
CSci 493.66 UNIX System Programming

Assignment 4, Spring 2012

Prof. Stewart Weiss

Assignment 4

Assignment 4: Organic Growth Simulation

Background

In this assignment you will write a two-dimensional simulation of the stochastic growth of a colony of single-
celled organisms called B-cells. This is a purely hypothetical problem, but it is similar to how one would
model many di�erent types of biological processes. Like many organisms, a B-cell will reproduce only under
certain conditions on its immediate surroundings. There are two factors: how crowded it is, and whether
or not there is a pathogen nearby. If it is too crowded, it dies o�, and if it is not surrounded by enough of
its kind, it will also die o�. If there is a pathogen in a neighboring cell, it dies o� regardless of how many
B-cells are adjacent.

Simulation

These organisms do not live in an orthogonal world, but we will simulate their colony with one. We will
model their world as a two-dimensional grid of rows and columns. The intersections of these are called cells.
A cell can be in one of three states:

• empty,

• inhabited by a B-cell, or

• inhabited by a pathogen.

A cell containing a B-cell will be called an active cell and one containing a pathogen will be called a threat

cell . Every cell has eight adjacent (neighboring) cells.

neighbor 1 neighbor 2 neighbor 3
neighbor 4 cell neighbor 5
neighbor 6 neighbor 7 neighbor 8

These organisms do not synchronize their moments of procreation or death, but to model their behavior,
we must. We will assume that time is divided into equal length steps, denoted 0,1,2, and so on, and that in
each time step, the population changes as a result of births and deaths. The rules by which organisms are
born, survive, or die are as follows:

• If at time t, any of its adjacent cells is a threat cell, it ceases to exist at time t + 1.

• If at time t, an active cell has fewer than 2 neighbors, it ceases to exist at time t + 1.

• If at time t, an active cell has more than 3 neighbors, it ceases to exist at time t + 1.

• If at time t, an active cell has exactly 2 or 3 neighbors and no neighbor is a threat cell, it continues to
exist at time t + 1.

• If at time t, an empty cell has exactly 3 neighbors and no neighbor is a threat cell, at time t + 1 it is
active.

1

CSci 493.66 UNIX System Programming

Assignment 4, Spring 2012

Prof. Stewart Weiss

Figure 1: Surface on which B-cells live.

Figure 2: Rectangular grid representation of a torus.

• A threat cell created at time t lives for M time steps and dies at time t + M . M is a parameter of the
simulation.

Pathogens come into existence randomly. At each time step t there is a probability ptthat T pathogens will
enter the world, where T is a program parameter. The cells that they occupy are also random. The details
will be explained below.

B-cells do not line on a planar surface; they live on a doughnut-shaped surface known mathematically as a
torus. See Figure 1.

In the �gure, the lines represent column and row edges. Notice that if we traveled up or down any column,
we would return to the cell in which we started. Similarly, if we travel across any row, east or west, we would
return to our starting cell. We can use a rectangular grid to represent a torus, as in Figure 2. It simply
amounts to declaring that the top and bottom rows of the grid are adjacent and the left and right columns
are adjacent.

For example, if we have a 100 by 100 array of cells, with columns 0, 1, 2, ., 99.. and rows 0, 1, 2, ..., 99 then we
think of column 0 as following column 99, and row 0 as following row 99. Therefore, for example, cell[0,0]
is adjacent to both cell[0,99] and cell[99,0].

The initial state of the population will usually determine whether any organisms survive over time, or whether
the population lives in perpetuity. Certain initial states may result in an in�nite cyclic pattern, whereas
others may result in the death of all organisms. In both cases it depends upon the probabilities associated
with the formation of pathogens. If you play around with this you will �nd examples of both.

Program Requirements

You are to write a C or C++ simulation of the population model described above. The details follow.

The Terminal Window

The terminal window will be divided into rows and columns. The bottom row will be reserved for interaction
with the user. All other rows and columns will represent cells. The program must detect the size of the

2

CSci 493.66 UNIX System Programming

Assignment 4, Spring 2012

Prof. Stewart Weiss

window when it starts and make sure that it creates a rectangular grid that maximizes its use of the window.
The row just above the bottom row should be treated as adjacent to the top row, and the left and right sides
of the window adjacent to each other.

If a cell is active, it will contain the symbol 'b' to indicate a living B-cell. If a cell contains a pathogen, it
should contain the symbol 'x'. Otherwise there should be no symbol in it.

Initialization

When the program is started, it will read an initial state from a �le named .genesis in the current working
directory and use that as its initial state. The program will have a single, optional command line argument,
which is the name of a �le to use instead of the .genesis �le. If the expected start-up �le does not exist,
the program will use .genesis instead. If neither exists, the program should exit with an error message.

A start up �le must be a text �le having a �rst line containing the value of M , the lifetime of a pathogen, T ,
the number of pathogens created at a given time step, and pt, the probability that at a given time instant,
a new pathogen will be created. The format of this �rst line in the �le is

M-value T-value pt-value

with any amount of white space between the values. M and T must be at least 1, and 0 ≤ pt ≤ 1. After
this line, there will be one line for each active cell. Each line should have two integers separated by white
space. The �rst is the row coordinate, the second, the column coordinate. The coordinates are 0-based. The
upper-left hand corner of the window is (0,0). The program should ignore blank lines and lines that start
with #. If the �le has any other type of line, the program should exit with an error message. For example,
the �le contents:

4 2 0.25

B-cell positions follow

24 16

22 16

24 57

23 15

indicate that the initial state of the grid has active cells at (24,16), (22,16), (24,57), and (23,15), and that
M = 4, T = 2, and pt = 0.25. If any cell's coordinates lie outside the size of the terminal window, that cell
is discarded.

Once the initial state is loaded, the program should display it in the window. It should also display the
prompt �command:� in leftmost position of the bottom row and �park the cursor� to the right of it. Your
program will allow the user to enter the following commands in response to the prompt:

• Begin the simulation with 'b' (only in the initial state.)

• Control the speed of the simulation by pressing '+' to increase speed and '-' to decrease speed (only if
the simulation is not paused.)

• Terminate the simulation by pressing 'q' (at any time.)

• Pause the simulation with 'p' (only if the simulation is not already paused.)

• Resume the simulation with 'r' (only if it is paused.)

The commands should be echoed at the cursor so that the user can see her typing. When the user types, the
entered text should always be displayed immediately to the right of the command prompt. After the text is
typed and the command is executed, the text should be erased.

3

CSci 493.66 UNIX System Programming

Assignment 4, Spring 2012

Prof. Stewart Weiss

More Details

Speed. The initial speed should be 2 steps every second. When the '+' is pressed, the speed will increase
from n steps per 2 seconds to n+1 steps per 2 seconds, up to a maximum of 20 steps per 2 seconds. When the
'-' key is pressed, the speed should decrease from n steps per second to n-1 steps per second, to a minimum
of 1 step per 2 seconds. Attempts to exceed either bound should be silently ignored � no error messages or
warnings should be displayed. Since you will not be able to obtain some of these speeds to 100% precision,
use the highest possible precision possible. (You cannot express 1/3 of a second exactly.)

Pausing and resuming. If the user pauses the simulation, the simulation enters a state in which the
pattern remains on the screen without changing, inde�nitely. If the user then resumes the simulation, it will
continue from where it left o�. When the simulation is paused, attempts to change the speed (using '+' or
'-') should be ignored, but the user should be able to quit. Attempts to pause the game should be ignored
as well. Similarly, resuming a game that is not paused should have no e�ect.

Granularity. If a key is pressed during an update of the state of the screen, the program should �nish the
screen update before acting on the key-press. For example, if a speed change is requested, the next state
should be computed completely, the speed changed, and the state displayed. If a pause is requested, the
state should be updated before the pause takes place.

Pathogen Lifetime and Placement. At each time step, the program should �ip a biased coin that has
probability of ptas success and 1 − pt as failure. If the throw is successful, T pathogens shall be placed on
the screen. The positions of the pathogen shall be determined by at least T successive random tosses. Think
of the screen as being in row-major order � row 2 follows row 1, row 3 follows row 2 and so on. If the part of
the screen containing cells is R rows by C columns, then there are RC cells. Each random toss shall generate
a random number between 0 and RC − 1. The number n represents cell (n/C, n%C). For example, if there
are 24 columns, then the number 54 is the cell (2,6). If that cell is occupied already, a number is generated
again, and this is repeated until an empty cell is found. This takes place until T empty cells have been �lled
with pathogens.

The placement of pathogens occurs before the transition from time t to time t + 1. In other words, the
pathogens are placed into the cells of the grid that exists at time t, and then the grid at time t + 1 is
computed.

Extra Credit:

For an extra 10%, if the user presses 's', the program should save the state of the grid in a �le named
.genesis_<pid> in the user's working directory where <pid> is replaced by the processid of the process
itself. If the �le exists, it should be replaced. The �le format should be exactly the same as that of an
initialization �le. The order of the lines does not matter of course.

Submitting the Assignment

You are to create a zip �le containing all of your source code and put that zip �le in the directory

/data/biocs/b/student.accounts/cs493.66/projects/project4

naming it username_hwk4.zip. Give it permissions 600 so that only you have access to it. Whether you
have a single �le or multiple �les, you are to create a directory named username_hwk4, putting all �les into
it and using the command

4

CSci 493.66 UNIX System Programming

Assignment 4, Spring 2012

Prof. Stewart Weiss

zip -r username_hwk4.zip username_hwk4

to create the zip �le. Make sure that you create a Make�le if you use multiple �les, and include that Make�le
in the directory. If you use a Make�le, make sure that it creates an executable named encode when it is
built. If it is a single �le program, name the source �le genesis.X, where X is the GNU extension for the
language (.c for C, .cpp or .C for C++, etc.)

The program must be well-documented and must conform to my programming guidelines for full credit. It
must be placed in the directory no later than midnight of the due date.

5

