
CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

Lesson 4: An Assortment of Input Widgets

1 Introduction

So far, we have not encountered any widgets that let the user provide input to the application, with the
exception of the GtkButton widgets and, in a broad sense, the GtkEventBox. Applications with graphical
user interfaces provide many di�erent means for the user to provide input: various types of text entry
widgets, buttons that bring up dialog boxes that let the user choose text style (fonts, size, etc.), colors, or
�les to open, controls such as checkboxes, radio buttons, combo boxes, slide controls, and spin buttons that
let the user choose from among a set of �nite alternatives.

This lesson covers several di�erent types of input widgets, including several buttons, the text entry widget,
and scales. Because some of these widgets require ancillary background knowledge and some of the demon-
stration programs have a few new features, the lesson also introduces concepts related to GLib timers, fonts,
color representation, image �le formats, and �le �lters.

2 Buttons

There are a variety of buttons in the GTK+ library. The following classes are derived from GtkButton:

• GtkToggleButton

• GtkColorButton

• GtkFontButton

• GtkLinkButton

• GtkOptionMenu (deprecated, use GtkComboBox instead)

• GtkScaleButton

Toggle buttons are used for creating radio buttons and checkboxes. Color buttons are used for selecting
colors, and font buttons, for selecting fonts. Link buttons are used for connecting to a URL. Scale buttons
pop up a scale widget. This kind of widget is commonly used for volume controls in multimedia applications;
the GtkVolumeButton is derived from the GtkScaleButton speci�cally for this purpose. It may not seem
as if menus can be called buttons, but that is what they are. A menu is a type of control that lets a user
choose from a set of alternative actions. A GtkOptionMenu is a widget that lets a user choose from among
several options. It has been deprecated since Gtk+ 2.4 and replaced by the GtkComboBox.

A GtkComboBox derives directly from GtkBin. A GtkComboBox is a widget that allows the user to choose
from a list of valid choices. The widget consists of a text entry box and a pull down menu from which the
user can select one of a set of prede�ned entries. It also allows the user to type a di�erent option into the
text box. The style in which the selected value is displayed, and the style of the pop-up list is determined
by the current theme. We will cover combo boxes later.

We will begin by going over a few things about basic buttons that have not been covered yet.

1

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

2.1 Stock Items

Stock items represent commonly-used menu or toolbar items such as "Open" or "About". Each stock item is
identi�ed by a stock ID, which is a string, such as �gtk-about�. GTK+ de�nes macros to represent these
strings. For example

#define GTK_STOCK_ABOUT �gtk-about�

Applications should never use the actual strings; they should use the macros, which are pretty easy to
guess. Applications can register their own stock items in addition to those built into GTK+. A stock ID is
associated with a GtkStockItem, which contains the user-visible label, keyboard accelerator, among other
things. When you use a stock item, you have access to these accelerators and labels, which include icons.

A good reason to use stock items when possible is to make your buttons, menu items, and toolbars conform
to users' expectations. They will also change their appearance depending upon the themes in the user's
environment.

Buttons can be created with stock items as their labels. The method is

GtkWidget * gtk_button_new_from_stock (const gchar *stock_id);

The macro name can be used instead of the string.

2.1.1 Example

The following program illustrates the use of buttons with stock items. It also introduces the GtkButtonBox
class, which is a convenient container for groups of independent buttons (as opposed to radio buttons) that
derives from GtkBox.

i n t main (i n t argc , char ∗argv [])
{

GtkWidget ∗window ;
GtkWidget ∗button ;
GtkWidget ∗button_box ;
GtkWidget ∗ frame ;

gtk_in i t (&argc , &argv) ;

window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_window_set_title (GTK_WINDOW (window) , "Stock Buttons ") ;
gtk_container_set_border_width (GTK_CONTAINER (window) , 1 0) ;

// Control window width but l e t the he ight grow as needed
gtk_widget_set_size_request (window , 250 , −1);

// Create a l ab e l ed frame and a v e r t i c a l button box ;
frame = gtk_frame_new("Some Stock Buttons ") ;
button_box = gtk_vbutton_box_new () ;

// Set the a t t r i b u t e s o f the button box : buttons spread
// evenly and have a spac ing o f 15 p i x e l s between them ,
// with a 10 p i x e l border

2

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

gtk_button_box_set_layout (GTK_BUTTON_BOX (button_box) ,
GTK_BUTTONBOX_SPREAD) ;

gtk_box_set_spacing (GTK_BOX (button_box) , 1 5) ;
gtk_container_set_border_width (GTK_CONTAINER (button_box) , 1 0) ;

// Add the button box to frame and the frame to window
gtk_container_add (GTK_CONTAINER (frame) , button_box) ;
gtk_container_add (GTK_CONTAINER (window) , frame) ;

// Create a bunch o f buttons from stock ;
button = gtk_button_new_from_stock (GTK_STOCK_ABOUT) ;
gtk_container_add (GTK_CONTAINER (button_box) , button) ;

button = gtk_button_new_from_stock (GTK_STOCK_OK) ;
gtk_container_add (GTK_CONTAINER (button_box) , button) ;

button = gtk_button_new_from_stock (GTK_STOCK_CANCEL) ;
gtk_container_add (GTK_CONTAINER (button_box) , button) ;

button = gtk_button_new_from_stock (GTK_STOCK_HELP) ;
gtk_container_add (GTK_CONTAINER (button_box) , button) ;

button = gtk_button_new_from_stock (GTK_STOCK_PRINT) ;
gtk_container_add (GTK_CONTAINER (button_box) , button) ;

// Don ' t bother with g i v ing the buttons any ac t i on s ;
// j u s t the c l o s e box
g_signal_connect (G_OBJECT (window) , " des t roy " ,

G_CALLBACK (gtk_main_quit) , NULL) ;

// Show the widgets
gtk_widget_show_all (window) ;

/∗
In e a r l i e r v e r s i on s o f GTK, the button i c on s d i sp layed
automat i ca l l y . They changed th ing s on us . Now the Gnome
s e t t i n g s by d e f au l t w i l l not d i sp l ay button i c on s .
Each app has to change the s e t t i n g to d i sp l ay them . To
do th i s , you have to r e t r i e v e GTK' s d e f au l t s e t t i n g s in to a
GtkSett ings object , and s e t the "gtk−button−images " property
to TRUE.

∗/
GtkSett ings ∗ de f au l t_s e t t i n g s = gtk_sett ings_get_defau l t () ;
g_object_set (de f au l t_se t t i ng s , "gtk−button−images " , TRUE, NULL) ;

gtk_main () ;
r e turn 0 ;

}

Notice the last few lines of the program. To guarantee that the icons will display, your program has to explic-
itly set the gtk-button-images property to TRUE in GTK's default settings. This is done by getting a pointer
to a GtkSettings object and setting the �gtk-button-images� value to TRUE with the g_object_set()

call.

3

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

A GtkButtonBox can be horizontal or vertical, and it has two subclasses for this purpose. This program
creates a vertical button box using

gtk_GtkWidget * gtk_vbutton_box_new (void);

Once it is created, the methods of the parent class are used, analogous to how horizontal and vertical boxes
are used. The �rst step is to set how the box will be laid out, using

void gtk_button_box_set_layout (GtkButtonBox *widget,

GtkButtonBoxStyle layout_style);

The GtkButtonBoxStyle is an enumeration that de�nes various ways to distribute the buttons within the
box

typede f enum
{
GTK_BUTTONBOX_DEFAULT_STYLE, // whatever the d e f au l t i s
GTK_BUTTONBOX_SPREAD, // evenly spread
GTK_BUTTONBOX_EDGE, // placed at the edges
GTK_BUTTONBOX_START, // grouped towards the s t a r t
GTK_BUTTONBOX_END, // grouped towards the end
GTK_BUTTONBOX_CENTER // centered

} GtkButtonBoxStyle ;

The program above spreads the buttons evenly in the space allotted to the box. The gtk_box_set_spacing()
method is used to add a 15 pixel spacing between the buttons in the above program. The buttons are added
to the box using the gtk_container_add() method.

2.2 Toggle Buttons

Toggle buttons are not used very much, but they are a parent class of other, more useful buttons, namely
check buttons and radio buttons, and they are therefore worthy of discussion. A toggle button is always in
one of two states; a click switches it from one state to the other. Visually, they will appear depressed in one
state and �popped up� in the other.

To create a new toggle button, use one of three methods:

GtkWidget *gtk_toggle_button_new(void);

GtkWidget *gtk_toggle_button_new_with_label(const gchar *label);

GtkWidget *gtk_toggle_button_new_with_mnemonic(const gchar *label);

These are self-explanatory at this point, assuming you have read the previous chapters.

(to be �lled in more here)

2.3 Check Buttons

Check buttons are derived from toggle buttons, but look a little di�erent. They are what I used to call check
boxes, a small square within which you can click, with a label next to them. These are used for toggling the
state of a two-state property in an application. They are really just a di�erent way to present the toggle
button.

(to be continued ...)

4

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

2.4 Radio Buttons

Radio buttons are similar to check buttons except they are grouped so that only one may be selected/de-
pressed at a time. They are suitable for making a choice among a small number of alternatives.

(to be continued ...)

3 The Text Entry Widget

A GtkEntry widget is a very powerful, single-line text entry widget, endowed with a large number of methods.
It displays a box into which the user can enter and edit text. If the entered text is longer than the width of
the widget, the widget will scroll so that the cursor position is visible.

An entry is created with

GtkWidget * gtk_entry_new (void);

The next function alters the text which is currently within the Entry widget.

void gtk_entry_set_text (GtkEntry *entry,

const gchar *text);

The function gtk_entry_set_text() sets the contents of the Entry widget, replacing the current contents.
Note that the class Entry implements the Editable interface (yes, GObject supports Java-like interfaces)
which contains some more functions for manipulating the contents.

The text entry widget has the ability to hide the entered text with an invisibility character. As the user
enters characters, this character is displayed in the widget instead of what the user types. This feature makes
it possible to put the widget into "password mode". To set the visibility property, use

void gtk_entry_set_visibility (GtkEntry *entry,

gboolean visible);

By default, GTK+ picks the best invisible character that is available in the current font, but it can be
changed with

void gtk_entry_set_invisible_char (GtkEntry *entry,

gunichar ch);

The gunichar type is GLib's Unicode character representation; to be precise, it is type which can hold any
UTF-32 or UCS-4 character code.

(to be continued ...)

4 The GtkAdjustment Object

A GtkAdjustment is one of those few GTK objects that is not a widget. It represents a discrete value which
has an associated lower and upper bound, together with step and page increments, and a page size. It is
important because it is the object that makes spin buttons, scales, sliders, progress bars, and scroll bars
possible.

5

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

Step and page increments de�ne how the value changes in small �steps� and in large �page� jumps. Think
about the di�erent parts of a scrollbar to get an intuition for this. Steps are the changes that take place
when the arrows at either end of the bar are clicked. Page increments are the changes resulting from clicking
in the �trough� of the scrollbar with the left mouse button, or using the Page Up or Page Down key on the
keyboard. The page size is not used by all widgets; it is used in di�erent ways by di�erent widgets. For
example, for an adjustment object for a scrollbar, it is the size of the visible area that is being scrolled in
the same direction as the scroll. A GtkAdjustment object does not update its value itself. Instead it is left
up to the owner of the GtkAdjustment to control the value.

A GtkAdjustment allows widgets to coordinate their actions through the use of the two signals that they
emit � "value_changed" and "changed". When the value of an adjustment is changed, the �value-changed�
signal is emitted. When the adjustment is recon�gured, by changing a bound or the page size, for instance,
the �changed� signal is emitted. A recon�guration can occur if the size of a document changes in a widget
controlled by a scrollbar; the upper bound increases. If the window is resized, the page_size parameter is
changed. Multiple widgets can react to the signals from a single adjustment, so that while a scrollbar moves,
so does the content area of the widget that it controls.

You as a programmer do not change the value of the adjustment directly. An adjustment is always part
of some widget called its owner. The owner is what typically calls gtk_adjustment_value_changed() and
gtk_adjustment_changed(). For example, when a user slides the thumb of a scale, the scale widget sets the
adjustment's new value using gtk_adjustment_value_changed() after which the �value-changed� signal is
emitted on the adjustment.

Let us examine the functions for working with adjustments.

To create a new adjustment, use

GtkObject * gtk_adjustment_new (gdouble value,

gdouble lower,

gdouble upper,

gdouble step_increment,

gdouble page_increment,

gdouble page_size);

but cast the result to a GtkAdjustment* because a GtkObject is a resource hog and this type is deprecated
in GTK+3 anyway. The parameters have the following meanings:

value the initial value.
lower the minimum value.
upper the maximum value.
step_increment the step increment.
page_increment the page increment.
page_size the page size.

The interpretation of these values depends upon the widget that uses them. For example:

GtkAdjustment adjustment;

adjustment = (GtkAdjustment *) gtk_adjustment_new (1.0, 1.0, 100.0, 1.0, 10.0, 0);

This creates an adjustment with range [1.0, 100.0] and initial value 1.0, with steps of 1.0 and 10.0.

You can set and retrieve the adjustment's values with

void gtk_adjustment_set_value (GtkAdjustment *adjustment,

gdouble value);

6

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

and

gdouble gtk_adjustment_get_value (GtkAdjustment *adjustment);

There are accessor and mutator methods for each of the individual properties other than the value of the
GtkAdjustment object, i.e., lower, upper, and so on. The accessors are of the form

gdouble gtk_adjustment_get_xxx (GtkAdjustment *adjustment);

and the mutators, of the form

void gtk_adjustment_set_xxx (GtkAdjustment *adjustment,

gdouble xxx);

where the xxx is replaced by the property name. Because each time a property is set, a �changed� signal
results, if you plan on changing several at once, it is better to use

GtkObject * gtk_adjustment_configure (GtkAdjustment *adjustment,

gdouble value,

gdouble lower,

gdouble upper,

gdouble step_increment,

gdouble page_increment,

gdouble page_size);

which causes emission of a single �changed� signal. There are no uses of adjustments outside of owning
widgets, so we will move on to spin buttons to illustrate how they are used.

5 The Spin Button

A GtkSpinButton is actually a subclass of GtkEntry. It is a more secure way to allow users to enter numeric
values than a GtkEntry, because if it is set up properly, it handles all input validation. It allows the user to
click on one of two arrows to increment or decrement the displayed value within a �xed range and with �xed
steps. The user can also type a value, but the spin button can be set up so that the value can be checked to
ensure it is in a given range.

Spin buttons are based upon adjustments. In fact they are created by specifying an adjustment, so the �rst
step is usually to create the adjustment and then create the spin button. A spin button is created with

GtkWidget * gtk_spin_button_new (GtkAdjustment *adjustment,

gdouble climb_rate,

guint digits);

where climb_rate controls the acceleration of the button and digits is the number of decimal digits to display.
The climb_rate must be between 0.0 and 1.0. The larger the number, the faster the acceleration.

There is a convenience function for creating spin buttons that uses a default adjustment. Consult the API
documentation for information about it.

A spin button's parameters can be changed at any time with gtk_spin_button_configure():

7

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

void gtk_spin_button_configure (GtkSpinButton *spin_button,

GtkAdjustment *adjustment,

gdouble climb_rate,

guint digits);

There are various functions setting the button's properties, including

void gtk_spin_button_set_digits (GtkSpinButton *spin_button,

guint digits);

void gtk_spin_button_set_increments (GtkSpinButton *spin_button,

gdouble step,

gdouble page);

void gtk_spin_button_set_range (GtkSpinButton *spin_button,

gdouble min,

gdouble max);

and corresponding functions for accessing their values. To retrieve a pointer to the button's current adjust-
ment object, use

GtkAdjustment* gtk_spin_button_get_adjustment (GtkSpinButton *spin_button);

and to replace the adjustment being used by a spinner:

void gtk_spin_button_set_adjustment (GtkSpinButton *spin_button,

GtkAdjustment *adjustment);

There are two ways to retrieve the spin button's current value. One returns a gdouble and the other returns
it as an integer, rounding using the usual rules:

gdouble gtk_spin_button_get_value (GtkSpinButton *spin_button);

gint gtk_spin_button_get_value_as_int (GtkSpinButton *spin_button);

A spin button emits a few signals but the most important one is the �value-changed� signal, which is emitted
whenever the value is changed. It would be in the callback for this signal that you would use the current
value to update whatever data the spin button controlled.

We will start with a simple program to illustrate the basic functionality.

L i s t i n g spinbutton_demo1 . c
// Inc lude d i r e c t i v e s omitted to save space
void show_value (GtkSpinButton ∗ sp inner ,

gpo in t e r user_data)
{

g in t va lue = gtk_spin_button_get_value_as_int (sp inner) ;
g_pr int f (" Current va lue i s %d\n" , va lue) ;

}

i n t main (i n t argc , char ∗argv [])
{

GtkWidget ∗window ;
GtkWidget ∗ sp inner ;
GtkAdjustment ∗adjustment ;

8

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

gtk_in i t (&argc , &argv) ;

window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_window_set_title (GTK_WINDOW (window) ,

basename (argv [0])) ;
gtk_widget_set_size_request (window , 250 , 100) ;
gtk_container_set_border_width (GTK_CONTAINER (window) , 5) ;

g_signal_connect (G_OBJECT (window) , " des t roy " ,
G_CALLBACK (gtk_main_quit) , NULL) ;

// Create an adjustment that ranges from 0 to 100 with i n i t i a l
// value 50 , a s tep o f 1 and a page increment o f 5 .
adjustment = (GtkAdjustment ∗) gtk_adjustment_new (50 . 0 , 0 . 0 ,

100 .0 , 1 . 0 , 5 . 0 , 0 . 0) ;

// Create a sp in button with no decimal p l a c e s
sp inner = gtk_spin_button_new (adjustment , 0 . 5 , 2) ;
g_signal_connect (G_OBJECT (sp inner) , " value−changed " ,

G_CALLBACK (show_value) , NULL) ;

gtk_container_add (GTK_CONTAINER (window) , sp inner) ;
gtk_widget_show_all (window) ;
gtk_main () ;
r e turn 0 ;

}

The spin button has a climb_rate of 0.5 and displays 2 decimal digits. When the value is changed, the
show_value() callback is executed. This gets the value of the spinner as an integer and displays it on the
terminal. When you run this program you will observe a few things.

1. If you hold either arrow key down to accelerate, not all values will be printed on the terminal window.
This is because the signals arrive faster than they can be handled and some are thrown away.

2. If you type a number outside of the range of the adjustment, it will replace it with the nearest valid
value.

3. If you type a number with decimal digits, it will accept it, even though it is not a value that can be
generated using only the arrow buttons, and if you then use the arrow buttons, the sequence will be
o� by the decimal amount you entered.

4. You can enter non-numeric data. If you do, the current value will be set to the smallest value in its
range.

5. The width of the spinner is much larger than it needs to be. You can put it into an hbox to control its
size, and add the hbox into the window instead.

You can prevent the spinner from accepting numbers that are not valid, i.e., that cannot be generated by
the arrows alone, by setting the boolean "snap-to-ticks" property to TRUE. By default it is FALSE. There is
a function to do this, so that you do not have to use the g_object_set() function:

void gtk_spin_button_set_snap_to_ticks(GtkSpinButton *spin_button,

gboolean snap_to_ticks);

9

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

When this property is set to TRUE, the spinner will round invalid, but in-range, values to the nearest �tick�
value.

You may not want the spin button to replace the current value if the user types a number that is out of
range. You may want it to just ignore the out-of-range value and remain at the current value. You can
modify its update policy to do this. The update policy has two values:

GTK_UPDATE_ALWAYS When the button refreshes itself after a value is typed, it always displays the new value,
coercing it to a bound if necessary.

GTK_UPDATE_IF_VALID When the button refreshes itself after a value is typed, it only replaces the current
value if the new value is within the range of the underlying adjustment.

By default it is set to GTK_UPDATE_ALWAYS.

You can set it to GTK_UPDATE_IF_VALID with

void gtk_spin_button_set_update_policy (GtkSpinButton *spin_button,

GtkSpinButtonUpdatePolicy policy);

passing GTK_UPDATE_IF_VALID as the second parameter.

You can prevent the user from entering non-numeric data by setting the button's �numeric� property to
FALSE. The method that does this is

void gtk_spin_button_set_numeric (GtkSpinButton *spin_button,

gboolean numeric);

When this property is set, no non-numeric characters will appear in the spinner's textbox.

6 Scales

Scale widgets, de�ned by the GtkScale class, are widgets that let the user choose a numeric value by sliding
a slider along a track called a trough, similar to brightness or volume controls or the playback slider in
video or audio media players. Dragging the slider with the pointer moves it back and forth within the
trough. Clicking in the trough advances the slider towards the location of the click, either completely, or
by a designated amount, depending on which mouse button is used. There are both horizontal and vertical
scales. Figure 1 shows an example of a horizontal scale. Horizontal scales belong to GtkHScale and vertical
scales, to GtkVScale, both derived from GtkScale.

Figure 1: Horizontal scale

6.1 Creating and Adjusting Scales

Vertical and horizontal scales can be created with the following methods:

10

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

GtkWidget * gtk_vscale_new (GtkAdjustment *adjustment);

GtkWidget * gtk_vscale_new_with_range (gdouble min,

gdouble max,

gdouble step);

GtkWidget * gtk_hscale_new (GtkAdjustment *adjustment);

GtkWidget * gtk_hscale_new_with_range (gdouble min,

gdouble max,

gdouble step);

Because horizontal and vertical scales are essentially the same except for orientation, we will limit the
discussion to horizontal scales. As with spin buttons, the di�erent between the two constructors is that
the gtk_hscale_new_with_range() creates an adjustment implicitly with the values of min, max, and step

provided in the call, whereas gtk_hscale_new() lets the programmer supply the adjustment explicitly.

You have control of several properties of the scale widget. By default, a scale widget displays the current
value of the adjustment as the slider position changes. You can turn this on or o� with

void gtk_scale_set_draw_value (GtkScale *scale,

gboolean draw_value);

The default number of decimal digits for the displayed number is 1. This can be adjusted with

void gtk_scale_set_digits (GtkScale *scale,

gint digits);

This function a�ects not just the widget, but the adjustment itself. If current value of the adjustment is
retrieved, it will match the value that is displayed. A consequence of this is that, if the same adjustment
is embedded in multiple scales, changing the number of displayed digits in one scale changes them in the
others that share the adjustment.

One can also control where the current value of the scale is drawn. The choices are above, below, to the left,
and to the right of the trough, using

void gtk_scale_set_value_pos (GtkScale *scale,

GtkPositionType pos);

where pos can be one of GTK_POS_LEFT, GTK_POS_RIGHT, GTK_POS_TOP, and GTK_POS_BOTTOM. If the current
value is positioned on the side of the trough, as opposed to at either end, then as the slider moves, the
number will move with it.

Another property that scales can have are labeled tick marks along the trough. You can use

void gtk_scale_add_mark (GtkScale *scale,

gdouble value,

GtkPositionType position,

const gchar *markup);

to put a tick mark above or below a horizontal scale (or to the left or right of a vertical scale.) The value

parameter determines where along the scale to position the mark. It should be a valid value within the
range of the adjustment object. The markup parameter is a string that may include Pango markup. The
position parameter is one of the values mentioned above. For example, to put the tick marks below a
horizontal scale, use GTK_POS_BOTTOM. If you supply a position type that is not along the trough, it will
default to the top for horizontal scales, and to the left for vertical scales. You can clear the marks with
gtk_scale_clear_marks().

The following listing shows the basic steps in creating a scale. This scale does not react to changes in the
slider. That will come afterwards.

11

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

L i s t i n g scale_demo1 . c
i n t main (i n t argc , char ∗argv [])
{

GtkWidget ∗window ;
GtkWidget ∗ s c a l e ;
GtkObject ∗adjustment ;

gtk_in i t (&argc , &argv) ;

window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_window_set_title (GTK_WINDOW (window) , basename (argv [0])) ;
gtk_widget_set_size_request (window , WINWIDTH, WINHEIGHT) ;
gtk_container_set_border_width (GTK_CONTAINER (window) , 2 0) ;

g_signal_connect (G_OBJECT (window) , " des t roy " ,
G_CALLBACK (gtk_main_quit) , NULL) ;

adjustment = gtk_adjustment_new (50 . 0 , 0 . 0 , 100 .0 , 0 . 1 , 10 . 0 , 0 . 0) ;
s c a l e = gtk_hscale_new (GTK_ADJUSTMENT (adjustment)) ;

// Set the number o f decimal p l a c e s to d i sp l ay
gtk_sca le_set_dig i t s (GTK_SCALE (s c a l e) , 2) ;

// Set the po s i t i o n o f the value with r e sp e c t to the trough
gtk_scale_set_value_pos (GTK_SCALE (s c a l e) , GTK_POS_TOP) ;
gtk_scale_set_draw_value (GTK_SCALE (s c a l e) , TRUE) ;
gtk_container_add (GTK_CONTAINER(window) , s c a l e) ;

gtk_widget_show_all (window) ;
gtk_main () ;

r e turn 0 ;
}

6.2 Range Widgets

To react to the changes in value as the slider is moved, you need to connect a callback to a signal from
the parent class of GtkScale, which is GtkRange. GtkRange is the base class for the classes of widgets that
visualize adjustment objects, which also includes scrollbars. Scales and scrollbars are similar in function and
implementation. Scrollbars, which are de�ned by the GtkScrollbar class, are also divided into horizontal
and vertical subclasses, GtkHScrollbar and GtkVScrollbar. All range widgets, including scrollbars, contain
a trough and a slider.

GtkRange contains the signals for monitoring the parameters of the adjustment and also provides properties
and methods for in�uencing the sensitivity of the "steppers". Range widgets use the embedded adjustment
object to calculate the length of the slider and its position within the trough. As the user manipulates the
slider, the range widget will change the value of the adjustment.

The only signal that you need to monitor for basic applications is the �value-changed� signal, which is
emitted on the widget whenever the slider moves. The following listing shows a simple example of handling
this signal.

L i s t i n g scale_demo2 . c

12

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

void on_value_changed (GtkRange ∗ s ca l e ,
GtkLabel ∗ l a b e l)

{
gchar ∗buf ;
buf = g_strdup_printf (" Current volume : %d" ,

(g in t) gtk_range_get_value (s c a l e)) ;
gtk_label_set_text (l abe l , buf) ;
g_free (buf) ;

}

i n t main (i n t argc , char ∗argv [])
{

GtkWidget ∗window ;
GtkWidget ∗ s c a l e ;
GtkObject ∗adjustment ;
GtkWidget ∗vbox ;
GtkWidget ∗hbox ;
GtkWidget ∗ l a b e l 1 ;
GtkWidget ∗ l a b e l 2 ;

g tk_in i t (&argc , &argv) ;

window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_window_set_title (GTK_WINDOW (window) , basename (argv [0])) ;
gtk_widget_set_size_request (window , WINWIDTH, WINHEIGHT) ;
gtk_container_set_border_width (GTK_CONTAINER (window) , 2 0) ;

g_signal_connect (G_OBJECT (window) , " des t roy " ,
G_CALLBACK (gtk_main_quit) , NULL) ;

vbox = gtk_vbox_new(FALSE, 0) ;
gtk_container_add (GTK_CONTAINER(window) , vbox) ;

hbox = gtk_hbox_new(FALSE, 0) ;

l a b e l 1 = gtk_label_new ("Volume Level : ") ;
gtk_misc_set_alignment (GTK_MISC(l ab e l 1) , 0 , 1) ;
gtk_box_pack_start (GTK_BOX (hbox) , l abe l 1 , FALSE, TRUE, 0) ;

l a b e l 2 = gtk_label_new (" Current volume : 5 ") ;
gtk_misc_set_alignment (GTK_MISC(l ab e l 2) , 1 , 1) ;
gtk_box_pack_end (GTK_BOX (hbox) , l abe l2 , FALSE, TRUE, 0) ;
gtk_box_pack_start (GTK_BOX (vbox) , hbox , FALSE, TRUE, 0) ;

adjustment = gtk_adjustment_new (5 . 0 , 0 . 0 , 10 . 0 ,
1 . 0 , 1 . 0 , 0 . 0) ;

s c a l e = gtk_hscale_new (GTK_ADJUSTMENT (adjustment)) ;
g tk_sca le_set_dig i t s (GTK_SCALE (s c a l e) , 0) ;
gtk_scale_set_value_pos (GTK_SCALE (s c a l e) , GTK_POS_TOP) ;
gtk_scale_set_draw_value (GTK_SCALE (s c a l e) , TRUE) ;
gtk_box_pack_start (GTK_BOX (vbox) , s ca l e , FALSE, TRUE, 0) ;

// Connect the value−changed s i g n a l to a ca l l ba ck that

13

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

// updates the second l a b e l
g_signal_connect (G_OBJECT (s c a l e) , "value_changed " ,

G_CALLBACK (on_value_changed) ,
(gpo in t e r) l a b e l 2) ;

gtk_widget_show_all (window) ;
gtk_main () ;

r e turn 0 ;
}

The GtkRange class provides some fairly sophisticated functionality in addition to the basics that you need
for simple applications. One property is the ��ll-level�. If you have downloaded streaming media online, you
have probably seen scales in the media players that contain a slider as well as an indicator that lets you
know how much has been downloaded so far. In GTK+, you can display how much of a �le has downloaded
by setting the ��ll-level� of the scale. You can turn on or o� the widget's display of the ��ll-level�, and you
can even prevent the user from positioning the slider beyond the current �ll level. The three functions that
perform these actions respectively, are:

void gtk_range_set_fill_level (GtkRange *range,

gdouble fill_level);

void gtk_range_set_show_fill_level (GtkRange *range,

gboolean show_fill_level);

void gtk_range_set_restrict_to_fill_level (GtkRange *range,

gboolean restrict_to_fill_level);

You set the �ll level to zero initially, and add a timeout to a main event loop. The timeout can be used to
call a function to check on the progress of a download and update the �ll level as it progresses. A timeout
is added to the main event loop with the GLib function

guint g_timeout_add (guint interval,

GSourceFunc function,

gpointer data);

The interval is expressed in milliseconds. A GSourceFunc is a function whose prototype is

gboolean (*GSourceFunc) (gpointer user_data);

The function must return TRUE or FALSE. If it returns TRUE, the timeouts continue to interrupt the main
event loop and the function is called again. If it returns FALSE, the timeout is removed. The data passed
to g_timeout_add() in the third argument is passed to the GSourceFunc when it is called. Thus, to have a
function advance_fill() called every half-second, and update the �ll value in a GtkHScale named scale,
we would add the instruction

g_timeout_add(500, (GSourceFunc) advance_fill, scale);

to the main program, and de�ne the GSourceFunc

14

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

gboolean advance_f i l l (GtkRange ∗ s c a l e)
{

gdouble f i l l , max ;
gchar ∗buf ;
GtkLabel ∗ l a b e l ;
GtkAdjustment ∗ sca le_adj ;

sca le_adj = gtk_range_get_adjustment (s c a l e) ;
max = gtk_adjustment_get_upper (sca le_adj) ;
f i l l = gtk_range_get_f i l l_leve l (s c a l e) ;
l a b e l = g_object_get_data (G_OBJECT(s c a l e) , " l a b e l ") ;

i f (f i l l < max) {
f i l l = f i l l + INTERVAL;
gtk_range_set_f i l l_ leve l (s ca l e , f i l l) ;
buf = g_strdup_printf ("Remaining : %4.2 f \n" ,max − f i l l) ;
gtk_label_set_text (l abe l , buf) ;
g_free (buf) ;
r e turn TRUE;

}
e l s e

re turn FALSE;
}

See scale_demo3.c for the complete program.

7 Selection Buttons

There are a few convenient buttons built into GTK+. These include the GtkColorButton and GtkFontButton,
which are true buttons, and the GtkFileChooserButton, which is not derived from the button class but is
a direct child of the GtkHBox class, as are GtkInfoBar and GtkStatusBar. All of these widgets fall into the
category of selection widgets because they let the user select something or other from the entire domain of
selectable things.

The color button can be used to select a color, which then becomes the currently selected color, out of the
set of all possible representable colors. The font button lets the user pick a font, which similarly becomes the
currently selected font, out of all possible fonts available to the user. The �le chooser button lets the user
choose a �le or a folder, depending on how it is con�gured, either from all possible �les or from a �ltered
subset of �les.

Each of these buttons, when clicked, opens a dialog box that implements the selection capability. The dialog
boxes that are opened in response to the color and font buttons are specialized to their particular tasks, and
are not customizable or accessible to the programmer. The �le chooser dialog box is a very powerful widget
that is essentially a �le browser. In addition, it implements the GtkFileChooser interface, which means
that all of the functionality of this interface is available to the programmer by casting this button into a
GtkFileChooser object.

These buttons are convenience buttons in the sense that their functionality exists in more general forms in
other widgets.They exist mostly for very simple, or �quick and dirty� applications. Usually you will create a
proxy such as a menu item or toolbar button to display a dialog box, and handle that dialog box's responses
with greater control. We will describe the buttons brie�y here, and at the same time introduce some of the
more advanced topics that will be covered later.

15

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

7.1 The Font Button

The GtkFontButton lets the user choose a font. It displays the currently selected font as its label, and when
clicked, opens a font selection dialog box to change the font. It has methods that control whether the font
label is displayed using the font and/or the font size. It also has methods to set or get the title of the dialog
box that is displayed when the button is clicked.

To create a font button use either of the two constructors:

GtkWidget * gtk_font_button_new (void);

GtkWidget * gtk_font_button_new_with_font (const gchar *fontname);

the di�erence being that the latter is initialized to contain the given fontname. Methods to set whether or
not to use the font or size in the button label are:

void gtk_font_button_set_use_font (GtkFontButton *font_button,

gboolean use_font);

void gtk_font_button_set_use_size (GtkFontButton *font_button,

gboolean use_size);

The font button emits just one signal: �font-set�, which is emitted when the user clicks the OK button in the
font selection dialog box. When the user has selected a font, its name can be retrieved using

const gchar * gtk_font_button_get_font_name (GtkFontButton *font_button);

Therefore, this function should be called in the signal handler for the �font-set� signal.

This signal is emitted only when the user selects the font ; it is not emitted as the user changes the font within
the dialog box. The font within the dialog box is a property of the dialog box itself, not the font button. If
you wanted the program to react to changes in the value of that property as the user changed the font, you
would have to connect a signal handler to the notify::font-name signal on the dialog. But you do not have
access to that dialog when using the GtkFontButton. If your program needs to react to changes outside of
the dialog, it is best to use the GtkFontSelectionDialog box directly.

The simplest way to show how to use this is with an example that changes the font of a label in a window.
Labels have many methods, but what they do not have is a method to change their font, unless you want to
use Pango markup to do so. Instead of using the label's own methods, we can use the more general widget
method to change the font of the label:

void gtk_widget_modify_font (GtkWidget *widget,

PangoFontDescription *font_desc);

This function takes a pointer to the widget and a PangoFontDescription pointer. Pango is a library
for the layout and rendering of internationalized text. A PangoFontDescription object is derived from
a GBoxed object, which descends directly from GObject. It is opaque to the programmer, but it provides
many methods to manipulate fonts. One of the most useful, and the simplest, is a function that returns a
PangoFontDescription pointer when given a valid fontname that is available on the host system:

PangoFontDescription * pango_font_description_from_string (const char *str);

This creates a new font description from a string representation in a speci�c form. The API documentation
describes this form in detail, but for our purposes now, is is enough to know that the string returned by the
gtk_font_button_get_font_name() function is in the correct form to supply to this function. Therefore,
a signal handler to change the font of a label passed as user data to the handler could be:

16

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

void on_font_changed (GtkFontButton ∗button ,
GtkWidget ∗ l a b e l)

{
const gchar ∗ fontname ;
PangoFontDescription ∗ font_desc ;

fontname = gtk_font_button_get_font_name (button) ;
font_desc = pango_font_description_from_string (fontname) ;
gtk_widget_modify_font (l abe l , font_desc) ;

}

This retrieves the fontname as a string, gets a Pango description for it, and modi�es the label. When creating
the widgets, the label would need an initial display font, which should match the font of the font button. If
Pango cannot render the font for one reason or another, it will generate an error message on the standard
error stream. The following listing shows the main program that does this.

#inc lude <g l i b . h>
#inc lude <gdk/gdk . h>
#inc lude <gtk/gtk . h>
#inc lude <s t d l i b . h>
#inc lude <l i bg en . h>

#de f i n e WINWIDTH 400
#de f i n e WINHEIGHT 300
#de f i n e START_FONT "Sans 12"
#de f i n e LABEL_TEXT "Cl i ck the button to change the font . "

i n t main (i n t argc , char ∗argv [])
{

GtkWidget ∗window ;
GtkWidget ∗ fontbutton ;
GtkWidget ∗ l a b e l ;
GtkWidget ∗vbox ;
GtkWidget ∗hbox ;
GtkWidget ∗ hseparator ;
PangoFontDescription ∗ i n i t i a l_ f o n t ;

gtk_in i t (&argc , &argv) ;

window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_window_set_title (GTK_WINDOW (window) , basename (argv [0])) ;
gtk_container_set_border_width (GTK_CONTAINER (window) , 2 0) ;

g_signal_connect (G_OBJECT (window) , " des t roy " ,
G_CALLBACK (gtk_main_quit) , NULL) ;

vbox = gtk_vbox_new(FALSE, 0) ;
gtk_container_add (GTK_CONTAINER(window) , vbox) ;

hbox = gtk_hbox_new(FALSE, 0) ;
gtk_box_pack_start (GTK_BOX (vbox) , hbox , FALSE, FALSE, 1 0) ;

hseparator = gtk_hseparator_new () ;
gtk_box_pack_start (GTK_BOX (vbox) , hseparator , FALSE, FALSE, 1 0) ;

l a b e l = gtk_label_new (LABEL_TEXT) ;

17

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

i n i t i a l_ f o n t = pango_font_description_from_string (START_FONT) ;
gtk_widget_modify_font (l abe l , i n i t i a l_ f o n t) ;
g tk_labe l_set_jus t i f y (GTK_LABEL(l a b e l) , GTK_JUSTIFY_CENTER) ;
gtk_box_pack_start (GTK_BOX(vbox) , l abe l , TRUE, FALSE, 5) ;

fontbutton = gtk_font_button_new_with_font (START_FONT) ;
gtk_font_button_set_tit le (GTK_FONT_BUTTON (fontbutton) ,

" S e l e c t a Font ") ;
gtk_font_button_set_use_font (GTK_FONT_BUTTON (fontbutton) , TRUE) ;

g_signal_connect (G_OBJECT (fontbutton) , " font_set " ,
G_CALLBACK (on_font_changed) ,
(gpo in t e r) l a b e l) ;

gtk_box_pack_end (GTK_BOX (hbox) , fontbutton , FALSE, FALSE, 0) ;
g_signal_connect (G_OBJECT(window) , " des t roy " ,

G_CALLBACK(gtk_main_quit) , NULL) ;

gtk_widget_show_all (window) ;
gtk_main () ;
r e turn 0 ;

}

7.2 The Color Button

The GtkColorButton lets the user choose a color by launching a GtkColorSelectionDialog. The button's
label is a small rectangular swatch of the currently selected color; it has no text in its label. It has a method
to set or get the title of the dialog box that is displayed when the button is clicked, and a few methods to
set or get the current color and alpha channel value. It is created with either of

GtkWidget * gtk_color_button_new (void);

GtkWidget * gtk_color_button_new_with_color (const GdkColor *color);

The former creates a button with a black swatch, whereas the second creates a button with the current color
determined by the GdkColor* argument. The function to retrieve the currently selected color from a color
button is

void gtk_color_button_get_color (GtkColorButton *color_button,

GdkColor *color);

7.2.1 About Color Representations

To use the GtkColorButton you need to know a little about the representation of colors in GDK, which has
an extensive API for dealing with color. A color is stored in a GdkColor structure, which uses the RGB

model to represent a color as independent components of red, green, and blue:

typede f s t r u c t {
guint32 p i x e l ;
gu int16 red ;
guint16 green ;
guint16 blue ;

} GdkColor ;

18

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

The RGB model is a standard method of representing color, and with 16 bits allocated for each of red, green,
and blue, there are in theory 248or roughly 281 trillion possible colors. Programmatically, a color is de�ned
by an assignment of values to each of the red, green, and blue members of the GdkColor structure. Larger
values are closer to white. Black is the absence of color, and that is what you get when you zero the members
of this struct. (That is why the swatch on a new button is black when you do not use the second of the two
constructors above.)

As a convenience, GDK provides a method that lets you specify the color value as a string called the color's
spec, using

gboolean gdk_color_parse (const gchar *spec,

GdkColor *color);

The string can either one of a large set of standard names from the X11 rgb.txt �le, or it can be a hex value
in the form '#rgb' '#rrggbb' '#rrrgggbbb' or '#rrrrggggbbbb' where 'r', 'g' and 'b' are hex digits of the red,
green, and blue components of the color, respectively. Standard color names are a very colorful collection in
fact, with names such as �baker's chocolate� and �Free Speech Green�.

Although you can visualize a color by its RGB values, that is not what GDK uses. Remember that GDK
ultimately has to deliver a color to the underlying X11 server, which has to make that color appear on the
monitor. Because there are many di�erent types of monitors, there are di�erent hardware representations of
color. That is where the pixel value in the GdkColor structure comes into play.

The X11 protocol de�nes a visual as the method of representing a color in hardware. A true-color visual

represents colors by the actual RGB values, which are usually 24 bits or more. If 24 bits are used, 8-bits are
used for each of R, G, and B in the pixel. The remaining 8 bits can be used for the alpha channel, which
will be explained below.

Some systems use colormaps instead, and these are called pseudo-color visuals, because they do not necessar-
ily contain the true colors. A colormap is an array whose entries consist of three values each � d bits for red,
d bits for green, and d bits for blue. The number N of entries in the array determines how many di�erent
colors can be displayed on the screen at a single time. Colormaps are called palettes in some systems. If d = 8
then the palette contains 24-bit color values, which means that there are about 16 million (224) di�erent
possible colors in the palette, even though the palette can display only N of these at a time in a pseudo-color
visual. When N = 256 for example, the palette can store 256 colors, each of which has 24-bit depth.

(need a picture here)

If a system uses a colormap, then the pixel member of the GdkColor structure contains the index in a
colormap of the color de�ned by the red, green, and blue members of the structure1. There is usually
a standard system colormap that is loaded by default. Your application can use the system colormap by
calling gdk_colormap_get_system().

A true-color visual also uses a colormap, but it is used di�erently. In a true-color visual, the three values in
each entry of the array are accessed independently. To be precise, suppose that the colormap has 256 entries,
each of which consists of 3 8-bit values, called red, green, and blue, respectively. Rather than thinking of this
as a single array with 3-member structures as its entries, think of it instead as three parallel arrays named
red, green, and blue, each of size 256. Since 256 = 28, 8 bits can be used to index any row of these arrays.
The pixel member of the GdkColor structure is decomposed into 8-bit �elds. The high-order 8 bits are the
index into the red array; the next 8 bits are the index into the green array, and the next 8 bits, the index
into the blue array.

Since the entries in each array are 8 bits each, each of the pixel indices speci�es an 8-bit color value. In other
words, there are 256 di�erent values for red, 256 for green, and 256 for blue. Since these are independent,
there are 256 × 256 × 256 = 28 · 28 · 28 = 224 possible colors. Thus, using a table of the same size as the
pseudo-color visual, we can represent 16 million colors using true-color, versus the 256 colors that the table
can represent using pseudo-color.

1The actual color in the colormap may not match those RGB values exactly.

19

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

(need a picture here)

When an application needs to render a color on the screen, it can store it in the colormap, so that it can use
that same color repeatedly, perhaps at a later time. This is called allocating the color. Your application can
�ll in the red, green, and blue members of a GdkColor structure, and then ask for it to be allocated. After
allocation, the pixel member contains a hardware-dependent value that is used to access the colormap.

Most systems allow colormaps to be shared among applications. If a color is shared, then other applications
can use the colors that are stored in it. If the color could be changed by the application that �rst allocated
it, this would corrupt the color in the other application. Therefore, GDK allows you to mark a color as
writeable or read-only. If it is read-only, your application cannot modify it once it is allocated, and it can be
shared. If it is writeable, your application can modify it, and so GDK will not let other applications share it.
It is better, of course, to use read-only colors, since the colormap will take up less memory. And of course,
when you �nish with it, you can tell GDK to release that color's slot.

7.2.2 Using Color in GDK

We describe a very simple GTK+ application that uses a GtkColorButton. The main window contains a
GtkDrawingArea widget, a label, and a color button. To organize things a bit within the window, we use a
couple of boxes and an alignment.

A GtkDrawingArea is essentially a blank canvas on which your application can draw. It has its own GDK
window, which is where your drawing is done. If you draw on this widget though, when the widget is covered
by another window and then exposed again, the drawing will be lost, because the windowing system does
not redraw this for you. How to use this widget for drawing is the subject of a di�erent lesson. Here we avoid
this problem because we are using this widget only to display the currently selected color as its background
color. The background color of a widget is drawn by the windowing system.

We create the drawing area widget with

GtkWidget * gtk_drawing_area_new (void);

which creates an empty canvas for us. We create an initial color using gdk_color_parse(), giving it an
RGB text string as the choice. The three steps needed are

#de f i n e STARTCOLOR "baker ' s choco l a t e "

// miss ing s t u f f here o f course
// in main () :

GdkColor c o l o r ;
gdk_color_parse (STARTCOLOR, &co l o r) ;

Notice that color is on the program stack, not in dynamic memory. We can then use this GdkColor as the
background of the drawing area and the starting color of the GtkColorButton that we create. To modify
the background color of a widget, we need the method of the widget base class:

void gtk_widget_modify_bg (GtkWidget *widget,

GtkStateType state,

const GdkColor *color);

20

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

All widgets that have windows can be assigned a background color, which is part of the widget's GtkStyle
structure. Every widget can be in one of �ve di�erent states, and the style associated to each state can be
di�erent. Therefore, one can assign a di�erent background color to the widget for each independent state.
The GtkStateType argument is an enumerated type that refers to one of the states in which a widget can
be. The gtk_widget_modify_bg() method needs the GtkStateType argument so that it knows to which
state's background to apply the color. The values of the enumeration are

GTK_STATE_NORMAL State during normal operation.

GTK_STATE_ACTIVE State of a currently active widget, such as a depressed button.

GTK_STATE_PRELIGHT State indicating that the mouse pointer is over the widget and the widget will
respond to mouse clicks.

GTK_STATE_SELECTED State of a selected item, such the selected row in a list.

GTK_STATE_INSENSITIVE State indicating that the widget is unresponsive to user actions.

We will set the background color of the drawing area in its normal state with the call

gtk_widget_modify_bg (drawingarea, GTK_STATE_NORMAL, &color);

and since color also contains our STARTCOLOR value, we can set the color of the button with the call

colorbutton = gtk_color_button_new_with_color (&color);

Then the only remaining important tasks are to de�ne the callback function and to connect it to the �color-
set� signal of the color button. The callback is:

void on_color_set (GtkColorButton ∗button ,
GtkWidget ∗widget)

{
GdkColor c o l o r ;

/∗ get the s e l e c t e d c o l o r from the d i a l o g −
be sure to pass by address ! ∗/

gtk_color_button_get_color (button , &co l o r) ;

/∗ change the background co l o r o f the widget ∗/
gtk_widget_modify_bg (widget , GTK_STATE_NORMAL, &co l o r) ;

}

Notice that the variable color is on the stack and that we have to pass it by address to the gtk_color_button_get_color()
method. Notice also that we change the background color of the drawing area widget in two places: �rst in
the main program before we start the gtk_main() loop, and second, in the callback.

Finally, we connect the callback to the �color-set� signal on the color button and pass a pointer to the drawing
area widget as user data:

g_signal_connect (G_OBJECT (co lo rbut ton) , " co lo r_set " ,
G_CALLBACK (on_color_set) ,
(gpo in t e r) drawingarea) ;

The complete program is called colorbutton_demo1.c and can be found in the buttons demo directory on
the server.

21

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

7.3 The File Chooser Button

The GtkFileChooserButton is a widget that lets the user select a �le. It is a �le name with a button to
bring up a GtkFileChooserDialog. The user can then use that dialog to change the �le associated with
that button. When this button is used though, multiple �les cannot be selected.

There are two methods to create a new

GtkWidget * gtk_file_chooser_button_new (const gchar *title,

GtkFileChooserAction action);

GtkWidget * gtk_file_chooser_button_new_with_dialog

(GtkWidget *dialog);

The �rst function creates a �le choosing button that will open a built-in dialog; the second requires that the
programmer supply a dialog box. As this is our introduction to these buttons and we have not yet covered
dialog boxes, we limit discussion to the �rst of the methods.

To create a new �le chooser button, the programmer has to supply a string that will become the title of the
dialog box that is opened when the user clicks on the button, and the action that the dialog must perform.
The action is whether to open or save a �le, or to open or create a directory. It is speci�ed as a value of the
GtkFileChooserAction enumerated type :

GTK_FILE_CHOOSER_ACTION_OPEN Indicates open mode. The �le chooser will only let the user pick an
existing �le.

GTK_FILE_CHOOSER_ACTION_SAVE Indicates save mode. The �le chooser will let the user pick an existing
�le, or type in a new �lename.

GTK_FILE_CHOOSER_ACTION_SELECT_FOLDER Indicates an Open mode for selecting folders. The �le chooser
will let the user pick an existing folder.

GTK_FILE_CHOOSER_ACTION_CREATE_FOLDER Indicates a mode for creating a new folder. The �le chooser
will let the user name an existing or new folder.

When the GTK_FILE_CHOOSER_ACTION_OPEN mode is speci�ed, the GtkFileChooserDialog that is opened
displays the �les in a speci�c directory. The user can control which directory it starts in with

void gtk_file_chooser_set_current_folder (GtkFileChooser *chooser,

gchar *directory);

In general this sets the current directory of the dialog box. If we want it to start in the user's home directory,
a logical choice, we would use the convenient GLib function

const gchar * g_get_home_dir (void);

which returns a string that can be passed to the former method. We could also use the POSIX getenv()

function, as in getenv(�HOME�), which would also give as the path to the home directory.

The button itself has very few methods of its own; its utility is primarily from its being an implementation
of the GtkFileChooser interface. Basically, besides the dialog box that it owns, it has three properties:

"focus-on-click" whether or not a click allows it to grab focus.
"title" the title of the dialog box, as a string.
"width-chars" the width of the label inside the button, measured in characters.

Each of these can be set or retrieved by a method of the form

22

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

void gtk_file_chooser_button_set_xxx (GtkFileChooserButton *button,

gint n_chars);

gint gtk_file_chooser_button_get_xxx (GtkFileChooserButton *button);

where the �xxx� is replaced by the property name, replacing �-� by �_� and where the return type of the get
method and the type of the second parameter of the set method are matching and one of gboolean, const
gchar*, and gint respectively.

Like the font button and the color button, the �le chooser button emits just a single signal, ��le-set�, which is
emitted when the user clicks the OK button in the �le selection dialog box. Because the GtkFileChooserButton
implements the GtkFileChooser interface, it also emits the signals of that class. One can therefore monitor
the �selection-changed� signal instead; the result will be the same, but only if the button is set to select
�les. If the button is created with the GTK_FILE_CHOOSER_ACTION_SELECT_FOLDER action, it will not emit
the ��le-set� signal; instead your program must connect to the �selection-changed� signal.

We will demonstrate how to use this button with a simple application that displays two buttons, one to select
a folder, and the other to select a �le. We will call these the folder chooser and the �le chooser respectively.
When a folder is selected, the folder chooser button will change the current directory of the �le chooser
button. When a �le is selected, the �le chooser button will change a label widget in the main program that
displays the pathname of the currently selected �le. To make this all the more interesting, we will add �le
�lters to the �le chooser button.

7.3.1 The GtkFileFilter

A GtkFileFilter can be used to restrict the �les being shown in a GtkFileChooser. Files can be �ltered
based on their

• name using gtk_file_filter_add_pattern(),

• mime type using gtk_file_filter_add_mime_type(), or

• with a custom �lter function using gtk_file_filter_add_custom().

When �ltering by name using gtk_file_filter_add_pattern(), shell �le globs can be used. For example,
the pattern �*.c� will �lter out all �les that do not end in a �.c� extension, and �*.[ch]� will match header
�les and C source �les.

Filtering with mime types handles aliasing and sub-classing of mime types. For example, a �lter for
text/plain also matches a �le with mime type application/rtf, since application/rtf is a subclass
of text/plain. Also, GtkFileFilter allows wildcards for the subtype of a mime type, so you can �lter for
all text �les with �text/*� for example.

The functions to add by name (pattern) or by mime type are:

void gtk_file_filter_add_pattern (GtkFileFilter *filter,

const gchar *pattern);

void gtk_file_filter_add_mime_type (GtkFileFilter *filter,

const gchar *mime_type);

The procedure for adding a �lter to a GtkFileChooser has four steps:

1. Create the �lter using

GtkFileFilter * gtk_file_filter_new (void);

2. Give the �lter a name, using

23

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

void gtk_file_filter_set_name (GtkFileFilter *filter,

const gchar *name);

3. Add one or more patterns or mime/types, one at a time, using one of the above functions, and

4. Add the �lters to the GtkFileChooser with

void gtk_file_chooser_add_filter (GtkFileChooser *chooser,

GtkFileFilter *filter);

The order in which the �lters are added to the �le chooser will be the order in which they appear in the
combo box in the GtkFileChooserDialog box. The following listing shows a function that adds a number
of �lters to a GtkFileChooserButton's dialog box.

void s e t_up_f i l t e r s (GtkFileChooser ∗ chooser)
{

GtkF i l eF i l t e r ∗ f i l t e r ;

f i l t e r = gtk_f i l e_f i l t e r_new () ;
gtk_f i l e_f i l ter_set_name (f i l t e r , "Al l F i l e s ") ;
g tk_f i l e_f i l t e r_add_pattern (f i l t e r , "∗") ;
g tk_f i l e_chooser_add_f i l t e r (chooser , f i l t e r) ;

f i l t e r = gtk_f i l e_f i l t e r_new () ;
gtk_f i l e_f i l ter_set_name (f i l t e r , "Text F i l e s ") ;
gtk_file_filter_add_mime_type (f i l t e r , " t ex t /∗") ;
g tk_f i l e_chooser_add_f i l t e r (chooser , f i l t e r) ;

f i l t e r = gtk_f i l e_f i l t e r_new () ;
gtk_f i l e_f i l ter_set_name (f i l t e r , "Image F i l e s ") ;
gtk_f i le_f i l ter_add_pixbuf_formats (f i l t e r) ;
g tk_f i l e_chooser_add_f i l t e r (chooser , f i l t e r) ;

f i l t e r = gtk_f i l e_f i l t e r_new () ;
gtk_f i l e_f i l ter_set_name (f i l t e r , "C/C++ F i l e s ") ;
g tk_f i l e_f i l t e r_add_pattern (f i l t e r , " ∗ . [chC] ") ;
g tk_f i l e_f i l t e r_add_pattern (f i l t e r , "∗ . cc ") ;
g tk_f i l e_f i l t e r_add_pattern (f i l t e r , "∗ . cpp ") ;
g tk_f i l e_f i l t e r_add_pattern (f i l t e r , "∗ .CC") ;
gtk_f i l e_chooser_add_f i l t e r (chooser , f i l t e r) ;

}

7.3.2 Supported Image File Formats

Notice that GtkFileFilter also has a method to add an image �le �lter:

void gtk_file_filter_add_pixbuf_formats (GtkFileFilter *filter);

This function will add to the given �lter all image formats supported by GdkPixbuf on the given host. If you
are curious as to which image �le types are actually supported, you can use the following function, de�ned
in the Gdk-PixBuf Reference Manual:

GSList * gdk_pixbuf_get_formats (void);

24

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

The following listing is of a command-line program that will print the list of image formats supported by
GdkPixbuf on your host machine.

L i s t i n g .
#inc lude <gtk/gtk . h>
// Appl ies gdk_pixbuf_format_is_writable (data) to the GdkPixBufFormat
// s t r u c t pointed to by data , and i f i t r e tu rn s true , i t prepends that
// po in t e r to the l i s t po inted to by ∗ l i s t . Because the l i s t i t s e l f i s
// modi f i ed in the funct ion , the po in t e r to the f r on t o f the l i s t changes .
// Therefore , i t i s passed by r e f e r e n c e as a po inter , i . e . , as ∗∗ l i s t , and
// so in t h i s funct ion , ∗ l i s t i s the po in t e r i t s e l f . When i t i s f i n i s h e d
// ∗ l i s t s t i l l po in t s to the f r on t o f the l i s t .
void add_if_writable (GdkPixbufFormat ∗data , GSList ∗∗ l i s t)
{

i f (gdk_pixbuf_format_is_writable (data))
∗ l i s t = g_sl ist_prepend (∗ l i s t , data) ;

}

// This i s a l s o a GFunc funct ion , which i s why i t i s g iven the second
// parameter , l i s t , even though i t does not use i t .
// I t r e t r i e v e s the name o f the image f i l e format s to r ed in the cur rent
// GdkPixbufFormat s t r u c t and p r i n t s i t on standard output .
void format_print (GdkPixbufFormat ∗data , GSList ∗∗ l i s t)
{

g_print ("%s\n" , gdk_pixbuf_format_get_name (data)) ;
}

i n t main (i n t argc , char ∗argv [])
{

// Get the l i s t o f a l l formats
// This func t i on r e tu rn s a Glib s ing ly−l i nked l i s t o f po i n t e r s
// to GdkPixbufFormat s t r u c t s . The s t r u c t s are owned by Gdk but the
// l i s t o f po i n t e r s must be f r e ed when you are f i n i s h e d with the
// l i s t , with g_s l i s t_ f r e e () .
GSList ∗ formats = gdk_pixbuf_get_formats () ;

// I n i t i a l i z e an empty GSList
GSList ∗writable_formats = NULL;
/∗

Produce the l i s t o f wr i t ab l e formats us ing the fo r each algor i thm
apply ing a func t i on o f the form

void gfunc (gpo in t e r data , gpo in t e r user_data)

to each element o f the l i s t , pas s ing in user_data as the second
argument to i t , and the cur rent l i s t element as the f i r s t argument
to i t . For example , in the code below , the GFunc i s add_if_writable ()
and the l i s t i s formats . The data passed as the second argument i s
a po in t e r to the l i s t wr i t ab l e formats . add_if_writable () w i l l be
app l i ed to the cur rent l i s t item in format f o r each item in format ,
with &writable_formats as i t s second argument .

∗/
g_s l i s t_fo reach (formats , (GFunc) add_if_writable , &writable_formats) ;

// Pr int the l i s t o f wr i t ab l e formats us ing the fo r each a lgor i thm
g_s l i s t_fo reach (formats , (GFunc) format_print , &writable_formats) ;
g_s l i s t_ f r e e (formats) ;
r e turn 0 ;

25

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

}

The main program and callbacks of our demonstration program follow.

void on_folder_changed (GtkFileChooser ∗ fo lder_chooser ,
GtkFileChooser ∗ f i l e_choo s e r)

{
gchar ∗ f o l d e r = gtk_fi le_chooser_get_f i lename (fo lde r_choose r) ;
gtk_f i l e_chooser_set_current_fo lder (f i l e_choos e r , f o l d e r) ;

}

void on_file_changed (GtkFileChooser ∗ f i l e_choose r ,
GtkLabel ∗ l a b e l)

{
gchar ∗ f i l e = gtk_fi le_chooser_get_f i lename (f i l e_choo s e r) ;
i f (NULL == f i l e)

gtk_label_set_text (l abe l , "no f i l e s e l e c t e d ") ;
e l s e

gtk_label_set_text (l abe l , f i l e) ;
}

i n t main (i n t argc , char ∗argv [])
{

GtkWidget ∗window ;
GtkWidget ∗ f o lde r_choose r ;
GtkWidget ∗ f i l e_choo s e r ;
GtkWidget ∗ f i l ename_labe l ;
GtkWidget ∗ frame ;
GtkWidget ∗vbox ;
GtkWidget ∗ al ignment ;

gtk_in i t (&argc , &argv) ;

window = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
gtk_window_set_title (GTK_WINDOW (window) , basename (argv [0])) ;
gtk_widget_set_size_request (window , WINWIDTH, WINHEIGHT) ;
gtk_container_set_border_width (GTK_CONTAINER (window) , 2 0) ;

g_signal_connect (G_OBJECT (window) , " des t roy " ,
G_CALLBACK (gtk_main_quit) , NULL) ;

// Put a vbox in the main window and pack everyth ing in to i t
vbox = gtk_vbox_new (FALSE, 5) ;
gtk_container_add (GTK_CONTAINER (window) , vbox) ;

// F i r s t in i s a frame that w i l l conta in a l a b e l . The l a b e l w i l l be
// changed by the on_file_changed ca l l b a ck to conta in the abso lu t e
// pathname o f the s e l e c t e d f i l e .
frame = gtk_frame_new (" Current ly s e l e c t e d f i l e : ") ;
gtk_box_pack_start (GTK_BOX (vbox) , frame , TRUE, TRUE, 10) ;

// The f i l ename_labe l w i l l conta in the path . Turn on l i n e wrap and
// wrap on cha ra c t e r s s i n c e the re are no spaces in the path and
// i t might get pre t ty long . Add soem padding too .
f i l ename_labe l = gtk_label_new (" ") ;
g tk_labe l_set_jus t i f y (GTK_LABEL(f i l ename_labe l) , GTK_JUSTIFY_LEFT) ;
gtk_label_set_line_wrap (GTK_LABEL(f i l ename_labe l) , TRUE) ;

26

CSci493.70 Graphical User Interface Programming

Lesson 4: An Assortment of Input Widgets

Prof. Stewart Weiss

gtk_label_set_line_wrap_mode (GTK_LABEL(f i l ename_labe l) ,
PANGO_WRAP_CHAR) ;

gtk_misc_set_alignment (GTK_MISC(f i l ename_labe l) , 0 , 0) ;
gtk_container_add (GTK_CONTAINER (frame) , f i l ename_labe l) ;

// Create the two f i l e c h o o s e r buttons , one to s e l e c t a f o l d e r ,
// the other to s e l e c t a f i l e . Make them a f i x ed minimum s i z e so
// they don ' t look s t range .
f o lde r_choose r = gtk_file_chooser_button_new ("Choose a Folder " ,

GTK_FILE_CHOOSER_ACTION_SELECT_FOLDER) ;
gtk_widget_set_size_request (fo lder_chooser , BUTTONWIDTH, −1);

f i l e_choo s e r = gtk_file_chooser_button_new ("Choose a F i l e " ,
GTK_FILE_CHOOSER_ACTION_OPEN) ;

gtk_widget_set_size_request (f i l e_choose r , BUTTONWIDTH, −1);

// Let the s t a r t i n g d i r e c t o r y be the home d i r e c t o r y
gtk_f i l e_chooser_set_current_fo lder (GTK_FILE_CHOOSER (fo lde r_choose r) ,

g_get_home_dir ()) ;
gtk_f i l e_chooser_set_current_fo lder (GTK_FILE_CHOOSER (f i l e_choo s e r) ,

g_get_home_dir ()) ;

// Connect the se lect ion_changed s i g n a l to two d i f f e r e n t c a l l b a c k s
g_signal_connect (G_OBJECT (fo lde r_choose r) , " se lect ion_changed " ,

G_CALLBACK (on_folder_changed) ,
(gpo in t e r) f i l e_choo s e r) ;

g_signal_connect (G_OBJECT (f i l e_choo s e r) , " f i l e_ s e t " ,
G_CALLBACK (on_file_changed) ,
(gpo in t e r) f i l ename_labe l) ;

s e t_up_f i l t e r s (GTK_FILE_CHOOSER(f i l e_choo s e r)) ;

a l ignment = gtk_alignment_new (1 , 0 , 0 , 0) ;
gtk_container_add (GTK_CONTAINER (al ignment) , f i l e_choo s e r) ;
gtk_box_pack_end (GTK_BOX (vbox) , al ignment , FALSE, FALSE, 1 0) ;

a l ignment = gtk_alignment_new (1 , 0 , 0 , 0) ;
gtk_container_add (GTK_CONTAINER (al ignment) , f o lde r_choose r) ;
gtk_box_pack_end (GTK_BOX (vbox) , al ignment , FALSE, FALSE, 1 0) ;

gtk_widget_show_all (window) ;

gtk_main () ;
r e turn 0 ;

27

	Introduction
	Buttons
	Stock Items
	Example

	Toggle Buttons
	Check Buttons
	Radio Buttons

	The Text Entry Widget
	The GtkAdjustment Object
	The Spin Button
	Scales
	Creating and Adjusting Scales
	Range Widgets

	Selection Buttons
	The Font Button
	The Color Button
	About Color Representations
	Using Color in GDK

	The File Chooser Button
	The GtkFileFilter
	Supported Image File Formats

