
CSci493.70 Graphical User Interface Programming

Lesson 1: The Foundation of GTK+

Prof. Stewart Weiss

Lesson 1: The Foundation of GTK+

Versions of GTK+

There are presently three versions of GTK+: 1, 2, and 3. They are mutually incompatible in the sense
that programs written and built using any one of them may not run on a system that has only the runtime
libraries of a di�erent version. GTK+3 was released in 2011 and represents a major departure from GTK+2,
which was at the time a major departure from GTK+1. Unless stated otherwise, these notes describe GTK+
2. For simplicity, the notes may sometimes refer to �GTK� as a shorthand for GTK+.

The Origins of GTK+

In 1995, Spencer Kimball and Petter Mattis developed an image manipulation program that they named
the General Image Manipulation Program, or GIMP for short, for a class at the University of California in
Berkeley. They were integral members of the experimental Computing Facility, a student club at Berkeley.
They released GIMP for public use in 1996. In 1997, after both Kimball and Mattis had graduated from UC
Berkeley, it became part of the GNU Project and its name was changed to the GNU Image Manipulation
Program. A second version was released in 20051.

GIMP is a freely distributed piece of software for such tasks as photo retouching, image composition and
image authoring. It works on many operating systems, in many languages. GIMP's user interface was
originally built using Motif, but Peter Mattis was dissatis�ed with it and developed his own GUI toolkit to
rewrite GIMP. He named this the GIMP Tool Kit, or GTK for short. It went through a sequence of revisions
and major changes, leading from GTK 1 to GTK+2, and then to GTK+ 3.

The GTK+ library was initially a part of the GIMP source tree. It subsequently took on a life of its own.
GTK+ is a powerful, cross-platform library of tools for creating the visual building blocks of applications.
It uses the GDK library to allow applications to create windows, graphic controls such as buttons and drop-
down lists, color bitmaps, and more. It also takes advantage of GLib's powerful primitives. Because GTK+
is built on top of GDK and GLib, it is platform-independent.

GTK+ is one of several libraries upon which the Gnome 2 desktop environment is built. Gnome is the GNU
Project's desktop environment for Linux systems. Figure 1 shows how various libraries are used by Gnome 2.
Libart is a vector-based 2D library with antialiasing and alpha composition that served as a foundation layer
for the development of GUI-based applications in Gnome. It has largely been replaced by Cairo (described
below).

The X Window System

The X Window System is a networking and display protocol which provides windowing on bitmapped dis-
plays. X provides the basic framework for building GUI environments, such as drawing and moving windows
on the screen and interacting with a mouse and/or a keyboard. The X project was started at MIT in 1984.
The current release protocol, X11, was �rst released in 1987.

X is based on a client-server model of computing. An X server program runs on a computer with a graphical
display and communicates with various client programs. The server accepts requests for graphical output
(windows) and sends back user input (keyboard, mouse).

1Courtesy of Wikipedia

1



CSci493.70 Graphical User Interface Programming

Lesson 1: The Foundation of GTK+

Prof. Stewart Weiss

libart ORBit

GDK

GTK+

GLibXlib

Gnome

Figure 1: The Gnome 2 dependency graph

In X, the server runs on the user's computer, while the clients may run on a di�erent machine. This is the
reverse of the common con�guration of client-server systems, where the client runs on the user's computer
and the server runs on a remote computer. This reversal often confuses new X users. The X Window
terminology takes the perspective of the program, rather than the end-user or the hardware: the remote
programs connect to the X server display running on the local machine, and thus act as clients; the local X
display accepts incoming tra�c, and thus acts as a server.

Why X?

X was designed to be portable but fast: it had to run on many operating systems and many di�erent
hardware con�gurations and yet have good performance.

X was designed to work across networks. In other words, it was designed so that the client application could
run on one machine and the server on another machine in the same network. It was designed to work across
networks regardless of the underlying network protocols. This was achieved by writing a low level protocol
that X itself would use.

X does not require a particular style of user interface (unlike Microsoft Windows and Apple's OS, which both
had user interface guidelines for developers.) It can work with any style of GUI. X was essentially �policy
free�, very much like the way UNIX itself was designed.

X is widely used on UNIX systems and there are ports to Windows, Apple OS, and other major vendors'
systems.

The Xlib Library

Programs that are written to interact with the X Windows System use the Xlib library, which is simply
the collection of primitives and data types that act as an interface to X. Figure 2 depicts the relationships
between the client program, the Xlib library and the X server executable. Xlib was originally written as a
C library, but there are ports of it for other languages as well.

2



CSci493.70 Graphical User Interface Programming

Lesson 1: The Foundation of GTK+

Prof. Stewart Weiss

Application

Client

XLib X Server

Figure 2: The role of Xlib

Events in X Windows

An event is a packet of information that is generated by the server for a client when certain actions occur.
The packet is queued by the server for the client to access when it is ready. Even though the events are
placed in a queue, they are not necessarily processed in FIFO order; the client may choose to process events
that arrived later than others. Usually, though, they are read and processed in the order in which they
occurred.

A client can also request the server to send an event to another client; this is used for communication between
clients. For example, when a client requests the text that is currently selected in a text box, an event is sent
to the client that is currently handling the window that holds the selection.

Another example is the expose event. The content of a window may be destroyed in certain circumstances,
such as when a second window covers it. When the obscured portion of the �rst window is made visible, such
as by bringing the window to the foreground, the X server generates an expose event to notify the client that
part of the window has to be redrawn. Other examples of events are those that notify clients of keyboard or
mouse input, of window resizing or moving, and so on.

Some kinds of events are always sent to the client, but most kinds of events are sent only if the client
previously indicated to the server that it wanted to know about them. For example, a client program, such
as a clock display, may choose to ignore keyboard events and use only mouse clicks; another program may
do the reverse � it may ignore the mouse and handle only keyboard events.

Some speci�c event types are:

• Mouse (or other pointer) button pressed or released. (ButtonPress, ButtonRelease)

• Window mapped or unmapped. (MapNotify, UnmapNotify)

• Mouse crossing a window boundary. (EnterNotify, LeaveNotify)

These event types are usually used for user input and to control a user interface. Another group of events
reports side e�ects of window operations such as the expose event mentioned above. A third group of events
allows various clients to communicate with each other and with the window manager. For example:

• A client may request that all keyboard input be sent to a particular window regardless of the pointer
position; this is called a keyboard focus window. Changing keyboard focus from one window to another
causes FocusIn and FocusOut events, indicating to the client whether or not it can expect further
keyboard events.

• Changing the mapping between keyboard keys and codes they generate causes a MapNotify event to
be sent to all clients.

• A PropertyNotify event is generated when a client changes a property on a window.

3



CSci493.70 Graphical User Interface Programming

Lesson 1: The Foundation of GTK+

Prof. Stewart Weiss

• SelectionClear, SelectionNotify, and SelectionRequest events are used to communicate back and forth
between a client that is allowing a user to select a section of text (or other information) and a client
that is allowing the user to place the information in its window. Some of these events are sent with
XSendEvent.

GLib

GLib is a cross-platform, general-purpose, software utility library that provides many data types and macros.
It is used for non-graphical purposes. It was developed as part of the GTK+ project, but is now used by other
applications. While it was originally a convenient library to collect low-level code in, it has since expanded
into o�ering wrapper functions for functionality that is typically di�erent across platforms, including Win32
and Mac OS X.

1. GLib contains, for example, de�nitions of various data structures such as singly- and doubly-linked
lists, regular expressions, timers, threads, memory allocation, and I/O channels. It is, in short, a
library with many useful types, macros, and functions. The present version of GTK+ depends upon
the GLib library.

2. GLib contains hashes, �le manipulation, internationalization support, warnings, debugging �ags, dy-
namic module loading, and automatic string completion.

3. GLib provides support for memory management, including slab allocation and memory slices.

GObject

GObject implements a fully featured object-oriented interface in C. This system is the base for the GTK+
widget hierarchical structure as well as for many of the objects implemented in GTK+'s supporting libraries.
GObject's object-oriented interface is implemented in part by a generic, dynamic type system called GType.
GType allows programmers to implement many di�erent dynamic data types through a singly-inherited class
structure. Along with the ability to create extensible data types, GObject provides programmers with many
fundamental data types.

GDK

GDK is the acronym for the GIMP Drawing Kit. It is a graphics library that provides primitives for raster
graphics (e.g., bitmaps), color rendering, line drawing, font and cursor handling, window events, and drag-
and-drop functionality. Originally, GDK was developed as an interface to the X server to make it easier to
program using the X server. The data types and functions in the GDK were for the most part just wrappers
for X data types and functions respectively found in XLib. For example, X has a data structure called a
Pixmap and GDK has a corresponding GdkPixmap.

GDK has now been ported so that it can communicate with the Win32 graphics API and Quartz, the Mac
OS X graphics API. This is what makes it possible to write a GTK+ application that can run on a wide
range of operating systems with di�erent windowing systems.

Gdk-Pixbuf

GdkPixbuf is an application programming interface (API ) for client-side image manipulation. It was once
a separate library but it is now a part of GDK. It provides functions for image loading and pixel bu�er

4



CSci493.70 Graphical User Interface Programming

Lesson 1: The Foundation of GTK+

Prof. Stewart Weiss

manipulation. It also provides functions for progressive image loading, animation, and rendering to things
known as drawables in GTK+. One of the major advantages of using GdkPixbufs for image manipulation is
that they are reference-counted2. This concept will be explained in depth later. What it means, in a nutshell,
is that an image can be shared by multiple widgets or displays and that the library will know exactly when
to free the memory when it is no longer needed by the application.

Client-side image manipulation can sometimes be an advantage. Consider the situation in which an applica-
tion with a graphical user interface is started up on a remote machine, but its graphical interface is displayed
on the local machine. Remember that the client side is where the application is, i.e., the remote machine.
The server side is where the underlying windowing system is (the X server, for example), which is the local
machine. Suppose that the application needs to manipulate individual pixels of the image, perhaps inverting
colors or applying various �lters to the image. If the image were stored on the server side, then each of those
pixels would have to be sent across the network to the application, which would make its changes and then
send them back to the server, again across the network. It would be painfully slow. In contrast, when the
image is on the client side, the application can manipulate those pixels quickly and the image is transferred
across the network when it is ready to be redisplayed.

Pango

Pango is a cross-platform, cross-toolkit, low-level library for layout and rendering of text, with an emphasis
on internationalization. Pango can be used anywhere that text layout is needed, although it was initially
created to support GTK+. Presently, Pango forms the core of text and font handling for GTK+-2.x. The
name Pango is a portmanteau � "pan" from the Greek for "all", and "go" from the Japanese for "language."

Pango is designed to be modular; the core Pango layout engine can be used with di�erent font back-ends.
There are presently three basic back-ends, for UNIX systems, Windows, and Mac OS. On Linux, Pango uses
the FreeType and fontcon�g libraries for client-side fonts.

Pango supports a vast array of languages. Almost every major script is supported. All text within Pango
is represented internally with UTF-8 encoding. UTF-8 is used because it is compatible with 8-bit software,
which is prevalent on UNIX platforms. O�sets in UTF-8 are calculated based on characters, not bits, because
characters can be multiple bytes. Pango supports a wide variety of text attributes, including language, font
family, style, weight, stretch, size, foreground color, background color, underline, strike-through, rise, shape,
and scale.

Cairo

Cairo is a two-dimensional, vector-based graphics library with support for multiple output devices, including
the X Window System, Quartz, and Win32. In 2005, GTK+ started using Cairo for rendering its widgets.
GDK provides access to various Cairo primitives, making it possible to create Cairo drawings directly using
the GDK library.

Language Bindings

For those who do not know the term �language binding�, this refers to an interface in the given language to
the given software entity. For example, saying that GTK+ has a C++ language binding means that there is
a C++ library that gives access to all of the GTK+ interfaces. The number of language bindings for various
releases of GTK+2 is extensive. Some of them are:

• C++: Gtkmm (including GLibmm, Libglademm, etc.).

2This is a lot like hard links to �les in UNIX.

5



CSci493.70 Graphical User Interface Programming

Lesson 1: The Foundation of GTK+

Prof. Stewart Weiss

• Python: PyGTK

• Perl: Gtk2-perl

• PHP: PHP-GTK

• Java: Java-Gnome

• C#: Gtk#

• Haskell

6


