
CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

Chapter 4 Message-Passing Programming

�Perilous to us all are the devices of an art deeper than we possess ourselves. � Gandalf, in Lord
of the Rings, Part II: The Two Towers [1]

4.1 Introduction

This chapter begins our study of parallel programming using a message-passing model. The advantage of
using a message-passing model, rather than a shared memory model, as a starting point, is that the message-
passing model can be used on any model of multicomputer, whether it is a shared memory multiprocessor
or a private memory multicomputer. The next decision we have to make is which parallel programming
language we choose for implementing the algorithms we will develop. The Message Passing Interface
(MPI) standard is very widely adopted, and this is our choice. It is not a language, but a library of functions
that add a message-passing model of parallel programming to ordinary sequential languages like C, C++,
and Fortran. OpenMPI is a free version of MPI. MPI is available on most commercial parallel computers,
making programs that use the standard very portable.

In this chapter, we will introduce the following MPI functions:

MPI Function Purpose

MPI_Init initializes MPI
MPI_Comm_rank determines a process's ID number (called its rank)
MPI_Comm_size determines the number of processes
MPI_Reduce performs a reduction operation
MPI_Finalize shuts down MPI and releases resources
MPI_Bcast performs a broadcast operation
MPI_Barrier performs a barrier synchronization operation
MPI_Wtime determines the �wall� time
MPI_Wtick determines the length of a clock tick

4.2 About C and C++

We will almost exclusively describe only the C syntax of MPI in these notes; sometimes we will show the C++
syntax as well. Although you can use C++ with MPI Versions up to 2.2, it became deprecated as of Version
2.2 and is not supported in Version 3.0. What this means is that you can write C++ programs that use
MPI, but they cannot use the C++ binding; they must call functions using their C syntax. If you intend to
program in C++, you can visit the MPI online documentation, http://www.open-mpi.org/doc/v1.6/, for
the C++ syntax. However, you should be aware that there are more than just syntactic di�erences between
the C and C++ library bindings, and it is advised that you spend some time familiarizing yourself with those
di�erences. The C++ binding is an object-oriented one, and the error handling is also di�erent. For example,
almost all MPI routines return an error value; C routines do so as the return value of the MPI function but
C++ functions do not return errors. If the default error handler is set to MPI::ERRORS_THROW_EXCEPTIONS,
then on error the C++ exception mechanism will be used to throw an MPI:Exception object.

As the textbook is based on C, all of the code in these notes is likewise in C.

1

http://www.open-mpi.org/doc/v1.6/

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

4.3 The Message-Passing Model

The message-passing parallel programming model is based on the idea that processes communicate with each
other through messages, rather than by accessing shared variables. The underlying assumption is that each
process runs on a processor that has a local, private memory, and that the processors on which the processes
run are connected by an interconnection network that supports the exchange of messages between every pair
of processes. In this sense there is a natural correspondence between the task/channel model from Chapter
3 and the message-passing model: a task is a process in the model, and the interconnection network provides
an implicit channel between every pair of tasks. In short, it is as if there is a fully-connected graph topology
connecting all tasks to each other, even if our programs do not use all of the channels in that graph.

Interconnection
Network

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Memory

Figure 4.1: The message-passing model's hardware model. It treats it as if there are independent processors
with their own local memories, connected by an interconnection network.

MPI-1 imposes restrictions on the style of programming:

� We cannot create new processes on the �y; all processes have to be created at the start of the program.
MPI-2 allows dynamic process creation.

� All processes execute the same program, but they each have a unique identi�cation number, so if we
really want some of the them to execute di�erent code, they can branch to di�erent code conditionally
based on their ID. This is sometimes called a Single Program Multiple Data (SPMD) paradigm.

Messages are used not just to exchange data between processes, but to synchronize as well. The receive
operation is a synchronous primitive; when a process calls it, it does not return until some other process has
sent a message to the calling process. Therefore, it can be used to synchronize the execution of processes
with each other. As Quinn puts it, � even a message with no content has a meaning.�[2]

The message-passing model has two bene�ts over the shared memory model. One is that, the way that
message-passing programs are designed, there are two methods of data access: accesses to the process's local
address space, and communication through messages. The local data accesses tend to result in high cache
hit rates because of spatial locality, which improves performance. Secondly, because the message-passing
programmer knows that communication costs are a drag on performance, this also leads to a style of program-
ming that can improve performance, as compared to programs that use shared variables indiscriminately.

The second bene�t is that debugging message-passing programs is easier than debugging shared memory
programs. This is because there are almost no race conditions in message-passing programs. A race

2

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

condition exists in a system of two or more processes when the state of the system is dependent on the order
in which these processes execute a sequence of instructions. Because the message-passing library provides a
form of synchronization, the non-deterministic behavior associated with shared memory parallel programs
can generally be avoided. Of course a programmer that works hard enough can create them anyway!

4.4 The MPI Story

Before we begin, we should know a bit about the where and why of MPI. Before MPI, there were no standards.
Di�erent parallel computer vendors were providing di�erent libraries for message-passing on their systems.
By the early 1990's, there were several di�erent and incompatible interfaces such as Intel NX, IBM-EUI/CCL,
PVM, P4, and OCCAM. This made it impossible to port from one system to another without rewriting
signi�cant amounts of code. In April 1992, the Center for Research on Parallel Computing sponsored
the Workshop on Standards for Message Passing in a Distributed Memory Environment in Williamsburg,
Virginia. This workshop drew representatives from academia, industry, and the government. A working
group called the Message Passing Interface Forum was formed to develop a draft standard, and in November
1992, the �rst draft standard, dubbed MPI, was produced. This draft MPI standard was presented at the
Supercomputing '93 conference in November 1993. It subsequently underwent a revision, and MPI-2 was
adopted in 1997. A third version, MPI-3, was completed and MPI-3.0 was adopted in September 2012.

4.5 Circuit Satis�ability

A decision problem is a problem that has a yes/no answer, such as, given a graph, does it have a cycle. A
solution to a decision problem is an algorithm that, for all possible instances of the problem, outputs yes or
no correctly. The circuit satis�ability problem is the decision problem of determining whether a given
Boolean circuit has an assignment of its inputs that makes the output true. The circuit may contain any
number of gates. If there exists an assignment of values to the inputs that makes the output of the circuit
true, it is called a satis�able circuit; if not it is called unsatis�able. This problem has been proven to be
NP-complete. For those unfamiliar with the meaning of NP-completeness, it means roughly that there are
no known deterministic polynomial-time algorithms that can solve all instances of this problem (that is the
NP part of the term), and that if one were found, then all other problems that are in this class called NP
would also have deterministic polynomial time algorithms (that is the �complete� part of the term.) 1

a

b

c

d

(a) A satis�able circuit.

a

b

(b) An unsatis�able circuit.

Figure 4.2: Two boolean circuits. Circuit (a) can be satis�ed by the assignment a=b=c=d=1, but no
assignment can make the output of (b) 1.

Some circuits are satis�able and others are not. Figure 4.2 demonstrates this fact with two very small
circuits. For a circuit with N independent inputs, there are a total of 2N possible combinations of these
inputs. A brute force way of solving this problem is to try every possible combination of these 2N inputs,
equivalent to building a truth table for the circuit and searching for a row of the truth table that has a true
output value. For small values of N , this is feasible, but not for large values. For example, the circuit in
Figure 4.3 has 32 inputs and therefore 232 = 4, 294, 967, 296 possible input combinations.

1This is not a technically correct de�nition, but it is how you should think of the meaning of the term.

3

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

Figure 4.3: A 32-bit circuit.

Although there are no polynomial-time algorithms that solve this problem, there are intelligent algorithms
that solve it e�ciently, meaning in time O(cN), where 1 < c < 2. These are still exponential running time of
course. Because our goal in this chapter is to develop a parallel algorithm, we base it upon the brute force
sequential algorithm, as it is a very simple one and is therefore a good starting point for us. Let us assume
that the input size is 16, as Quinn does [2].

The brute force sequential algorithm is of the form

// for each 16-bit non-negative integer n

for (int n = 0; n < 65536; n++)

if the bits of n satisfy the circuit

output �satisfiable� and stop

This algorithm solves the decision problem, but we will modify it slightly so that, instead of just reporting
whether it is a satis�able circuit or not, it prints out every integer that satis�es the circuit. Therefore, the
starting point will be the following sequential algorithm:

// for each 16-bit non-negative integer n

for (int n = 0; n < 65536; n++)

if the bits of n satisfy the circuit

output n

4.5.1 Partitioning

It should be fairly obvious that there is data parallelism in this computation because each input is independent
and checking may be performed in parallel. Thus, for the partitioning step of Foster's design methodology,
we should associate a primitive task with each input integer. Each such task would check whether that
integer satis�es the circuit, and if it does, it will print the integer as a binary number.

The task/channel graph is thus a sequence of adjacent nodes with no channels between them, as shown in
Figure 4.4. This is sometimes called an embarrassingly parallel problem. Each task may produce output,
so it will be connected to the output device by an I/O channel.

4

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

i/o i/o i/o i/o

print()

check(0) check(1) check(2) check(65535). . .

Figure 4.4: Task/channel graph after partitioning for circuit satis�ability.

4.5.2 Agglomeration and Mapping

There is a �xed number of tasks and no communication among them, so we follow the leftmost branches of
Foster's decision tree (Chapter 3). The next question is whether all tasks spend the same amount of time
in their computations. In general, they can spend vastly di�erent amounts of time computing. It depends
on how quickly they �nd an and-gate that has a 0 output. For example, if you look at the leftmost two
input bits in the circuit in Figure 4.3, you see that the pattern 00 will drive the circuit to a 0 output very
quickly, so all tasks that have those two leading 0's might �nish quickly, whereas other may have to check
all gate outputs. Because tasks do not have an even computational load, we follow the right branch of the
last decision node and decide to cyclically map tasks to processors to balance the computation load.

To reduce overhead, we assign one task per processor. Thus we are cyclically mapping numbers to processors.
Assume there are p processors and n numbers. A cyclic interleaving of the numbers to the processors is like
a round-robin scheduling: the �rst p numbers are given to tasks 0, 1, 2, ..., p− 1 and the next p numbers are
given to those same tasks again, so that task k gets numbers k, k + p, k + 2p, k + 3p, ... up to the largest
number k + mp that is less than n − 12. If n is a multiple of p, then all tasks have the same number of
computations to perform. If not, then some will do one more round than others. You may wonder why
this distribution of data items to tasks balances the load. The simple explanation is that the amount of
computation required for two adjacent bit combinations will tend to be the same, so assigning them to
di�erent tasks tends to even out the load.

4.5.3 Coding the Solution in C Using MPI

Every program that uses MPI has to start by including theMPI header �le <mpi.h>. This particular program
also writes to standard output using the C library's printf() function, so we start the program with

#include <mpi.h>

#include <stdio.h>

Because MPI must be initialized by calling MPI_Init, which must be passed the program's command line
parameters, the main program must declare them in its header:

int main (int argc, char* argv[])

Every process will execute its own copy of this main program. All variables declared in this program,
including the automatic variables declared within any function block, or global variables declared outside all
function scopes, will be private in each process. The complete program appears in Listing 4.1. It implements
checking of the circuit shown in Figure 4.5. We explain the important components of this program after the
listing.

Listing 4.1: circuitsat1.c

1 /*

2Another way to see this is that number j is assigned to task j mod p.

5

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

2 Title : circuitsat1.c

3 Author : Michael J. Quinn , modified by Stewart Weiss

4 Created on : January 6, 2014

5 Description : MPI program to check satisfiability of a boolean circuit

6

7 Notes:

8 This is version 1 of the circuit satifiability program.

9 This is an MPI program that checks whether a boolean circuit is satisfiable.

10 The boolean circuit is hard -wired into the program for simplicity. It is

11 a 16-input circuit requiring the texting of 2^16=65536 possible boolean

12 combinations of 0's and 1's. This is equivalent to supplying it all possible

13 non -negative integers with 16 bits.

14 */

15

16 #include <mpi.h>

17 #include <stdio.h>

18

19 // The following macro is the value of the ith bit of n. It does a bitwise -and

20 // of n and the number 0 everywhere except for the ith bit (defining the 0 bit

21 // as the least signficiant bit.

22 #define EXTRACT_BIT(n,i) (((n)&(1<<(i)))?1:0)

23

24

25 // check_circuit(id,n) checks whether inputval encodes a 16-bit input for

26 // the circuit , and if it does it prints the 16 bits along with process id

27 // of the process that executed it.

28 void check_circuit (int proc_id , int inputval);

29

30 int main (int argc , char* argv [])

31 {

32 int i;

33 int id;

34 int p;

35

36 MPI_Init (&argc , &argv);

37 MPI_Comm_rank (MPI_COMM_WORLD , &id);

38 MPI_Comm_size (MPI_COMM_WORLD , &p);

39

40 for (i = id; i < 65536; i += p)

41 check_circuit(id, i);

42

43 printf("Process %d has finished\n", id);

44 fflush(stdout);

45 MPI_Finalize ();

46 return 0;

47 }

48

49 // circuitvalue(v,len) evaluates the set of 16 bits stoed in array v[0..15]

50 // and returns 1 if the circuit is true and 0 if it is false.

51 int circuitvalue (short v[])

52 {

53 return (

54 ((v[0] || v[1]) && (!v[1] || v[3]))

55 && ((v[2] || v[3]) && (!v[3] || !v[4]))

56 && ((v[4] || !v[5]) && (v[5] || v[6]))

57 && ((v[5] || !v[6]) && (v[7] || !v[8]))

58 && ((v[8] || v[9]) && (v[8] || !v[9]))

59 && ((!v[9] || !v[10]) && (v[10] || v[11]))

60 && ((v[11] || v[9]) && (v[12] || v[13]))

6

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

61 && ((!v[8] || !v[13]) && (v[13] || !v[14]))

62 && ((v[14] || v[15]) && (!v[15] || v[6]))

63);

64 }

65

66 void check_circuit (int proc_id , int inputval)

67 {

68 short v[16];

69 int i;

70

71 for (i = 0; i < 16; i++)

72 v[i] = EXTRACT_BIT(inputval ,i);

73

74 if (circuitvalue(v)) {

75 printf ("%d: %d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d\n", proc_id ,

76 v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7],v[8],v[9],v[10],v[11],

77 v[12],v[13],v[14],v[15]);

78 fflush(stdout);

79 }

80 }

Figure 4.5: The 16-bit circuit that program circuitsat.c checks.

4.5.4 The MPI_Init Function

The MPI_Init function must be called before any other MPI function. Its C syntax is

int MPI_Init(int *argc, char ***argv)

The call may be placed anywhere in the program as long as this condition is met. It is best, from a software
engineering perspective, if it appears in the main program, in a place that is easy to see, but this is not
required. Its purpose is to initialize the MPI library for this process, i.e., to perform a setup. It must be
passed the command line word count and the array of command line words, both passed by address. Thus,
the typical form of the main program in C should be3

3In C++, there is a form of MPI_Init that does not require the arguments. See the man page.

7

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

int main(int argc; char* argv[])

{

/* declare variables */

MPI_Init(&argc, &argv);

/* parse argc and argv arguments */

/* main program body */

MPI_Finalize();

}

This function, like all functions in the MPI library, starts with the pre�x MPI_. In fact all MPI identi�ers
start with MPI_, followed by an uppercase letter, followed by a string of lowercase letters and underscores.
MPI constants are always in uppercase.

4.5.5 The MPI_Comm_rank and MPI_Comm_size Functions

A communicator is an object that makes it possible for processes to communicate with each other using
MPI message-passing primitives. We do not care how it works as long as it does this for us. Although it is
possible to create customized communicators, we do not need to do this now, because when MPI is initialized
by calling MPI_Init, it creates a default communicator named MPI_COMM_WORLD. Our �rst program will use
this communicator.

Processes within a communicator are ordered. Each has a unique position in this ordering, called its rank.
If a program has p processes, they will have ranks between 0 and p − 1. In previous chapters we saw how
a data set could be partitioned in such a way that each process was responsible for its own part of it. A
process's rank allows it to determine which part of the data set is its responsibility. To obtain its rank, a
process requests it from the communicator using the function MPI_Comm_rank, whose syntax is

int MPI_Comm_rank(

MPI_Comm comm, /* Communicator handle */

int *rank /* Rank of the calling process in group of comm */

)

The �rst argument is the name of the communicator and the second is the address of an integer variable to
be given the process's rank. We call the communicator argument a handle ; this is a commonly used term
that typically means a pointer to a usually large structure (which is what an object of type MPI_Comm is.)
Our program will call

MPI_Comm_rank(MPI_COMM_WORLD, &id);

The communicator also allows a process to obtain the communicator's size, which is how many processes are
in it, using MPI_Comm_size, whose syntax is

int MPI_Comm_size(

MPI_Comm comm, /* Communicator handle */

int *size /* Number of processes in the group of comm */

)

The �rst argument is again the name of the communicator and the second is the address of an integer variable
to be given the number of processes. Our program will call

MPI_Comm_size (MPI_COMM_WORLD, &p);

In the program, the �rst three executable instructions initialize MPI and then get the process's rank and
the total number of processes, in id and p respectively. These variables are used in the subsequent for-loop
as a means of picking the numbers it will input to the circuit:

8

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

for (i = id; i < 65536; i += p)

check_circuit(id, i);

Notice that the �rst value that each process checks is its rank; it sets i to id, id+p, and so on, so you

see that in general it checks all inputs of the form id + jp, j = 0, 1, 2, ...,
⌊

65536
p

⌋
− 1. The function call

check_circuit(id,i) will check whether the number i satis�es the circuit. It is passed id so that it can
print it out if i satis�es it. It is an easy but tedious function to understand, because all it really does is
evaluate the boolean expression that is equivalent to the circuit. If you are unfamiliar with bit operations
in C, the C macro

#define EXTRACT_BIT(n,i) (((n)&(1<�<(i)))?1:0)

evaluates the bitwise-and of the �rst argument, n, and the number 000...0100..000, consisting of zeros in
all but positions except position i, and if it evaluates to non-zero, it �returns� 1 and otherwise 0. It is a very
e�cient way to extract the ith bit of an integer.

4.5.6 Output

When the separate processes in a parallel program make calls to library routines such as printf to perform
output to shared output streams such as the standard output device (e.g., the terminal), or shared �les,
a race condition may exist. This is because the C and C++ libraries by themselves cannot prevent the
output of these function calls from being intermingled. The subject of how the standard library actually
performs output, and how that output appears on the terminal, is beyond the scope of the material of this
course. (You can read about it in my Unix Lecture Notes series, at http://www.compsci.hunter.cuny.

edu/~sweiss/course_materials/unix_lecture_notes.php.) If there are enough processes simultaneously
trying to write their output to the standard output device, and that device is a terminal, and the output is
large enough in size, meaning they are all busy writing lots of output, and the number of characters being
written by each call to printf is also large, then there is a good chance that the lines from di�erent processes
will appear mixed on terminal lines. We cannot prevent this unless we do something in our code to remove
this race condition. This program does not attempt to do that.

It is not likely that the lines written by two di�erent processes will appear on the same line of the terminal,
at least not on most Unix systems, because the strings that printf is printing are all terminated by newline
characters. However, this program includes the following function call after each call to printf:

fflush(stdout);

The fflush function �ushes the internal bu�er for the given stream used by the C standard I/O library for
the process. However, the newline character forces the �ush as well, so this call will have no e�ect. The
only reason to include this call is in case the output of this program is redirected to a �le. If so, and for
some reason, one or more of the processes crashes during execution, this call will increase the chance that
the output will be written to the �le.

4.5.7 Cleaning Up: MPI_Finalize

Like many other library API's, the MPI standard includes a function named MPI_Finalize, whose purpose
is to release resources used by MPI for the program. It should be called after all calls to the MPI library
have been made. Its syntax is4

int MPI_Finalize()

In general, your program should call this function just before it returns.

4In C++ there is no return value.

9

http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/unix_lecture_notes.php
http://www.compsci.hunter.cuny.edu/~sweiss/course_materials/unix_lecture_notes.php

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

Note. All processes must call this routine before exiting. All processes will still exist but may not make any
further MPI calls. Once this function is called, no MPI routine (not even MPI_Init) may be called, except
for the following three: MPI_Get_version, MPI_Initialized, and MPI_Finalized. If there has been any
communication among processes, your program has to ensure that all communications have been completed
before making this call. We will have more to say about this in a later chapter.

4.5.8 Compiling and Running MPI Programs

To compile a C program that uses the MPI API, the easiest method is to invoke the mpicc command. This
is actually a thin wrapper that calls the underlying compiler, such as gcc, with the �ags that it needs to
compile the code and link it to the library. It will also pass most of the compiler options to it. For example,
to compile our �rst program, we can use the command

$ mpicc -Wall -o circuitsat1 circuitsat1.c

The -Wall option turns on all warning messages, something you should always do, and it will be passed to
gcc. The -o option tells gcc to put the output into the �le circuitsat1. You can read more about mpicc
in its manpage.

To run an MPI program, you need to use the mpirun command. This command, in its simplest form, must
specify the number of processes you wish to run and the name of the program that they will each execute.
For example, if we want to run our circuitsat1 program with 10 processes, we would enter the command

$ mpirun -np 10 circuitsat1

The -np option must be followed by an integer specifying the number of processes, and the name of the
executable should follow this. If you are running on a multiprocessor with multiple cores, and you know that
you have N cores, you can tell MPI to run a process on each core using the command

$ mpirun -bind-to-core -np N circuitsat1

If you try to run more processes than you have cores, it will generate an error message. Later we will learn
about other options that we can give to mpirun.

When we run our program using 4 processes, we get the following output:

$ mpirun -np 4 circuitsat1

1: 1010111110011001

1: 1010111111011001

1: 1010111110111001

Process 0 has finished

Process 2 has finished

Process 1 has finished

Process 3 has finished

Here is another run with 5 processes:

$ mpirun -np 5 circuitsat1

0: 1010111111011001

2: 1010111110111001

Process 0 has finished

Process 4 has finished

Process 2 has finished

3: 1010111110011001

Process 3 has finished

Process 1 has finished

10

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

In the �rst run, process 1 found all three inputs that satis�ed the circuit. This is because they only di�er
in bit positions 5 and 6, and because they have least signi�cant bits 001, and are thus are all 1mod 4, and
process 1 has all numbers that are 1mod 4. The three inputs all di�er by small multiples of 32. When we
run it with 5 processes, because 5 is relatively prime to 32, no two of these inputs will be assigned to the
same process. (Why?)

Finally, notice that the order in which they write to the screen is unpredictable. In fact if you repeatedly run
it, you will see that it can be di�erent every time. This is one reason it is hard to debug parallel programs.

4.6 Collective Communication: Reduction

As a way to introduce a new concept, we will modify the circuit satis�ability program so that, instead of
outputting the di�erent input combinations that satisfy the circuit, it just outputs the number of combinations
that do. With what we know right now, we cannot do this, because in order to compute the total, the
processes would need to communicate with each other.

In Chapter 3, we introduced the concept of a reduction. Recall that a reduction is the process of computing
a0⊕a1⊕a2⊕· · ·⊕an−1 for some associative, binary operator ⊕. If each of our processes counts how many of
its combinations satisfy the circuit, then, to get the total, our program needs to perform a reduction, using
the addition operator, i.e., it needs to compute c0 ⊕ c1 ⊕ c2 ⊕ · · · ⊕ cp−1, where cj is the count computed by
process j. We will now see how to request a reduction operation from the MPI library.

A collective communication in MPI is a communication operation in which a group of processes cooperate
to perform a global operation across all the members of the group. Some collective communications move
data around, either gathering it or distributing it. Some gather and compute with it simultaneously . Some
neither move data nor compute, but simply synchronize. The reduction operation is one that gathers and
computes. Its syntax is

int MPI_Reduce(

void *operand, /* address of first operand to send */

void *result, /* address where first result will be stored */

int count, /* number of operands in the operand send buffer */

MPI_Datatype datatype, /* data type of operands to reduce */

MPI_Op op, /* reduction operator to apply */

int root, /* rank of process that gets the result(s) */

MPI_Comm comm /* communicator handle */

)

In short, the MPI_Reduce function combines the elements provided in the input bu�er given by its �rst
parameter, operand, of each process in the group, using the operation op, and returns the combined value in
the output bu�er, which is the second parameter, result, of the process whose rank is root. The number
of elements in the input and output bu�ers is given by count � it must be the same size � and the type of
data that they store is given by datatype. (The list of allowed data types is below.) The routine must be
called by all group members, i.e., processes in the communicator, using the same arguments
for count , datatype , op , root , and comm , otherwise it will fail.

� The �rst parameter, operand, is the address of an input bu�er. This is where the process stores the
value to be contributed to the reduce operator. If count is greater than 1, then this is a sequence of
adjacent elements in memory, such as an array.

� The second parameter, result, is the address of a receiving bu�er. This is where the result of applying
the reduction to all operands contributed by all processes will be stored. If count is greater than 1,
then this is a sequence of adjacent elements in memory, such as an array.

� The third parameter, count, is the number of operands in the input bu�er, and the number of results
in the output bu�er. For example, if the operation is addition, and the input bu�er contains two

11

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

Name C Data Type

MPI_CHAR signed char

MPI_WCHAR wchar_t - wide character
MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_LONG_LONG_INT signed long int

MPI_LONG_LONG signed long long int

MPI_SIGNED_CHAR signed char

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_C_COMPLEX float _Complex

MPI_C_FLOAT_COMPLEX float _Complex

MPI_C_DOUBLE_COMPLEX double _Complex

MPI_C_LONG_DOUBLE_COMPLEX long double _Complex

MPI_C_BOOL _Bool

MPI_C_LONG_DOUBLE_COMPLEX long double _Complex

MPI_INT8_T int8_t

MPI_INT16_T int16_t

MPI_INT32_T int32_t

MPI_INT64_T int64_t

MPI_UINT8_T uint8_t

MPI_UINT16_T uint16_t

MPI_UINT32_T uint32_t

MPI_UINT64_T uint64_t

MPI_BYTE 8 binary digits (not a C type)
MPI_PACKED data packed or unpacked with MPI_Pack()/

MPI_Unpack() (not a C type)

Table 4.1: Partial list of MPI prede�ned constants of type MPI_Datatype.

elements that are summable, such as integers, then result[0] will be sum of all operand[0] values
in each process and result[1] will be the sum of all operand[1] values in each process.

� The fourth parameter, datatype, indicates the type of the elements that will be reduced. It must be
of type MPI_Datatype and of a type for which a reduction is possible. A list of allowable constants
that meet the requirements is in Tables 4.1 and 4.2 below.

� The �fth parameter, op, indicates the operation to be performed, and must be of type MPI_Op. A list
of the built-in reduction operators is in Table 4.3. MPI also has a provision for user-de�ned reduction
operators, but we will not discus that here.

� The sixth parameter, root, is the rank of the process that will receive the result. After all processes
participating in the reduction have returned from the call, the root process, and the root alone, will
have the correct values in its result argument.

� The seventh and last parameter is a handle to the communicator for this group of processes.

Our program needs to add up the integer subtotals from each process and have that result available for
printing. Only one process will do the printing, and it does not matter which, so we arbitrarily pick the one

12

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

Name C Data Type

MPI_FLOAT_INT �oat and int
MPI_DOUBLE_INT double and int
MPI_LONG_DOUBLE_INT long double and int
MPI_LONG_INT long and int
MPI_SHORT_INT short and int
MPI_2INT int and int
MPI_2COMPLEX _Complex and _Complex
MPI_2DOUBLE_COMPLEX double _Complex and double _Complex

Table 4.2: MPI constants for reduction operators MPI_MAXLOC and MPI_MINLOC. These types have two values,
such as MPI_2INT.

Name Meaning

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bit-wise and
MPI_LOR logical or
MPI_BOR bit-wise or
MPI_LXOR logical exclusive or
MPI_BXOR bit-wise exclusive or
MPI_MAXLOC max value and location
MPI_MINLOC min value and location

Table 4.3: MPI prede�ned global reduction operators.

whose rank is 0. Therefore, all processes must send their counts to process 0 using the MPI_Reduce function.
Therefore the fourth argument should be MPI_INT since the counts are integers, and the �fth should be
MPI_SUM as we are adding. We make the sixth argument 0. In the main program we introduce two variables
named subtotal and grand_total. Each process has a copy of these. The former will store the number of
inputs found by the process to satisfy the circuit; the latter will be the sum of all of these. Based on this
description, the call that our program needs to make is

MPI_Reduce(&subtotal, &grand_total, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

Once again, you must remember that every process must call MPI_Reduce. Furthermore, each must have
the exact same parameters except for the �rst5; they are allowed to have di�erent �rst parameters. In our
program, which appears in Listing 4.2, they all make the exact same call. This is what you should always
try to arrange.

Because our initial design of the check_circuit function returned a 1 if a solution was found and a 0 if not,
all we need to do is to suppress its output and modify the main program as follows:

subtotal = 0;

for (i = id; i < 65536; i += p)

subtotal += check_circuit(id, i);

This will store the total number of solutions found by each process into its own private variable, local_total.
Lastly, we modify the output at the end. Only process 0 prints, and all it does is print a single number:

5The second parameter is allowed to be di�erent, but this will only cause problems. You should never try to arrange for the
processes to send their results to di�erent locations, as errors will result.

13

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

if (0 == id)

printf("%d\n", grand_total);

Listing 4.2: circuitsat2.c

1 #include <mpi.h>

2 #include <stdio.h>

3

4 // Same macro as appeared in circuitsat1.c

5 #define EXTRACT_BIT(n,i) (((n)&(1<<(i)))?1:0)

6

7 // check_circuit(id,n) is same as in circuitsat1.c

8 int check_circuit (int proc_id , int inputval);

9

10 int main (int argc , char* argv [])

11 {

12 int i;

13 int id;

14 int p;

15

16 int subtotal;

17 int grand_total;

18

19 MPI_Init (&argc , &argv);

20 MPI_Comm_rank (MPI_COMM_WORLD , &id);

21 MPI_Comm_size (MPI_COMM_WORLD , &p);

22

23 subtotal = 0;

24 for (i = id; i < 65536; i += p)

25 subtotal += check_circuit(id , i);

26

27 MPI_Reduce (&subtotal , &grand_total , 1, MPI_INT ,

28 MPI_SUM , 0, MPI_COMM_WORLD);

29 MPI_Finalize ();

30

31 if (0 == id)

32 printf("%d\n", grand_total);

33 return 0;

34 }

35

36 // circuitvalue(v,len) evaluates the set of 16 bits stored in array v[0..15]

37 // and returns 1 if the circuit is true and 0 if it is false.

38 int circuitvalue (short v[])

39 {

40 return (

41 ((v[0] || v[1]) && (!v[1] || v[3]))

42 && ((v[2] || v[3]) && (!v[3] || !v[4]))

43 && ((v[4] || !v[5]) && (v[5] || v[6]))

44 && ((v[5] || !v[6]) && (v[7] || !v[8]))

45 && ((v[8] || v[9]) && (v[8] || !v[9]))

46 && ((!v[9] || !v[10]) && (v[10] || v[11]))

47 && ((v[11] || v[9]) && (v[12] || v[13]))

48 && ((!v[8] || !v[13]) && (v[13] || !v[14]))

49 && ((v[14] || v[15]) && (!v[15] || v[6]))

50);

51 }

52

53 int check_circuit (int proc_id , int inputval)

54 {

14

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

55 short v[16];

56 int i;

57

58 for (i = 0; i < 16; i++)

59 v[i] = EXTRACT_BIT(inputval ,i);

60

61 if (circuitvalue(v))

62 return 1;

63 else

64 return 0;

65 }

4.7 Collective Communication: Broadcasting

4.7.1 MPI_Bcast

A second important type of collective communication is a broadcast. A broadcast is a collective com-
munication that distributes data. The MPI function that performs a broadcast is MPI_Bcast. Its syntax
is

int MPI_Bcast(

void *buffer, /* address of first element to send */

int count, /* number of elements to send */

MPI_Datatype datatype, /* data type of elements to send */

int root, /* rank of process that sends the data */

MPI_Comm comm /* communicator handle */

)

MPI_Bcast broadcasts a message from the process with rank root to all processes in the communicator's
group, itself included. It must be called by all processes in the group using the same arguments for comm
and root. When it returns, the contents of root's communication bu�er, buffer, have been copied to all
processes. The count is the number of elements to send, and datatype is the type of the elements. For
example, a code snippet that would have process 0 send the contents of an entire array to all processes in
the MPI_COMM_WORLD communication group would be

int Num_items;

int list[Num_items];

/* code here to fill list and initialize Num_items */

MPI_Init(&argc, &argv);

MPI_Bcast(list, Num_items, MPI_INT, 0, MPI_COMM_WORLD);

4.7.2 Example: Calculating PI

The input to the circuit satis�ability problem was hard-coded into the program, so the number of bit
combinations was known at compile-time. In many problems, the size of the input is unknown at compile-
time and is determined at run-time, either as a command-line argument to the program, a value read from a
�le stream, or a value entered interactively by the user. Suppose that we want the value either to be entered
interactively via standard input, or read from a �le. Remember that only one process can perform input.
Suppose, without any loss of generality, that it is process 0. Then, whether the input comes from a �le or
from standard input, process 0 will read it, but no other process will know it. The problem then is how
process 0 can share it with the remaining processes, which is why broadcasts are an important tool.

15

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

Broadcasts are needed in many parallel programs. It is often the case that one process acquires a piece of
information that will be needed by all other processes. This could be the size of an array, or some computed
value they will all need, or a number that controls how long they should all iteratively solve some problem.
We give an example of just such a problem. We will illustrate the use of the broadcast function MPI_Bcast

in a program that interactively estimates the value of the mathematical constant π. There are dozens of
methods of approximating the value of π. We will use a method based on the mathematical identity

tan(
π

4
) = 1.0 (4.1)

In other words, the tangent of a 45° angle is 1.0. This implies that

4 · arctan(1.0) = π (4.2)

We can therefore approximate π by �nding the value of arctan(1.0) and multiplying it by 4. There is no
analytical formula that gives us the value of the arctangent of a number; we have to approximate it. We can
do this by a standard technique of �nding the area under a suitable curve.

Suppose that we do not know how to compute the value of f(x) for some particular x, with any formula,
but that we know that f is di�erentiable and we know what the �rst derivative of f(x) is. Let f ′(x) be the
�rst derivative of f(x). The second fundamental theorem of calculus tells us that

ˆ x

0

f ′(t)dt = f(x)− f(0) (4.3)

Another way to say this is that the area under the curve of f ′ on the interval [0, x] is f(x) − f(0) . If
it is known that f(0) = 0, then to compute f(x), we can �nd the area under the curve. In particular, to
approximate π, we can use Equations 4.2 and 4.3. The derivative of arctan(x) is 1/(1+x2) and arctan(0) = 0,
so we can compute π from the formula

π = 4 · arctan(1.0) = 4 ·
ˆ 1

0

1
1 + t2

dt

Figure 4.6 illustrates the idea. To �nd the area under the graph of the function 1/(1 + x2) on the interval
[0, 1] we can use approximate integration. We can divide the interval between 0 and 1 into n equal size
segments, s1, s2, ..., sn, �nd the center xk of each segment sk, sum the values 1/(1 + x2

k), and multiply by
the width of each segment 1/n to get the area under the curve. Then four times this is an approximation of
π.

Figure 4.6: Using approximate integration to �nd the value of π. The area under the curve is π/4.

We begin by looking at the sequential code that can compute π in this way. A function to compute π
sequentially, given the number of segments to use, is in Listing 4.3 below.

16

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

Listing 4.3: approximate_pi sequentially

1 double approximate_pi (int num_segments)

2 {

3 double dx, sum , x;

4 int i;

5

6 dx = 1.0 / (double) num_segments; /* Set dx to the width of a segment

*/

7 sum = 0.0;

8 for (i = 1; i <= num_segments; i++) {

9 x = dx * ((double)i - 0.5); /* x is midpoint of segment i */

10 sum += 1.0 / (1.0 + x*x); /* add new area to sum */

11 }

12 return 4.0 * dx * sum; /* we multiply sum by dx because we are

computing an integral and dx is the differential */

13 }

This problem has a great deal in common with circuit satis�ability, so we will not elaborate on the stages of
Foster's design methodology in detail.

As with circuit satis�ability, the approximation of π is highly data parallel. The primitive tasks are essentially
computing each iteration of the body of the loop, and the loop iterations are independent. We could create a
task for every segment, but because there is no communication between primitive tasks and we want to avoid
process creation overhead, we should agglomerate by creating one task for each processor. The next question
is how to map the primitive tasks to the processors. Although each segment requires the same amount of
computing e�ort, because the number of segments may not be a multiple of the number of processors, we will
use an interleaved mapping of the segments to each task, just as we did for the circuit satis�ability problem.
Thus, task k will compute the areas of segments k, k + p, k + 2p, ... up to the largest number k +mp that
is less than the number of segments.

A pseudocode description of the program is

MPI is initialized and the rank and size are obtained;

Repeat

Root process prompts user to enter number of segments and reads this number;

If user enters 0, loop breaks and program exits;

Root broadcasts the number of segments, N, to every process;

Each process calls function to compute a partial sum of the segments

it is responsible for;

Every process partcipates in a reduction to compute the total of the partial sums;

Root process prints the sum as well as the difference between the sum and the

math library's stored value of pi.

Thus, the root process (process 0) is in charge of all input and output. The number of terms that is entered
by the user is broadcast by the root process to all processes. This is where MPI_Bcast is used. After all
processes compute their partial sums, a reduction is performed. The complete program appears in Listing
4.4 below.

Listing 4.4: estimate_pi.c

1 #include <string.h>

2 #include <stdio.h>

3 #include <math.h>

4 #include "mpi.h"

5

6 #define ROOT 0

7

8 /** approximate_pi ()

17

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

9 * This returns an approximation of pi based on the mathematical identity

10 * tan(pi/4) = 1.0

11 * which is equivalent to

12 * 4.0 * arctan (1.0) = pi

13 * To compute pi , we can approximate arctan (1.0). We use the fact that

14 * d/dx(arctan(x) = 1/(1 + x*x)

15 * and compute the area under the curve of 1/(1 = x*x) in the interval

16 * from 0 to 1.0. The area under this curve is arctan (1.0) because the

17 * the integral from 0 to 1 of 1/(1 = x*x) is arctan (1.0) - arctan (0) = pi/4.

18 * We multiply this by 4 to get pi.

19 * We use the trapezoid method to approximate the area under the curve.

20 * We divide [0 ,1.0] into n segments of length 1/n each , and compute the

21 * value of 1/(1 + x*x) at the midpoint of each segment. By summing these

22 * values and multiplying by 4 times 1/n, we have an approximation.

23 */

24 double approximate_pi (int num_segments , int id , int p)

25 {

26 double dx, sum , x;

27 int i;

28

29 /* Set dx to the width of each segments */

30 dx = 1.0 / (double) num_segments;

31

32 /* Initialize sum */

33 sum = 0.0;

34

35 /* Each process will compute its share of the segments. If the segments are

numbered 1, 2, 3, ...,n, from left to right , then process id computes

segment k if id = (k-1) % p, or equivalently it computes segments id+1, id+

p+1, id+2p+1, ... up to id+mp+1, where m is the largest number such that

id+mp+1 <= num_segments. */

36 for (i = id + 1; i <= num_segments; i += p) {

37 x = dx * ((double)i - 0.5); /* x is midpoint of segment i */

38 sum += 4.0 / (1.0 + x*x); /* add new area to sum */

39 }

40 return dx * sum; /* we multiply sum by dx because we are computing an

integral and dx is the differential */

41 }

42

43 int main(int argc , char *argv[])

44 {

45 int id; /* rank of executing process */

46 int p; /* number of processes */

47 double pi_estimate; /* estimated value of pi */

48 double local_pi; /* each process 's contribution */

49 int num_intervals; /* number of terms in series */

50

51 MPI_Init(&argc , &argv);

52 MPI_Comm_rank(MPI_COMM_WORLD , &id);

53 MPI_Comm_size (MPI_COMM_WORLD , &p);

54

55 /* repeat until user enters a 0 */

56 while (1) {

57 if (ROOT == id) {

58 printf("Enter the number of intervals: [0 to quit] ");

59 fflush(stdout);

60 scanf("%d",&num_intervals);

61 }

62

18

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

63 /* The root proces will broadcast the number of intervals entered to all

other processes. Each process must call MPI_Bcast though. The data to

be broadcast is num_intervals; the count = 1, it is of type MPI_INT;

ROOT is the sender */

64 MPI_Bcast (& num_intervals , 1, MPI_INT , ROOT , MPI_COMM_WORLD);

65

66 if (0 == num_intervals)

67 break;

68

69 local_pi = approximate_pi(num_intervals , id , p);

70

71 /* MPI_Reduce collects the local estimate from each process into a global

value , pi_estimate. The ROOT is the process that receives all values

in the reduction. The reduce operator is MPI_SUM. */

72 MPI_Reduce (&local_pi ,

73 &pi_estimate , 1, MPI_DOUBLE ,

74 MPI_SUM , 0, MPI_COMM_WORLD);

75

76 /* ROOT does the printing. The error is caculated by comparing to the math

library 's value for PI, M_PI. */

77 if (ROOT == id) {

78 printf("pi is approximated to be %.16f. The error is %.16f\n",

79 pi_estimate , fabs(pi_estimate - M_PI));

80 fflush(stdout);

81 }

82 }

83 MPI_Finalize ();

84 return 0;

85 }

4.8 Benchmarking Parallel Program Performance

The reason that we are interested in writing parallel programs is to improve their running time. Therefore,
we should not go too far into the subject without �rst describing how to measure their running time. After
all, we want to know whether or not the e�ort has paid o�.

4.8.1 Timing Programs Using MPI

The MPI library provides a portable function named MPI_Wtime that we can use to measure the total time
used by the program. MPI_Wtime returns a �oating-point number of seconds, representing elapsed wall-clock
time since some time in the past. The expression �wall-clock time� means the time on some imaginary clock
like the clock on a wall. However, we do not really care whether this clock returns the actual time of day;
all we care about is that it is some "time in the past" that is guaranteed not to change during the life of
the process, and this is exactly what it returns. In other words, it picks a number and uses that number as
the time. All future calls to the function will return time relative to that same number while this process is
running. Its signature is

double MPI_Wtime()

A second function in the library can tell us the granularity, or precision, of MPI_Wtime. In other words,
if the wall-clock time is only being updated every millisecond, it is less precise than if it is updated every
microsecond. It is important to know the size of a �clock tick�, i.e, the length of the interval between
successive ticks. The function MPI_Wtick returns the number of seconds between ticks as a double precision
�oating point number. Its signature is

19

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

double MPI_Wtick()

The typical way that MPI_Wtime is used is

double starttime, endtime;

starttime = MPI_Wtime();

.... stuff to be timed ...

endtime = MPI_Wtime();

printf("That took %f seconds\n",endtime-starttime);

which measures the elapsed time between when the �stu� to be timed� started and when it ended. This is
di�erent from the actual time it used on the processor. It includes time it spent waiting for I/O operations,
waiting because it might have been removed from the processor by the operating system kernel to allow some
other process to run, and time spent by the operating system doing things on its behalf.

When a process sends output to a terminal device, this can take a long time, relative to the time it spends
computing. Terminals are slow devices, relatively speaking. We are only interested in comparing the running
time of our parallel program with that of the serial program. If the serial program takes χ seconds actually
computing results and β seconds writing them to the terminal, then the parallel program will also spend β
seconds writing to the terminal, because they both write the same information to the same device. If the
parallel program, however, spends χ/s seconds computing results, where s is some number bigger than 1,
then we want to say that the parallel program is s times faster than the serial one. If we measure the elapsed
time including all I/O as the fraction (χ + β)/((χ/s) + β), we will not get s, but something much smaller,
depending on the value of β. For example, if χ = 0.01 and β = 2.0 and s = 4, then if we include the I/O
time we get 2.01/2.0025 = 1.0037, which is barely an improvement. On the other hand, if we exclude the
I/O from the measurement, we get 0.01/0.0025 = 4, which is a factor of 4.

While the overhead of the parallel program is important and cannot be overlooked when comparing the
running time of the parallel program to its sequential version, we will ignore it for now, for two reasons.
One is that, in general, the time that is spent creating the processes, establishing communication links (such
as sockets) between them, and initializing the MPI library should be very small in comparison to the time
spent computing, for realistic programs. Second is a practical matter: we cannot call MPI_Wtime until we
have already called MPI_Init, and we cannot call it after we have called MPI_Finalize. Therefore it must
be called in between these.

4.8.2 Collective Communication and Barrier Synchronization: MPI_Barrier

Another restriction is that we need to measure the time from the moment that all processes have been
created and are ready to start executing, until the last one has �nished. In Chapter 2 we introduced the
concept of barrier synchronization. Recall that a barrier synchronization instruction is one that, when
it is executed by a process, causes that process to wait until all other processes have reached that same
instruction in their code. This is exactly what we need; if we had a means of starting the clock at a point in
the code when we knew all processes were ready to start executing the real stu�, and stopping it when they
all return from the MPI_Reduce call, then we could measure the amount of time they spent doing the actual
computation.

The function MPI_Barrier is an example of a collective communication operation that performs synchro-
nization, in particular, barrier instruction. Its signature is

int MPI_Barrier(MPI_Comm comm)

Its only parameter is a handle to the communicator to which the processes belong. It blocks the calling
process until all group members have called it, and returns only after all group members have entered the
call.

We illustrate its use in a third version of the circuit satis�ability program, and also in a timed version of
estimate_pi.c. In circuitsat3.c, we remove all output except the time. We do not really need to know

20

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

how many inputs satisfy the circuit now, so that code is removed. We have the process with rank 0 print
out the time. The program is displayed in Listing 4.5. The calculation of elapsed time uses a single variable
instead of two. It initializes it to -MPI_Wtime() and then adds the time at which the processes terminate to
this time, e�ectively forming the sum (newtime - oldtime).

Listing 4.5: circuitsat3.c

1 #include "mpi.h"

2 #include <stdio.h>

3

4 // Same macro as appeared in circuitsat1.c

5 #define EXTRACT_BIT(n,i) (((n)&(1<<(i)))?1:0)

6

7 // check_circuit(id,n) is same as in circuitsat1.c

8 int check_circuit (int proc_id , int inputval);

9

10 int main (int argc , char* argv [])

11 {

12 int i;

13 int id;

14 int p;

15 double elapsed_time; /* Time to find , count solutions */

16

17 int subtotal;

18 int grand_total;

19

20 MPI_Init (&argc , &argv);

21

22 /* Start timer */

23 MPI_Barrier (MPI_COMM_WORLD);

24

25 MPI_Comm_rank (MPI_COMM_WORLD , &id);

26 MPI_Comm_size (MPI_COMM_WORLD , &p);

27

28 elapsed_time = - MPI_Wtime ();

29

30 subtotal = 0;

31 for (i = id; i < 65536; i += p)

32 subtotal += check_circuit(id , i);

33

34 MPI_Reduce (&subtotal , &grand_total , 1, MPI_INT ,

35 MPI_SUM , 0, MPI_COMM_WORLD);

36

37 MPI_Barrier (MPI_COMM_WORLD);

38

39 /* Stop timer */

40 elapsed_time += MPI_Wtime (); /* elapsed time = current time - start time */

41

42 if (0 == id) {

43 printf ("Execution time %8.6f\n", elapsed_time);

44 fflush (stdout);

45 }

46 MPI_Finalize ();

47 return 0;

48 }

49

50 int circuitvalue (short v[])

51 {

52 return (

53 ((v[0] || v[1]) && (!v[1] || v[3]))

21

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

54 && ((v[2] || v[3]) && (!v[3] || !v[4]))

55 && ((v[4] || !v[5]) && (v[5] || v[6]))

56 && ((v[5] || !v[6]) && (v[7] || !v[8]))

57 && ((v[8] || v[9]) && (v[8] || !v[9]))

58 && ((!v[9] || !v[10]) && (v[10] || v[11]))

59 && ((v[11] || v[9]) && (v[12] || v[13]))

60 && ((!v[8] || !v[13]) && (v[13] || !v[14]))

61 && ((v[14] || v[15]) && (!v[15] || v[6]))

62);

63 }

64

65 int check_circuit (int proc_id , int inputval)

66 {

67 short v[16];

68 int i;

69

70 for (i = 0; i < 16; i++)

71 v[i] = EXTRACT_BIT(inputval ,i);

72

73 if (circuitvalue(v)) {

74 return 1;

75 }

76 else

77 return 0;

78 }

The program as designed makes it easy to collect data to tabulate. On a 4 core computer, we ran 10 trials
with 4 processes, one per core, 10 with 2 processes, putting one process on its own core, and 10 trials with
a single process. The results are plotted in Figure 4.7. The actual times are displayed as the solid line in
the �gure. The dashed line shows what the execution times would be if doubling the number of processors
halved the execution time.

Figure 4.7: Graph of execution time.

What accounts for the di�erence? The reduction collective communication adds overhead to the running
time, proportionately to the logarithm of the number of processes. The sequential program has no such
overhead.

Last, here is a listing for a timed version of the estimate_pi.c program. Comments are omitted to save

22

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

space.

Listing 4.6: estimate_pi_timed.c

1 #include <string.h>

2 #include <stdio.h>

3 #include <math.h>

4 #include "mpi.h"

5

6 #define ROOT 0

7

8 double approximate_pi (int num_segments , int id , int p)

9 {

10 double dx, sum , x;

11 int i;

12

13 dx = 1.0 / (double) num_segments;

14 sum = 0.0;

15 for (i = id + 1; i <= num_segments; i += p) {

16 x = dx * ((double)i - 0.5); /* x is midpoint of segment i */

17 sum += 4.0 / (1.0 + x*x); /* add new area to sum */

18 }

19 return dx * sum;

20 }

21

22 int main(int argc , char *argv[])

23 {

24 int id; /* rank of executing process */

25 int p; /* number of processes */

26 double pi_estimate; /* estimated value of pi */

27 double local_pi; /* each process 's contribution */

28 int num_intervals; /* number of terms in series */

29 double elapsed_time;/* Time to compute pi */

30

31 MPI_Init (&argc , &argv);

32 MPI_Comm_rank (MPI_COMM_WORLD , &id);

33 MPI_Comm_size (MPI_COMM_WORLD , &p);

34

35 while (1) {

36 if (ROOT == id) {

37 printf("Enter the number of intervals: [0 to quit] ");

38 fflush(stdout);

39 scanf("%d",&num_intervals);

40 }

41 MPI_Barrier (MPI_COMM_WORLD);

42 elapsed_time = - MPI_Wtime ();

43

44 MPI_Bcast (& num_intervals , 1, MPI_INT , ROOT , MPI_COMM_WORLD);

45

46 if (0 == num_intervals)

47 break;

48

49 local_pi = approximate_pi(num_intervals , id , p);

50

51 MPI_Reduce (&local_pi ,

52 &pi_estimate , 1, MPI_DOUBLE ,

53 MPI_SUM , 0, MPI_COMM_WORLD);

54

55 MPI_Barrier (MPI_COMM_WORLD);

56

23

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

57 /* Stop timer */

58 elapsed_time += MPI_Wtime ();

59

60 if (ROOT == id) {

61 printf("pi is approximated to be %.16f. The error is %.16f\n",

62 pi_estimate , fabs(pi_estimate - M_PI));

63 printf("Computation took %8.6f seconds .\n", elapsed_time);

64 fflush(stdout);

65 }

66 }

67 MPI_Finalize ();

68 return 0;

69 }

24

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

References

[1] J. R. R. Tolkien. Lord of the Rings: Book II The Two Towers. George Allen & Unwin, England, 1954.

[2] M.J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Higher Education.
McGraw-Hill Higher Education, 2004.

25

CSci 493.65 Parallel Computing
Chapter 4 Message-Passing Programming

Prof. Stewart Weiss

Subject Index

barrier synchronization, 20
broadcast, 15

circuit satis�ability problem, 3
collective communication, 11
communicator, 8

decision problem, 3

embarrassingly parallel problem, 4

fflush, 9

handle, 8

MPI_Barrier, 20
MPI_Comm_rank, 8
MPI_Comm_size, 8
MPI_COMM_WORLD, 8
MPI_Finalize, 9
MPI_Init, 7
MPI_Reduce, 11
MPI_Wtick, 19
MPI_Wtime, 19
mpicc, 10
mpirun, 10

NP-complete, 3

printf, 5

race condition, 2
rank, 8

satis�able, 3
Single Program Multiple Data, 2

unsatis�able, 3

26

	4 Message-Passing Programming
	4.1 Introduction
	4.2 About C and C++
	4.3 The Message-Passing Model
	4.4 The MPI Story
	4.5 Circuit Satisfiability
	4.5.1 Partitioning
	4.5.2 Agglomeration and Mapping
	4.5.3 Coding the Solution in C Using MPI
	4.5.4 The MPI_Init Function
	4.5.5 The MPI_Comm_rank and MPI_Comm_size Functions
	4.5.6 Output
	4.5.7 Cleaning Up: MPI_Finalize
	4.5.8 Compiling and Running MPI Programs

	4.6 Collective Communication: Reduction
	4.7 Collective Communication: Broadcasting
	4.7.1 MPI_Bcast
	4.7.2 Example: Calculating PI

	4.8 Benchmarking Parallel Program Performance
	4.8.1 Timing Programs Using MPI
	4.8.2 Collective Communication and Barrier Synchronization: MPI_Barrier

