the parallel task consists
of a many of instructions.

sort(A,0,999) sort(A,1000,1999) sort(A,2000,2999) sort(A,3000,3999)

read(file,A,4000)

write(sortedfile,A,4000)

merge(A,4000)

Figure 1.2: An example of data parallelism in a data dependence graph. An array is read from a �le, then
a single sort function is applied to di�erent parts of it, after which the sorted sub-arrays are merged and
output. The four instances of the sort function are examples of the same task applied to di�erent data
elements.

Fine-grained data parallelism exists when the operation consists of at most a few instructions, as in the
following code fragment

for (i = 0; i < 4000; i++)

A[i]++;

Here, the increment operation is being carried out on 4000 array elements. Its data dependence graph, in
Figure 1.3, has no edges. It is just a collection of vertices (nodes), none of which depend upon any other.

A[0]++ . . .A[1]++ A[2]++ A[3999]++

Figure 1.3: Fine-grained data parallelism.

1.5.3 Functional Parallelism

A data dependence graph exhibits functional parallelism if it contains independent tasks that apply
di�erent operations to possibly di�erent data elements. Figure 1.4 illustrates two common types of problems
in which functional parallelism can arise. In 1.4a, an array of data items, such as census data, is read from a
�le and distributed to three di�erent tasks, which get statistics on income, age, and family data respectively,
after which a cluster analysis is performed on the data. The three tasks can be performed in parallel because

5

CSci 493.65 Parallel Computing
Chapter 1 Motivation, Background, and Key Concepts

Prof. Stewart Weiss

they do not modify the input data and do not depend on each other's results. In 1.4b, there are several
instances of functional parallelism:the tasks labeled make_string, compare, and printf can be executed in
parallel, as can parse and cleanup, and init and execute.

get_income_stats(A,S) get_familydata(A,F);get_age_data(A,D);

cluster_analysis(A,S,D,F);

read(file,A)

(a) Census analyzer.

main

parse

init

cleanup

printf

execute

make_string compare

(b) Software subsystem.

Figure 1.4: Two examples of functional parallelism in a data dependence graph.

1.5.4 Pipelining

When a data dependence graph is nothing but a simple path, with no branching at all, as in Figure 1.5, then
there is no inherent parallelism in it, given that it only needs to be applied to a single problem instance,
because no two tasks can be performed at the same time. However, if the operations or tasks in the graph are
applied to multiple instances of the problem, then it is possible to overlap the sequences of tasks in parallel
with each other on the di�erent problem instances. This is known as a pipelined computation.

If you are familiar with how a factory assembly line works, then you already know how pipelining works.
Imagine that some factory that makes widgets has a very long conveyor belt, perhaps one hundred meters
long. Along the belt are ten workstations where di�erent parts are attached to a widget. A widget frame
is placed at the start of the belt, and each time it reaches a new workstation, a machine or a person there
adds a new part to it. By the time it rolls o� of the conveyor belt, after workstation #10, it is complete and
ready to be inspected. Suppose that each step takes an equal amount of time, say 5 minutes. Then it takes
50 minutes to assemble one widget, but if 1000 widgets are assembled each day, then once the assembly line
is fully loaded, a widget is produced every 5 minutes, so the 1000 widgets are assembled in 5045 minutes,
for an average of 5.045 minutes per widget. (Assembly of the kth widget starts at time 5(k− 1) and ends at
time 5(k − 1) + 50 = 5k + 45.)
Pipelining can be applied to software as well. A loop such as

sum = 0;

for (i = 0; i < 4; i++)

sum = sum + a[i];

that computes the sum of the elements in an array, has no data parallelism in it because of the dependence
of the value of the sum in iteration k on its value in iteration k−1. However, if many arrays will be supplied
to this loop, perhaps because it is nested in an outer loop, then the loop can be unrolled . Unrolling a loop

S1 S2 S3 S4 S5

Figure 1.5: A data dependence graph exhibiting no parallelism. The tasks must be performed one after the
other, from left to right.

6

CSci 493.65 Parallel Computing
Chapter 1 Motivation, Background, and Key Concepts

Prof. Stewart Weiss

means creating a sequence of instructions whose length is the number of loop iterations, using temporary
variables to store interim results. This is bext explained by the example. The above loop is unrolled into
the four instructions:

sum0 = a[0];

sum1 = sum0 + a[1];

sum2 = sum1 + a[2];

sum3 = sum2 + a[3];

Each instruction depends on the previous one, but the sequence can be turned into a pipeline, as shown in
Figure 1.6. We can think of each operator as a task with two inputs and a single output. The output in
the Figure is shown as being fed into the next stage of the pipeline as well as being available for access (the
upward arrows) in case we want to read them outside of the pipeline.

++

a[0]

+

a[1]

+

a[2]

+

a[3]

sum0 sum1 sum2 sum3

sum0 sum1 sum2 sum3

Figure 1.6: Summation pipeline for an unrolled loop.

1.6 Example: Data Clustering in Parallel

Data clustering is the classi�cation of patterns such as observations, data items, or feature vectors into
groups called clusters. It is useful in several exploratory pattern-analysis, grouping, decision-making, and
machine-learning contexts, including data mining, document retrieval, image segmentation, and pattern
classi�cation. Since the advent of the World Wide Web, vast amounts of data are being collected in an
amazing assortment of subjects, across all disciplines, and discovering information in that data can only be
done using computers. Clustering is one of the �rst steps in exploratory data analysis. However, clustering
is a di�cult problem combinatorially, and it is a good problem for parallelization.

We will use clustering as a simple example to demonstrate the discovery of data and functional parallelism.
Given is a collection of N text documents. Each document is analyzed to determine how well it covers D
di�erent topics, and each document is placed into exactly one of K possible clusters. Each cluster consists
of documents that are similar with respect to all of the D topics.

We use Quinn's sequential data clustering outline as the starting point [4]. It is a k-means partitional
algorithm. It starts with a random initial partition and keeps reassigning the patterns to clusters based on
the similarity between the pattern and the cluster centers until a convergence criterion is met:

Listing 1.1: Clustering Algorithm

1 Input N documents;

2 For each of the N documents generate a D-dimensional vector indicating how well it

covers the D different topics;

3 Choose the K initial cluster centers using a random sample;

4 Repeat the following steps for I iterations or until the performance function

converges , whichever comes first:

5 (a) For each of the N documents , find the closest center and compute its

contribution to the performance function;

7

CSci 493.65 Parallel Computing
Chapter 1 Motivation, Background, and Key Concepts

Prof. Stewart Weiss

6 (b) Adjust the K cluster centers to try to improve the performance function

value;

7 Output the K centers;

Our goal is not to understand clustering but to use it to demonstrate the formation and application of the
data dependence graph. In order to expose the data parallelism in an algorithm, sometimes it is necessary
to expand the data on which it acts into individual elements, as we showed in Figure 1.3 above. That is
what Quinn does in this example, and we do the same. From the above description, you can see that there
are six tasks, because we must separate steps 4a and 4b. (Step 4b can only be performed after 4a has been
completed for all of the documents.) The data dependence graph in Figure 1.7 has a rectangle for each of
steps 1, 2, 3, and 4a, and separate nodes for tasks 4b and 5. The central node in the graph, labeled �dummy
task�, is essentially representing the control expression in the loop of Step 4.

Step 4a: Find Closest Cluster Centers

Step 3: Choose Initial Cluster Centers

Step 1: Input Docs

Step 2: Generate Vectors

...

... ...

...

Input
document 0

Input
document 1

Input
document N−1

Generate document
 vector 1

Generate document
 vector N−1

Choose cluster
center 0

Choose cluster
center 1

Choose cluster
center K−1

to vector N−1 and
Find closest center

update performance
function

Find closest center
to vector 1 and

update performance
function

Generate document
 vector 0

Find closest center
to vector 0 and

update performance
function

Adjust cluster
centers

Output cluster
centers

Step 4b: Step 5:

dummy task

Figure 1.7: Data dependence graph for clustering algorithm from Listing 1.1.

The rectangular groups are di�erent functional groups. Within each functional group we see that the same
action is applied to multiple data elements. Thus, within each rectangle there is data parallelism. Tasks that
can be executed in parallel include Steps 1 and 3, or Step 2 and 3. All of these must be completed before
Step 4, but there is no dependence between Step 3 and either of Steps 1 or 2.

1.7 Paths towards Parallel Programming

In 1988, McGraw and Axelrod [10] identi�ed four di�erent approaches towards the creation of parallel
software:

1. extending a compiler to translate a sequential program into parallel code;

2. extending a sequential language with new instructions that allow the expression of parallelism;

3. creating a new parallel language layer �on top of� an existing sequential language;

4. de�ning a new parallel language and compiler system.

We brie�y consider these di�erent strategies.

8

CSci 493.65 Parallel Computing
Chapter 1 Motivation, Background, and Key Concepts

Prof. Stewart Weiss

1.7.1 Extending a Compiler

The basic idea is that a compiler can be modi�ed to detect the inherent parallelism in a program and
output parallel code when it �nds it. Compilers that do this are called parallelizing compilers. The
major advantage of this approach is that programmer would not have to do anything to create parallel
programs, and existing sequential programs could be converted automatically into parallel code that could
take advantage of parallel computers. As there is an enormous code base of existing scienti�c software written
mostly in versions of Fortran, and Fortran does not have many of the features of later languages that make
the problem di�cult3, most of the research e�ort has been directed towards the development of parallelizing
Fortran compilers.

Studies have shown that 90% of the execution time of most programs is spent in 10% of the code, mostly in
loops. Therefore, much of the e�ort is in detecting the parallelism in loops. Unfortunately there are many
di�culties with this, such as that loops have an unknown number of iterations, and dependence analysis is
hard for code that uses pointers and recursion. Hatcher and Quinn [11] also point out that this approach
leads to a scenario in which the programmer inadvertently hides the inherent parallelism in sequential loops
and other control structures, and the compiler has to seek it out.

1.7.2 Extending a Sequential Language

One relatively easy path towards parallelism is to add functions and compiler directives to an existing
sequential programming language so that users can specify the parallelism explicitly. The additional features
are incorporated into run-time libraries and header �les, and good system provide high-quality documentation
to make the programmer's transition as painless as possible. TheMPI standard is probably the most widely-
adopted system that falls into this category. MPI , the Message Passing Interface, is a standardized
API used primarily for parallel and/or distributed computing. Language bindings have been written for C,
C++, Fortran 77 , Fortran 90, Python, and a few other languages. MPI is intended as a system to use
when there is no shared address space among the processors, although it also works when there is a shared
address space.

OpenMP is another type of extension to a sequential language, but OpenMP primarily consists of compiler
directives that the programmer embeds in sequential code to direct the compiler about how to parallelize
the program. OpenMP requires the use of compilers that have been modi�ed to incorporate the OpenMP
standard. Unlike MPI, it does not provide message passing facilities and can only be used when there is a
shared address space. These concepts will be explained in Chapter 2.

This path towards parallelism is the one we adopt in this course. It is the easiest for the programmer. There
is no need to learn a new language, and both MPI and OpenMP are so widely adopted that the parallel
programs will be very portable. There is also a very large code base and excellent documentation for both
systems.

1.7.3 Adding a Parallel Layer to an Existing Sequential Language

Another approach was to add a layer on top of a sequential programming language. The sequential language
would be used for the sequentially executed code and the new layer would be a way of expressing parallelism.
This approach was tried in the 1990's but the projects have all been discontinued.

1.7.4 De�ning a Parallel Language

There are several parallel programming languages that have been either written from scratch or based upon
existing sequential languages. The most popular parallel programming language that was written from
scratch is occam, originally written in 1983 and subsequently revised several times. Occam was based upon
a theoretical concurrent programming language proposed by Tony Hoare named Communicating Sequen-
tial Processes (CSP). While there are many others, some of the most prevalent include Ada, Parlog, and

3Pointers, aliasing, and dynamic memory allocation are the primary culprits.

9

CSci 493.65 Parallel Computing
Chapter 1 Motivation, Background, and Key Concepts

Prof. Stewart Weiss

Smalltalk. Languages built upon existing sequential programming languages include High Performance For-
tran (HPF), Fortran 90, C*, Uni�ed Parallel C, and Concurrent Haskell. These languages come in a wide
variety of paradigms. Some are imperative languages, like the Fortran and C based ones, some functional,
like Concurrent Haskell, some logic-based, some based on the actor model (Smalltalk), and so on. Occam is
based on the lambda-calculus, like Lisp. Therefore, there is little that all of these languages have in common.

Languages like HPF are relatively easy for the programmer to learn because the parallelism is data paral-
lelism. For example, it has special for-loops that mean �execute the loop body in parallel� and high level
matrix operations that can be executed in parallel.

Creating a parallel programming language from scratch frees the language designer from the constraints of
using an existing language standard, but it also means creating a new compiler from scratch and trying to
get users to adopt the new language. Its success also depends on the hardware vendors to develop good
compilers for their parallel systems. Thus there are many risks involved from the perspective of the language
developer.

For a user to develop code in a new parallel language, there is a portability issue. If there are too few systems
that have produced compilers for it or that have not developed the run-time supporting libraries for it, then
the code will not be portable. If a standard has not been adopted, then even if the systems support it, there
will be compatibility problems.

10

CSci 493.65 Parallel Computing
Chapter 1 Motivation, Background, and Key Concepts

Prof. Stewart Weiss

References

[1] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for Parallel Programming. Addison-
Wesley Professional, �rst edition, 2004.

[2] Tim Mattson. The quest for general purpose parallel programming. In Fourth Workshop on Programma-
bility Issues for Multi-Core Computers (MULTIPROG-2011), January 2011.

[3] G.E. Moore. Cramming more components onto integrated circuits. Proceedings of the IEEE, 86(1):82�85,
1998.

[4] M.J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Higher Education.
McGraw-Hill Higher Education, 2004.

[5] President's Information Technology Advisory Committee. Computational science: Ensuring america's
competitiveness. Report to the President, June 2005.

[6] E. Levin. Grand challenges to computation science. Communications of the ACM, 32(12):1456�1457,
December 1989.

[7] Mathematical Committee on Physical and Engineering Sciences. Grand challenges: High performance
computing and communications. Report to the President, 1992.

[8] College of Staten Island CUNY High Performance Computing Center. Hpc systems at the cuny hpcc,
2013. at http://www.csi.cuny.edu/cunyhpc/HPC_Systems.html.

[9] Texas Advanced Computing Center. Stampede dell poweredge c8220 cluster with intel xeon phi copro-
cessors, 2013. at https://www.tacc.utexas.edu/resources/hpc/stampede-technical.

[10] James R. McGraw and Timothy S. Axelrod. Programming parallel processors. chapter Exploiting Mul-
tiprocessors: Issues and Options, pages 7�25. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1987.

[11] P.J. Hatcher and M.J. Quinn. Data-parallel programming on MIMD computers. MIT Press), ad-
dress=Cambridge,MA� 1991.

11

CSci 493.65 Parallel Computing
Chapter 1 Motivation, Background, and Key Concepts

Prof. Stewart Weiss

Subject Index

Accelerated Strategic Computing Initiative, 3

centralized multiprocessor, 2
coarse-grained data parallelism, 5

data clustering, 7
data dependence graph, 4
data parallelism, 5

�ne-grained data parallelism, 5
functional parallelism, 5

grand challenge problems, 2

Message Passing Interface, 9
multi-core processor, 2
multicomputer, 2

parallel computer, 2
parallel computing, 1
parallel programming, 2
parallelizing compiler, 9
peta�ops, 3
pipelined computation, 6

symmetrical multiprocessor, 2

TOP500, 3

unrolling loops, 6

12

	1 Motivation, Background, and Key Concepts
	1.1 Introduction
	1.2 Basic Concepts
	1.3 Scientific Problems and Methodology: Need for Parallel Computing
	1.4 The Landscape of Parallel Computers
	1.5 Identifying Parallelism
	1.5.1 Data Dependence Graphs
	1.5.2 Data Parallelism
	1.5.3 Functional Parallelism
	1.5.4 Pipelining

	1.6 Example: Data Clustering in Parallel
	1.7 Paths towards Parallel Programming
	1.7.1 Extending a Compiler
	1.7.2 Extending a Sequential Language
	1.7.3 Adding a Parallel Layer to an Existing Sequential Language
	1.7.4 Defining a Parallel Language

