
CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

The GTK+ Drag-and-Drop Mechanism

1 Overview

Drag-and-drop (DND, for short) is an operation in applications with graphical user interfaces by which users
can request, in a visual way, that running applications exchange data with each other. To the user, in a
drag-and-drop operation, it appears that data is being dragged from the source of the drag to the destination
of the drag. Because applications are independent of each other and written without cognizance of who their
partners will be in a DND operation, for DND to work, there must be underlying support by either the
operating system or the windowing system.

The Mac OS operating system has always had built-in support for drag-and-drop. Microsoft Windows did
not have it; it was added on top of the operating system in Windows 95 and later. UNIX has no support for
it at all because the graphical user interfaces found in UNIX systems are not part of the operating system.
Support for DND is provided by the X Window system.

Over the years, several di�erent protocols were developed to support DND on X Windows. The two most
common were Xdnd and Motif DND. GTK+ can perform drag-and-drop on top of both the Xdnd and Motif

protocols.

In GTK+, for an application to be capable of DND, it must �rst de�ne and set up the widgets that will
participate in it. A widget can be a source and/or a destination for a drag-and-drop operation. A source
widget is one that can provide drag data, so that the user can drag something o� of it. A destination widget
is one that can receive drag data. Destination widgets can limit from whom they will accept drag data., e.g.
the same application or any application (including itself). Destination widgets can also de�ne the types of
data that they are willing to receive.

In GTK+, DND is made possible through the use of the signals emitted by widgets, i.e., the signals de�ned
for the GtkWidget base class. There are several signals that are emitted during the various stages of a DND
operation. The most fundamental ones are those involved in the transfer of data from the source to the
destination. This is, after all, the whole point of DND � to make this transfer happen. Understanding
how this transfer happens and the role that signals play in carrying it out is crucial to being able to write
programs that use drag-and-drop. Therefore, we begin by describing the steps involved in the transfer.

The actual transfer begins when the user, having started a drag and holding the mouse button down, releases
it over a potential destination widget.

1. At this moment a �drag-drop� signal is emitted on this widget.

2. The �drag-drop� signal causes two simultaneous events:

(a) If no errors occurred, a �drag-data-get� signal is emitted on the source widget. This signal is in
essence a request for data from the source.

(b) If a handler for the drag-drop signal was connected to the destination widget, then that handler
runs.

3. In response to �drag-drop� signal, the destination widget has to indicate that it wishes to receive data
from the source of the drag; it does this by calling gtk_drag_get_data().

4. If a handler for the �drag-data-get� signal was connected to the source widget, when the source receives
this signal, it must deliver the data. It does this by calling gtk_selection_data_set(). This function
copies the data into a GtkSelection object.

1

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

5. When the source widget has copied its data into a GtkSelection object, GTK arranges for a �drag-
data-received� signal to be emitted on the destination widget1.

6. If a handler for the �drag-data-received� signal was connected to the destination widget, that handler's
argument includes the selection object containing the data, and the destination can copy the data out
of the object into its own variables.

This may seem complicated on �rst reading, but the basic idea is that the communication between the source
and destination takes place through a third entity, GTK+'s selection mechanism, which will be explained in
detail below, and is made possible by the underlying DND protocol. Notice that neither the source nor the
destination know the others identity.

GTK+ provides a way to do very basic DND without diving into the complexity of the topic, if you are
willing to accept default behaviors and do not need to drop many di�erent types of data. On the other
hand, if you want to do things such as customizing the drag icon on the start of a drag, deciding whether or
not to accept drag data depending no cursor position, or deciding what type of data to accept based on the
cursor's position on the destination, highlighting the widget when it is a potential drop site, checking error
conditions, and so on, then you need to learn how to use a larger portion of the API.

These notes describe how to do many of these tasks. The remaining sections provide the background and
detailed information required to implement drag-and-drop in elementary and more advanced ways. We begin
by covering background material.

2 Background

2.1 Atoms

A GdkAtom is a fundamental type in GDK, its signi�cance arising from the fact that it is an e�cient way to
represent large chunks of data. Windows under X can have any number of associated properties attached
to them. Properties in general are arbitrary chunks of data identi�ed by atoms. In X, an atom is a numeric
index into a string table on the X server. They are used to transfer strings e�ciently between clients without
having to transfer the entire string. A property has an associated type, which is also identi�ed using an
atom.

Every property has an associated format, which is an integer describing how many bits are in each unit of
data inside the property. It must be 8, 16, or 32. For example, if a property is a chunk of character data,
then its format value would be 8, the number of bits in a character. If it is an integer, its format would be
32.

GDK provides functions for manipulating atoms. These will be needed when implementing drag-and-drop
in GTK+. Your application will need to intern various strings. To intern a string means to store it in an
internal table used by GDK and obtain an atom that identi�es it for later access. The function to intern a
string is

GdkAtom gdk_atom_intern (const gchar *atom_name,

gboolean only_if_exists);

This makes a copy of the string to be interned, i.e., the name of the atom, and returns an atom for that
string. The second argument is ignored by GDK. If the string already exists, it returns its atom. If it does
not, it creates a new atom.

The inverse function is
1Actually, when the widget called gtk_drag_get_data(), that function caused emission of a signal on the selection object.

The selection object's signal handler for that signal was synchronized by the underlying DND protocol (e.g. X11) and when
the data was actually made available in the selection object, the selection object emitted the �drag-data-received� signal on the
destination widget.

2

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

gchar * gdk_atom_name (GdkAtom atom);

Given an atom, this returns a newly-allocated string containing the string corresponding to atom. Your
application must release the memory with g_free() when it is �nished with it.

You will not need to use any of the other functions related to atoms for DND.

2.2 Selections

The selection mechanism provides the basis for di�erent types of communication between processes. In partic-
ular, drag-and-drop and the GtkClipboard work because of the selection mechanism. The GtkSelectionData
object is used to store a chunk of data along with the data type and other associated information. In drap-
and-drop, the term selection refers to the choice of data that is supplied and/or received by a widget. When
a drop is made on a widget, there may be several di�erent types of data in the selection object that is
provided to it; the widget has to decide which type of data it wants to accept. Therefore, one says that the
widget selects a particular chunk of data.

The GtkSelectionData object acts like the medium of transport between drag sources and drag destinations.
The source will use one of various methods in the GtkSelectionData class to describe the types of data that
it o�ers, and the destination widgets will use methods to search the selection for data types that interest
them. When data is actually transferred, the selection object will be used as the intermediary between the
two widgets.

2.3 Targets

The word �target� is a bit misleading in the context of DND. Although it sounds like it means the �target of
a drop�, it does not. The word �destination� refers to this widget. To avoid any confusion, we will never use
the word �target� to mean the destination. A target is a type of data to be used in a DND operation. For
example, a widget can supply a string target, an image target, or a numeric target. Targets are represented
by the GtkTargetEntry structure.

The GtkTargetEntry structure represents a single type of data than can be supplied by a widget for a
selection or received by a destination widget in a drag-and-drop operation. It consists of three members: (1)
target, a string representing the type of data in a drag, (2) flags, a set of bits de�ning limits on where the
target can be dropped, and info, an application assigned integer ID.

typedef struct {

gchar *target;

guint flags;

guint info;

} GtkTargetEntry;

The target string is provides a human-understandable description of the data type. It is important to use
common sense target names, because if your application will accept drags or o�er data to other applications,
the names you choose should be those other applications might use also. The info member serves to identify
the target in the functions that access and manipulate target data, because integers allow for faster look-ups
and comparisons.

The flags value may be one of the following:

GTK_TARGET_SAME_APP The target will only be selected for drags within a single application.

GTK_TARGET_SAME_WIDGET The target will only be selected for drags within a single widget.

GTK_TARGET_OTHER_APP The target will not be selected for drags within a single application.

3

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

GTK_TARGET_OTHER_WIDGET The target will not be selected for drags withing a single widget.

If flags == 0, it means there are no constraints.

Usually you would create an enumeration within the application to provide meaningful names for the info
values, for example:

typedef enum

{

TEXT_HTML,

STRING,

IMAGE_JPEG,

NUMBER,

TEXT_URI,

N_TARGETS

} target_info;

Using this enumeration we could de�ne a few di�erent targets as follows:

GtkTargetEntry string_target = {"string_data", 0, STRING};

GtkTargetEntry html_target = {"text/html", GTK_TARGET_SAME_APP, TEXT_HTML};

GtkTargetEntry image_target = {"image/jpeg", GTK_TARGET_SAME_WIDGET, IMAGE_JPEG};

The string_target and the html_target both represent text, but the latter would identify itself to a
destination widget was capable of parsing the HTML and preferred receiving it over plain text. Such a
widget would probably select the html_target rather than the string_target. The image_target could
be used for JPEG image formats. The string target has no �ags and therefore no limits on where it can
be dropped. The html_target is only allowed to be dropped into the same application as the source widget,
and the image_target is constrained to be dropped into the same widget.

2.4 Target Tables and Target Lists

A target table is an array of type GtkTargetEntry. There is no object speci�cally declared to be a target
table. It is just understood that it is an array of target entries. Target tables are useful in application
code for consolidating target entry de�nitions. More importantly, the function that sets up a widget as
a DND source widget, gtk_drag_source_set(), requires the set of targets to be passed to it as a table.
Target tables can also be passed as arguments to certain other functions related to GtkSelectionData. The
following is an example of a target table:

GtkTargetEntry target_entries[] = {

{"text/html", 0, TEXT_HTML },

{"STRING", 0, STRING},

{"number", 0, NUMBER},

{"image/jpeg", 0, IMAGE_JPEG},

{"text/uri-list", 0, TEXT_URI}

};

A target list is not a list of GtkTargetEntry structures, as you might expect. It is a list of GtkTargetPair
structures, and it serves a di�erent purpose from target tables. A GtkTargetPair is a internal data structure
used by GTK+. It is de�ned by

4

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

struct GtkTargetPair {

GdkAtom target;

guint flags;

guint info;

};

Notice that it di�ers from a GtkTargetEntry in a single respect: it uses a GdkAtom instead of a character
string to identify the target. Recall from Section 2.1 above that a GdkAtom is an integer that GDK uses to
represent a string internally; it is the index into an array of strings. An atom is only de�ned when a string
is �interned.�

The functions that take a GtkTargetEntry and store that target for later use intern the character string and
create an atom for it. Once this has been done, that target can be represented by a GtkTargetPair. In other
words, the target atom in the GtkTargetPair represents a target that has already been de�ned in some
GtkTargetEntry.

Because atoms make for faster comparison and identi�cation and save storage space, target lists are more
e�cient than target tables and are used more extensively than them by GTK+. There are methods in the
GtkSelectionData class for going back and forth between target table and target list representations of the
targets. For example:

gtk_target_list_new() creates a target list from a target table

gtk_target_list_add_table() prepends a target table to an existing target list

gtk_target_table_new_from_list() creates a target table that contains the same targets as the given list.

Many of the methods provided by the GtkSelectionData class expect and manipulate target lists. They
are of fundamental importance in using drag-and-drop, and we will have more to say about them below.

3 Signals Involved in Drag-and-Drop

Various signals come into play during a DND operation. Some are essential to handle and others are not.
All signals are emitted on GTK+ widgets and their descriptions can be found in the API documentation of
the GtkWidget class. The following table lists all of these signals, indicating whether it is emitted on the
course or the destination, and what its purpose is.

Signal Widget Purpose

drag-begin-event source noti�es source that drag started
drag-motion destination noti�es destination about drag pointer motion
drag-drop destination noti�es destination that data has been dropped
drag-data-get source request for drag data from source
drag-data-received destination source has sent target the requested data
drag-data-delete source source should/can delete data
drag-end-event source noti�es source that drag is done
drag-failed source noti�es source that drag failed
drag-leave destination noti�es destination that cursor has left widget

3.1 The Typical Sequence of Events

The sequence of events that take place in a drag-and-drop is well-de�ned. The typical sequence is described
below. Under certain conditions there will be slight deviations from it.

5

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

1. Everything begins when the user presses the mouse button over a source widget and starts a drag. At
that moment, the �drag-begin-event� signal is emitted on the source.

2. When the mouse is on top of a destination widget, the �drag-motion� signal is emitted on that widget.
This signal can be connected to the destination for various reasons. For one, you can use it to highlight
the widget when the cursor is over it and the drag format and action are acceptable to the widget. For
another, if only certain parts of the widget are drop zones, the handler is needed in order to determine
whether the cursor is in a drop zone or not. If it is not in a drop zone, the handler should return
FALSE and take no other action. Otherwise, it should display visual feedback to the user by calling
gdk_drag_status() and return TRUE. Sometimes a drag-motion handler cannot decide whether the
o�ered data is acceptable from the cursor position and data type, and must actually examine the data
to know. In this case it will do the work typically done in a drag-drop handler. The details about this
and other issues to be handled in a �drag-motion� handler are explained below.

If when you set up the destination widget using gtk_drag_dest_set(), you set any of the �ags
GTK_DEST_DEFAULT_DROP, GTK_DEST_DEFAULT_MOTION or GTK_DEST_DEFAULT_ALL on the widget, you
will not be able to use the drag-motion signal this way, because GTK+ will handle it with its internal
functions instead.

The �drag-motion� signal will be delivered to the widget each time that the cursor moves over the
widget. If you want to detect when it enters and leaves the widget, you have to make use of the
�drag-leave� signal, which is emitted on a destination widget whenever the cursor leaves it. An entry
event takes place when it is the �rst �drag-motion� signal to be received after a �drag-leave� or the �rst
one to be received. The handlers for the two signals can be coded to detect these conditions.

3. When the user releases the mouse button over the destination, the �drag-drop� signal is emitted on the
destination widget. This signal should be connected to a signal handler whose primary objective is to
determine whether the cursor position is in a drop zone or not, and if it is, to issue a request for the
data from the source by calling gtk_drag_get_data() and return TRUE. If the cursor is not in a drop
zone, it should return FALSE and take no other action.

4. When the destination issues a request for the source's data, whether in the drag-drop handler or the
drag-motion handler, the �drag-data-get� signal will be emitted on the source. A handler for this signal
should be connected to the signal. This handler is responsible for packing up the data and setting it
into a selection object that will be available to the destination.

5. Once the source widget's drag-data-get handler has returned, the �drag-data-received� signal will be
emitted on the destination. This signal should be connected to a signal handler on the destination
widget. If the data was received in order to determine whether the drop will be accepted (as when the
drag-motion handler requested the data), the handler has to call gdk_drag_status() and not �nish
the drag. In most cases, if the data was received in response to a "drag-drop" signal, the handler has
to retrieve the data from the selection object and then call gtk_drag_finish(). If the drag was a
move (the GdkDragAction was set to GDK_ACTION_MOVE in the source or destination), then in the call
to gtk_drag_finish() it needs to pass a �ag indicating that the data should be deleted in the source.

6. The call to gtk_drag_finish() causes a �drag-end� signal to be emitted on the source widget. It can
connect a handler to this signal to do any post-processing needed after the drag. It will also cause a
�drag-data-delete� signal to be emitted on the source if the destination passed the �ag when it called
gtk_drag_finish(). The source has to delete the data in its handler for this signal.

This normal sequence might not be followed if there was a failure at some point. In this case, the �drag-failed�
signal will be emitted on the source. A handler can be attached to the source to deal with the failure, such
as by logging a message.

6

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

4 Setting Up a Source Widget

A widget is set up as a source widget for drag operations by calling the function gtk_drag_source_set()

on it. The prototype is

void gtk_drag_source_set (GtkWidget *widget,

GdkModifierType start_button_mask,

const GtkTargetEntry *targets,

gint n_targets,

GdkDragAction actions);

The �rst argument, widget, is the widget to be the drag source. The remaining arguments have the following
meaning.

start_button_mask the bitmask of buttons that can start the drag, of type GdkModifierType.

targets the table of targets that the drag will support, which may be NULL.

n_targets the number of items in targets.

actions the bitmask of possible actions for a drag from this widget.

The values of the GdkModifierType enumeration are listed in the API documentation for the GdkWindow.
The values have names such as GDK_BUTTON1_MASK, GDK_BUTTON2_MASK, and so on. In addition, you can
bitwise-or modi�ers such as GDK_CONTROL_MASK and GDK_SHIFT_MASK into the mask. Usually you should
just set the mask to be GDK_BUTTON1_MASK.

Note. The API documentation for this function states that the widget must have a window. I have used
no-window widgets with success, and the source code for the function in GTK+-2.24 does not check whether
the widget has a window.

You need to decide what types of data the widget will supply. Usually this is a simple matter; it has text,
or perhaps images, or perhaps it has its own application-speci�c data chunks. The target table should be
de�ned as described in Sections 2.3 and 2.4. We will use the following target table in the examples that
follow.

GtkTargetEntry target_entries[] = {

{"text/html", 0, TEXT_HTML },

{"STRING", 0, STRING},

{"number", 0, NUMBER},

{"image/jpeg", 0, IMAGE_JPEG},

{"text/uri-list", 0, TEXT_URI}

};

The �text/uri-list� target is commonly used to drag links and �lenames between applications.

You also need to connect the signals that you want to handle to the source widget.

4.1 Example

The following �boilerplate� listing demonstrates the basic steps in setting up a source widget.

7

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

void setup_source_widget (GtkWidget ∗ source_widget)
{

GtkTargetEntry t a r g e t_en t r i e s [] = {
{" text /html " , 0 , TEXT_HTML } ,
{"STRING" , 0 , STRING} ,
{"number" , 0 , NUMBER} ,
{" image/ jpeg " , 0 , IMAGE_JPEG} ,
{" text / ur i− l i s t " , 0 , TEXT_URI}

} ;

/∗ Make t h i s a drag source o f f e r i n g a l l o f the t a r g e t s l i s t e d above ∗/
gtk_drag_source_set (source_widget ,

GDK_BUTTON1_MASK,
ta rge t_ent r i e s ,
G_N_ELEMENTS (ta r g e t_en t r i e s) ,
GDK_ACTION_COPY | GDK_ACTION_MOVE) ;

/∗ Connect i t to a l l s i g n a l s that the source should handle . ∗/
g_signal_connect (G_OBJECT(source_widget) ,

"drag_begin " ,
G_CALLBACK (on_drag_begin) ,
NULL) ;

g_signal_connect (G_OBJECT(source_widget) ,
"drag_data_get " ,
G_CALLBACK (on_drag_data_get) ,
NULL) ;

g_signal_connect (G_OBJECT(source_widget) ,
"drag_end " ,
G_CALLBACK (on_drag_end) ,
NULL) ;

}

This widget will o�er all of the di�erent target types listed in target_entries. It also supports copying
and moving of drag data. The only di�erence is that, on a move, the source has to delete the original data.

We will need to write the three handlers, on_drag_begin(), on_drag_data_get(), and on_drag_end().
These handlers depend upon the speci�c widget and what types of data it supplies. First let us see how to
set up a destination widget, after which we will describe and give examples of handlers for all of the relevant
signals.

5 Setting Up a Destination Widget

A widget is set up as a destination widget by calling gtk_drag_dest_set(), whose prototype is

void gtk_drag_dest_set (GtkWidget *widget,

GtkDestDefaults flags,

const GtkTargetEntry *targets,

gint n_targets,

GdkDragAction actions);

The �rst argument, widget, is the widget to be the drag destination. The remaining arguments have the
following meaning.

8

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

flags the default drag behaviors to use

targets the table of targets that the destination will accept, or NULL for none.

n_targets the number of items in targets.

actions the bitmask of possible actions for a drop onto this widget.

The flags argument can be used to specify default behaviors for this widget. The values make it possible
to write a very simple destination widget if you are willing to accept default behaviors for it. If it is set to
0, there will be no defaults, and you will have to write handlers for all of the possible signals. The possible
values for the flags argument as as follows:

GTK_DEST_DEFAULT_MOTION If set for a widget, GTK+, during a drag over this widget will check if the drag
matches this widget's list of possible targets and actions, and will call gdk_drag_status() as
appropriate. If you set this �ag, you will not need to write a handler for the �drag-motion� signal;
GTK+ will supply a default handler. Conversely, you should not set this �ag if you do connect
your own handler, because unless you really know what you are doing, there will be unpredictable
results.

GTK_DEST_DEFAULT_HIGHLIGHT If set for a widget, GTK+ will draw a highlight on this widget as long as a
drag is over this widget and the widget drag format and action are acceptable. If you set this
�ag, then you will not need to do the highlighting yourself in the �drag-motion� handler, and if
you do the highlighting there, then you should not set this �ag.

GTK_DEST_DEFAULT_DROP If set for a widget, when a drop occurs, GTK+ will check if the drag matches this
widget's list of possible targets and actions. If so, GTK+ will call gtk_drag_get_data() on
behalf of the widget and it will also gtk_drag_finish(). GTK+ will also take care of passing
the appropriate values to gtk_drag_finish() to make sure that move actions and copy actions
are handled correctly. If you set this �ag, you will have to know what you are doing in your
own custom �drag-motion� handler, and you will not need to write a handler for the �drag-drop�
signal.

GTK_DEST_DEFAULT_ALL If set, all of the above default actions will be taken. In this case, you will only need
to write a handler for the �drag-data-receive� signal.

The destination does not have to accept the exact set of targets o�ered by the source. It might be a subset,
or a superset, or it may even be unrelated, depending on the nature of your application. If DND is being
used strictly to allow drags within your application, you may want to place the target table de�nition in a
header �le that can be included by all widgets, so that destination and source widgets share the same target
names and info values.

5.1 Example

A listing of a set up of a very simple destination widget follows.

void setup_dest_button (GtkWidget ∗dest_widget)
{

/∗ Allow two d i f f e r e n t types o f t ex t ∗/
GtkTargetEntry text_targe t s [] = {

{" text /html " , 0 , TEXT_HTML } ,
{"STRING" , 0 , STRING}

} ;

gtk_drag_dest_set (dest_button ,

9

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

0 ,
text_targets ,
0 ,
GDK_ACTION_COPY) ;

/∗ Connect t h i s widget to a l l o f the s i g n a l s that a po t e n t i a l
drop widget might emit . There are four o f them : drag−motion ,
drag−drop , drag−data−r ece ived , and drag−l e ave .

∗/
g_signal_connect (G_OBJECT(dest_widget) ,

"drag_data_received " ,
G_CALLBACK (on_drag_data_received) ,
NULL) ;

g_signal_connect (G_OBJECT(dest_widget) ,
"drag_drop " ,
G_CALLBACK (on_drag_drop) ,
NULL) ;

g_signal_connect (G_OBJECT(dest_widget) ,
"drag_motion " ,
G_CALLBACK (on_drag_motion) ,
NULL) ;

g_signal_connect (G_OBJECT(dest_widget) ,
" drag_leave " ,
G_CALLBACK (on_drag_leave) ,
NULL) ;

}

5.2 Adding Targets to the Destination

Although it is often su�cient to use gtk_drag_dest_set() to set up a destination widget, it is of lim-
ited use. It is often more convenient to create the destination with a NULL target table and then call
gtk_drag_dest_set_target_list() to set the target list for the destination. The advantage of doing this is
that there are several functions for adding classes of targets to target lists. For example, there is a function to
add all image targets to a target list, or all text targets. The prototype of gtk_drag_dest_set_target_list()
is

void gtk_drag_dest_set_target_list (GtkWidget *widget,

GtkTargetList *target_list);

which is given the widget and a target list, not a target table. You can create a target list from a target
table with

GtkTargetList *gtk_target_list_new (const GtkTargetEntry *targets,

guint ntargets);

which is given the table and returns a newly-allocated target list. If you call it as

target_list = gtk_target_list_new(NULL, 0);

you will have an initially empty target list. You can prepend a target table to an existing target list with

10

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

void gtk_target_list_add_table (GtkTargetList *list,

const GtkTargetEntry *targets,

guint ntargets);

and you can append a single target to a target list with

void gtk_target_list_add (GtkTargetList *list,

GdkAtom target,

guint flags,

guint info);

This function requires the target's atom. This implies that you must have �rst interned the target with
gdk_atom_intern() to get an atom for it. The flags value is the same as you would use in the target table,
and the info value is the integer by which you want to refer to this target elsewhere in the application.

To add all image targets that are supported by the system's GtkSelectionData object, use

void gtk_target_list_add_image_targets (GtkTargetList *list,

guint info,

gboolean writable);

where info is the integer by which you will refer to all image targets, and writable is a �ag that when
TRUE, limits the image types to those that can be written, and when FALSE, allows all image types, those
can can be read only as well as written.

You may refer to the API documentation for the other similar functions: gtk_target_list_add_text_targets(),
gtk_target_list_add_uri_targets(), and gtk_target_list_add_rich_text_targets().

The order in which the targets occur in the target list is important. When the drop occurs, the widget will
need to decide which of the targets to accept. The simplest function for this purpose will traverse the target
list from front to back looking for the �rst target that satis�es the criteria. There are other methods of
choosing that do not depend on order, but they will take more work.

The following listing shows how to set up a GtkDrawingArea widget to accept drops of any image format
and the URIs. It might be interested in accepting the drop of a URI in case it is an image �le, in which case
it can load the image from the �le.

Listing 1: setup_drawing_area

void setup_drawing_area (GtkWidget ∗drawing_area)
{

/∗ Create an empty ta r g e t l i s t from an empty ta r g e t t ab l e ∗/
GtkTargetList ∗ t a r g e t_ l i s t = gtk_target_list_new (NULL, 0) ;

/∗ Add a l l supported image t a r g e t s to the l i s t
The IMAGE_TARGET argument i s an i n t e g e r de f ined in the Target In fo
enumeration . Al l image formats w i l l have t h i s same i n f o value .

∗/
gtk_target_list_add_image_targets (t a r g e t_ l i s t , IMAGE_TARGET, FALSE) ;

/∗ Add supported text / u r i t a r g e t s . These are appended to the l i s t
so that p r e f e r en c e i s g iven to ac tua l image formats .

∗/
gtk_target_l ist_add_uri_targets (t a r g e t_ l i s t , TEXT_URI) ;

gtk_drag_dest_set (drawing_area ,
0 ,

11

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

NULL, // empty ta r g e t t ab l e
0 ,
GDK_ACTION_COPY) ;

/∗ Add the t a r g e t l i s t to the widget ∗/
gtk_drag_dest_set_target_list (drawing_area , t a r g e t_ l i s t) ;

/∗ I n i t i a l i z e a p ixbuf po in t e r to NULL to i nd i c a t e the re i s no image ∗/
g_object_set_data (G_OBJECT(drawing_area) , " p ixbuf " , NULL) ;

/∗ Connect expose event handler ∗/
g_signal_connect (G_OBJECT(drawing_area) ,

" expose−event " ,
G_CALLBACK (on_expose) ,
NULL) ;

/∗ Connect hand le r s f o r remaining s i g n a l s ∗/
g_signal_connect (G_OBJECT(drawing_area) ,

"drag_data_received " ,
G_CALLBACK (on_da_drag_data_received) ,
NULL) ;

g_signal_connect (G_OBJECT(drawing_area) ,
"drag_drop " ,
G_CALLBACK (on_da_drag_drop) ,
NULL) ;

g_signal_connect (G_OBJECT(drawing_area) ,
"drag_motion " ,
G_CALLBACK (on_da_drag_motion) ,
NULL) ;

g_signal_connect (G_OBJECT(drawing_area) ,
" drag_leave " ,
G_CALLBACK (on_da_drag_leave) ,
NULL) ;

}

6 Signal Handlers in Depth

We will now show how to set up signal handlers for the source and destination widgets. To make things
concrete, we will demonstrate this with a speci�c, but contrived example. We will create a single source
widget: a button that can o�er four types of target data: plain text, marked-up text, numbers, and an
image. There will be four destination widgets: three buttons, one accepting numbers, one accepting plain
text, and one accepting marked-up text, and a drawing area that can accept image data and text/uri-lists.

The widgets will all get packed into a top-level window so that the user can drag from the source onto any
of the other widgets. Because the only data that a button has is its label, we will attach di�erent types of
data to the button as a GObject, so that it can supply data to destination widgets when they request it.
The destination buttons will re�ect their receipt of data by changing their labels to show the new data. The
drawing area will display the images that it receives.

6.1 The Source Widget

The application's source button is set up with a call to setup_source_button(), shown in Listing 2 . This
gets the current time and save it in a local variable. It passes its value to the drag-begin handler. Most of
the work is in the function make_drag_source(), shown in Listing 3.

12

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

Listing 2: setup_source_button()

void setup_source_button (GtkWidget ∗ source_button)
{

time_t start_time ;
start_time = time (NULL) ;

/∗ Convert the button in to a drag source ∗/
make_drag_source (source_button) ;

g_signal_connect (G_OBJECT(source_button) ,
"drag_begin " ,
G_CALLBACK (on_begin_drag) ,
GUINT_TO_POINTER(start_time)) ;

g_signal_connect (G_OBJECT(source_button) ,
"drag_data_get " ,
G_CALLBACK (on_drag_data_get) ,
NULL) ;

g_signal_connect (G_OBJECT(source_button) ,
"drag_end " ,
G_CALLBACK (on_end_drag) ,
NULL) ;

}

The function make_drag_source() begins by de�ning the targets it will o�er. The �number� target is limited
to those widgets in the same application just to demonstrate what happens when it is dragged to another
application when this �ag is set. The function loads two pixbufs from hard-coded �lenames and sets pointer
to them as data in the button, so that it can deliver images when requested. The lines

g_object_set_data(G_OBJECT(source_button), "targetlist",

(gpointer) target_entries);

g_object_set_data(G_OBJECT(source_button), "ntargets",

GUINT_TO_POINTER(G_N_ELEMENTS(target_entries)));

set the target table and its length as data in the button object so that these will be available to other callback
functions that need access to the o�ered targets (the drag-begin handler).

Listing 3: make_drag_source()

void make_drag_source (GtkWidget ∗ source_button)
{

GError ∗ e r r o r = NULL;
GdkPixbuf ∗ pixbuf = NULL;
GdkPixbuf ∗pixbuf2 = NULL;

/∗ Def ine the t a r g e t data types that t h i s widget can d e l i v e r ∗/
/∗ Even though t h i s i s dec l a r ed on the stack , when the po in t e r i s

s e t on the object , i t i s r e f e r e n c e counted and does not get de l e t ed .
I was su rp r i s ed by t h i s . ∗/

GtkTargetEntry t a r g e t_en t r i e s [] = {
{" text /html " , 0 , TEXT_HTML } ,
{"STRING" , 0 , STRING} ,
{"number" , GTK_TARGET_SAME_APP, NUMBER} ,
{" image/ jpeg " , 0 , IMAGE_JPEG} ,
{" text / ur i− l i s t " , 0 , TEXT_URI}

} ;

13

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

gtk_drag_source_set (source_button ,
GDK_BUTTON1_MASK,
ta rge t_ent r i e s ,
G_N_ELEMENTS (ta r g e t_en t r i e s) ,
GDK_ACTION_COPY|GDK_ACTION_MOVE) ;

/∗ Create a pixbuf from f i l e data and er ror−check ∗/
pixbuf = gdk_pixbuf_new_from_file (BUTTON_IMAGE_PATH, &e r r o r) ;
i f (e r r o r != NULL)
{

g_print (" Fa i l ed to load image f i l e : %s \n" , e r ro r−>message) ;
g_error_free (e r r o r) ;
e r r o r = NULL;

}

/∗ Create a second pixbuf from f i l e data and er ror−check ∗/
pixbuf2 = gdk_pixbuf_new_from_file (BUTTON_IMAGE2_PATH, &e r r o r) ;
i f (e r r o r != NULL)
{

g_print (" Fa i l ed to load image f i l e : %s \n" , e r ro r−>message) ;
g_error_free (e r r o r) ;
e r r o r = NULL;

}

/∗ Attach the images to the widget so that i t them to d e l i v e r ∗/
g_object_set_data (G_OBJECT(source_button) ,

" image " , (gpo in t e r) p ixbuf) ;
g_object_set_data (G_OBJECT(source_button) ,

" image2 " , (gpo in t e r) p ixbuf2) ;

/∗ Attach the t a r g e t l i s t po in t e r and the l ength o f the array to the ob j e c t
so that the c a l l b a ck s can r e c on s t ru c t the array . ∗/

g_object_set_data (G_OBJECT(source_button) , " t a r g e t l i s t " ,
(gpo in t e r) t a r g e t_en t r i e s) ;

g_object_set_data (G_OBJECT(source_button) , " n ta rg e t s " ,
GUINT_TO_POINTER(G_N_ELEMENTS(ta r g e t_en t r i e s))) ;

}

The �drag-begin� signal handler must have the following prototype:

void user_function (GtkWidget *widget,

GdkDragContext *drag_context,

gpointer user_data);

The drag_context is a pointer to a GdkDragContext structure. This structure will be passed to various
callback functions during the drag operation. Both the source and the destination have a drag context
structure. It contains

struct GdkDragContext {

GObject parent_instance;

GdkDragProtocol GSEAL (protocol);

gboolean GSEAL (is_source);

GdkWindow *GSEAL (source_window);

GdkWindow *GSEAL (dest_window);

GList *GSEAL (targets);

GdkDragAction GSEAL (actions);

14

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

GdkDragAction GSEAL (suggested_action);

GdkDragAction GSEAL (action);

guint32 GSEAL (start_time);

};

Notice that it contains references to the source and destination windows, actions and suggested actions, a
list of targets, the start time, and the protocol and parent. The details are not so important now. What
matters is that you see that this drag_context is keeping track of the drag, and will be needed when it
comes time to get targets and to determine actions.

The primary reason to have a handler for the �drag-begin� signal is to set up a custom drag icon. Our
drag-begin handler will do a bit more than this. It will get the current time and compute the time elapsed
between when the application started up and the current time. It will save this as the number to be o�ered
to any widget asking for number data.

It will also construct more data based on the current time. It will create a plain text string stating the
current time, e.g.:

It is now Sun Dec 11 20:57:46 2011

and it will create a Pango marked up string saying the same thing, but with formatting applied. It will
create an array of four gpointers that will point to each of the four di�erent data chunks that it can o�er,
indexed by the info members of the target array. In other words, the array is

target_data[TEXT_HTML] contains a pointer to the marked up text

target_data[STRING] contains a pointer to the plain text

target_data[NUMBER] contains the number, cast to a gpointer

target_data[IMAGE_JPEG] contains a pointer to the pixbuf

The handler also creates the drag icon. When the user starts the drag, an image of the plain text string
stating what time it is will be the icon. Because the code to create the icon is detailed and distracting, it is
listed in the Appendix rather than here. The drag-begin handler is in Listing 4.

Listing 4: drag-begin handler

void on_drag_begin (GtkWidget ∗ source_button ,
GdkDragContext ∗dc ,
gpo in t e r user_data)

{
GtkTargetEntry ∗ t a r g e t_en t r i e s ;
gpo in t e r ∗ target_data = NULL;
gu int start_time = GPOINTER_TO_UINT(user_data) ;
GdkPixbuf ∗ pixbuf = NULL;
gchar ∗html = NULL;
gchar ∗ s t r i n g = NULL;
gu int elapsed_time ;
gu int which ;
s i ze_t l ength ;

time_t now = time (NULL) ; /∗ Get the cur rent time ∗/
gchar ∗now_string = ctime(&now) ; /∗ Convert i t to a s t r i n g ∗/
l ength = s t r l e n (now_string) ;
now_string [length −1] = ' \ 0 ' ; /∗ remove ending newl ine ∗/

/∗ get t a r g e t entry data ∗/

15

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

t a r g e t_en t r i e s = (GtkTargetEntry ∗) g_object_get_data (
G_OBJECT(source_button) ," t a r g e t l i s t ") ;

gu int n ta rg e t s = GPOINTER_TO_UINT (g_object_get_data (
G_OBJECT(source_button) ," n ta rg e t s ")) ;

/∗ pick a random number us ing cur rent time as seed ∗/
srand (now) ;
which = rand () ;

/∗ Get the pixbuf image data po in t e r ∗/
i f (which % 2 == 0)

pixbuf = g_object_get_data (G_OBJECT(source_button) , " image ") ;
e l s e

p ixbuf = g_object_get_data (G_OBJECT(source_button) , " image2 ") ;

// Compute the time s i n c e the app l i c a t i o n s t a r t ed
elapsed_time = now − start_time ;

// Create and draw the drag i con
draw_drag_icon (source_button , dc , now_string) ;

// A l l o ca t e the array o f po i n t e r s f o r the t a r g e t data , which i s s to r ed
// on the source button ' s ob j e c t p r op e r t i e s t ab l e
target_data = g_new(gpointer , n ta rg e t s) ;
g_object_set_data (G_OBJECT(source_button) , " target_data " ,

target_data) ;

// Def ine the content o f the t a r g e t data .
html = g_markup_printf_escaped (

"The time i s "
"%s ."
"",

now_string) ;
s t r i n g = g_strconcat (" I t i s now " , now_string , " . \ n" , NULL) ;

// Make a copy o f the t a r g e t data and s t o r e i t in the array indexed so
// that we can r e t r i e v e i t based on the Target In fo enumerated type .
target_data [TEXT_HTML] = g_strdup (html) ;
target_data [STRING] = g_strdup (s t r i n g) ;
target_data [NUMBER] = GUINT_TO_POINTER(elapsed_time) ;
i f (p ixbuf != NULL) {

target_data [IMAGE_JPEG] = (gpo in te r) p ixbuf ;
}

/∗ We have to f r e e the two s t r i n g s , s i n c e we copied them in to the t a r g e t
array , but cannot f r e e the pixbuf , s i n c e we did not a l l o c a t e i t here ,
but j u s t copied the po in t e r to a l o c a l . ∗/

g_free (html) ;
g_free (s t r i n g) ;

}

The most important signal handler for the source is the drag-data-get handler. When the drop is made on
a destination widget, the �drag-data-get� signal is emitted on the source. The prototype for this handler is

void user_function (GtkWidget *widget,

GdkDragContext *drag_context,

GtkSelectionData *data,

guint info,

16

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

guint time,

gpointer user_data);

The data argument is a pointer to a GtkSelectionData structure that was initialized by GTK+ before
emitting the signal. This structure has a member named target which is a pointer to the target requested
by the destination. The info member is the number in the target list that corresponds to this target. The
responsibility of the handler is to determine the target type and deliver the requested data. Therefore, its �rst
task is to query the info member for the target data type. It can then copy data into the GtkSelectionData
structure using the function

void gtk_selection_data_set (GtkSelectionData *selection_data,

GdkAtom type,

gint format,

const guchar *data,

gint length);

It needs the atom representing the target, the format (remember this is the number of bits in a unit of this
type), data, a pointer to the data to be copied, and length, the number of units of this target type.

The exception is that pixbuf data is delivered in a di�erent way. There is a special function that copies
pixbuf data into a selection structure:

gboolean gtk_selection_data_set_pixbuf (GtkSelectionData *selection_data,

GdkPixbuf *pixbuf);

This returns TRUE if it was successful, and FALSE if it failed.

Our handler for the source button's �drag-data-get� handler is in Listing 5. The drag context is not used in
this function. The important part of the code is the switch statement. It checks the type of data requested
and in each case, copies the data into the selection structure. Although we use instructions like

gdk_atom_intern(�text/html�, TRUE);

to get the atom for the target, it would be simpler to replace these by

selection_data->target

which is the requested atom. This code just shows another way to do the same thing.

Listing 5: drag-data-get handler for source button

void on_drag_data_get (GtkWidget ∗ source_button ,
GdkDragContext ∗dc ,
GtkSelect ionData ∗ se l ec t ion_data ,
gu int in fo ,
gu int time ,
gpo in t e r user_data)

{
gu int number_data ;
GdkPixbuf ∗ pixbuf = NULL;
gpo in t e r ∗ target_data =

g_object_get_data (G_OBJECT(source_button) , " target_data ") ;

17

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

/∗ Use the i n f o argument to determine which data the d e s t i n a t i on has
requested , and s e t up the GtkSelect ionData s t r u c tu r e to be passed to
the d e s t i n a t i on through the drag−data−r e c e i v ed ca l l b a ck .
The target_data array was f i l l e d in such a way that the i n f o value
equa l s the array index , so we s e t the data f o r i n f o va lue X from
target_data [X] .
The except ion i s the image data . There are s epara te f unc t i on s f o r
supply ing pixbuf , ur i , and utf−8 data .

∗/
switch (i n f o)
{

case TEXT_HTML :
gtk_select ion_data_set (se l ec t ion_data ,

/∗ We could use
se l ec t ion_data−>ta rg e t
in s t ead o f g e t t i n g the in t e rned atom each time

∗/
gdk_atom_intern (" text /html " , TRUE) ,/∗ type ∗/
8 , /∗ format ∗/
target_data [TEXT_HTML] , /∗ data ∗/
s t r l e n (target_data [TEXT_HTML])) ; /∗ l ength ∗/

break ;
case STRING :

gtk_select ion_data_set (se l ec t ion_data ,
gdk_atom_intern ("STRING" , TRUE) , /∗ type ∗/
8 , /∗ format ∗/
target_data [STRING] , /∗ data ∗/
s t r l e n (target_data [STRING])) ; /∗ l ength ∗/

break ;
case NUMBER :

number_data = GPOINTER_TO_UINT(target_data [NUMBER]) ;
gtk_select ion_data_set (se l ec t ion_data ,

gdk_atom_intern ("number" , TRUE) , /∗ type ∗/
32 , /∗ format ∗/
(guchar ∗) &number_data , /∗ data ∗/
1) ; /∗ l ength ∗/

break ;
case IMAGE_JPEG :

pixbuf = target_data [IMAGE_JPEG] ;
gtk_select ion_data_set_pixbuf (se l ect ion_data , p ixbuf) ;
break ;

}
}

The source widget has two remaining signals that it should handle. One is �drag-end� and the other is
�drag-delete�. In our case there is nothing to do for the drag-delete handler. If we wanted to do a real move
instead of a copy, then we would have to delete data in the source widget when the drag �nished, but in this
example we do not do this.

However, the �drag-end� signal should be handled because we need to de-allocate the strings that we created
with the current time. We no longer need them. The prototype for the drag-end handler is

void user_function (GtkWidget *widget,

GdkDragContext *drag_context,

18

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

gpointer user_data);

Our handler does not use the drag context. It does not need to free any resources used by the drag icon
because GTK+ takes care of unref-ing the icon's pixmap when the drag �nishes. Our handler is in Listing
6.

Listing 6: drag-end handler

void on_end_drag (GtkWidget ∗ source_button ,
GdkDragContext ∗dc ,
gpo in t e r user_data)

{
// Ret r i eve the array o f po i n t e r s to source supp l i ed data
gpo in t e r ∗ target_data =

g_object_get_data (G_OBJECT(source_button) , " target_data ") ;

// Release the memory that was a l l o c a t e d when widget was s e t as a
// drag source
g_free (target_data [TEXT_HTML]) ;
g_free (target_data [STRING]) ;
g_free (target_data) ;

// Set the key to NULL
g_object_set_data (G_OBJECT(source_button) , " target_data " , NULL) ;

}

6.2 The Button Destination Widgets

There are four destination widgets: three buttons and one drawing area. The buttons all share the same
functions. To make this possible, each button will have an ID number attached to it as user data, and this
ID will tell the callbacks which button is the destination widget. There are also more signals to be handled
on the destination side.

The code to set up the destination buttons is in Listing 7. The button's id is passed as user data to the
setup function, and it is then passed as user data to each of the callback functions. Separate target lists are
created for the number and text buttons.

Listing 7: setup_dest_button()

void setup_dest_button (GtkWidget ∗dest_button ,
Dest inationType button_type)

{
GtkTargetList ∗ t a r g e t_ l i s t ;

/∗ One button w i l l accept t ex t t a r g e t s ; the other , number data ∗/
GtkTargetEntry number_targets [] = {

{"number" , GTK_TARGET_SAME_APP, NUMBER} ,
} ;

/∗ Allow two d i f f e r e n t types o f t ex t ∗/
GtkTargetEntry text_targe t s [] = {

{" text /html " , 0 , TEXT_HTML } ,
{"STRING" , 0 , STRING}

} ;

19

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

gtk_drag_dest_set (dest_button ,
0 ,
NULL,
0 ,
GDK_ACTION_COPY) ;

switch (button_type)
{
case NUMBER_DROP:

t a r g e t_ l i s t = gtk_target_list_new (number_targets ,
G_N_ELEMENTS(number_targets)) ;

break ;
case MARKUP_DROP:
case TEXT_PLAIN_DROP:

t a r g e t_ l i s t = gtk_target_list_new (text_targets ,
G_N_ELEMENTS(text_targe t s)) ;

break ;
d e f au l t :

g_print (" Un iden t i f i ed button . \ n ") ;
}

/∗ Now add the t a r g e t l i s t c r ea ted above to the widget ∗/
gtk_drag_dest_set_target_list (dest_button , t a r g e t_ l i s t) ;

/∗ Connect t h i s widget to a l l o f the s i g n a l s ∗/
g_signal_connect (G_OBJECT(dest_button) ,

"drag_data_received " ,
G_CALLBACK (on_db_drag_data_received) ,
GUINT_TO_POINTER(button_type)) ;

g_signal_connect (G_OBJECT(dest_button) ,
"drag_drop " ,
G_CALLBACK (on_db_drag_drop) ,
GUINT_TO_POINTER(button_type)) ;

g_signal_connect (G_OBJECT(dest_button) ,
"drag_motion " ,
G_CALLBACK (on_db_drag_motion) ,
GUINT_TO_POINTER(button_type)) ;

g_signal_connect (G_OBJECT(dest_button) ,
"drag_leave " ,
G_CALLBACK (on_db_drag_leave) ,
GUINT_TO_POINTER(button_type)) ;

}

The �rst handler that we need to create is the �drag-motion� signal handler. This signal is emitted on a
destination when the cursor moves over it during a drag. The callback prototype is

gboolean user_function (GtkWidget *widget,

GdkDragContext *drag_context,

gint x,

gint y,

guint time,

20

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

gpointer user_data);

The two arguments of interest here besides the drag_context are the x and y coordinates. These are the
cursor's position in the coordinates of the widgets GDK window. The handler may use these to determine
whether a drop is possible in that particular place, or if there are di�erent types of data that can be dropped
depending on the position.

This handler has several roles. One is to determine whether it can accept a drop. Another is to highlight
the widget to give the user visual feedback that a drop is possible. To do either of these things, it needs to
check the targets that are being o�ered by the drag and compare them to the targets in its list of acceptable
targets. The function

GdkAtom gtk_drag_dest_find_target (GtkWidget *widget,

GdkDragContext *context,

GtkTargetList *target_list);

can be used for this purpose. It is given the destination widget and a pointer to the passed in drag context.
The third argument is a target list. The function will compare the targets stored in the drag context against
those in the target list, traversing the two lists from front to back, and stopping when it �nds the �rst target
that the source is o�ering that is also in the target list.

The proper way to use this function is to pass NULL as the third argument. By doing this, GTK will use the
list returned by the call gtk_drag_dest_get_target_list(widget), which is the list of targets that the
destination widget can accept.

If a target is found, its atom is returned, otherwise GDK_NONE is returned. If no target was found, the
drag motion handler needs to notify the source that it will not accept a drop. It does this by calling

void gdk_drag_status (GdkDragContext *context,

GdkDragAction action,

guint32 time_);

To indicate that a drop will not be accepted, it passes a 0 as the second argument and returns FALSE. It can
pass the time value argument given to the drag motion handler as the third argument.

On the other hand, if an atom was found, then the handler should highlight the widget and call gdk_drag_status()
to indicate the action that should be taken when the drop happens. This can be any of the values

GDK_ACTION_DEFAULT Means nothing, and should not be used.

GDK_ACTION_COPY Copy the data.

GDK_ACTION_MOVE Move the data, i.e. �rst copy it, then delete it from the source using the DELETE target
of the X selection protocol.

GDK_ACTION_LINK Add a link to the data. Note that this is only useful if source and destination agree on
what it means.

GDK_ACTION_PRIVATE Special action which tells the source that the destination will do something that the
source doesn't understand.

GDK_ACTION_ASK Ask the user what to do with the data.

Rather than making this decision itself, the handler can simply call

gdk_drag_status(context, context->suggested_action, time);

21

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

which will tell GTK+ to use the suggested action as the action to take. GTK+ will base this on default
settings, such as whether the control key is pressed. Lastly, to highlight the widget, it should call

void gtk_drag_highlight (GtkWidget *widget);

which will highlight the widget and attach expose event and draw handlers to it. But if you do this, then
you also have to handle the �drag-leave� signal, because if you highlight the widget when the cursor is over
it, then you have to unhighlight it when the cursor leaves it. This requires keeping some state around to
know what its state of highlighting is. Our example drag-motion and drag-leave handlers are in Listing 8.
The drag-motion handler has to return TRUE if a drop is possible.

Listing 8: drag-motion and drag-leave handlers

gboolean on_db_drag_motion (GtkWidget ∗dest_button ,
GdkDragContext ∗dc ,
g in t x ,
g in t y ,
gu int time ,
gpo in t e r user_data)

{
GdkAtom target_atom ;
s t a t i c i n t counter = 0 ;

target_atom = gtk_drag_dest_find_target (dest_button , dc , NULL) ;
i f (target_atom != GDK_NONE)
{

gdk_drag_status (dc , dc−>suggested_act ion , time) ;

// I f the d e s t i n a t i on widget i sn ' t h i gh l i gh t ed yet and an ac t i on
// has been suggested by GTK, h i g l i g h t t h i s d e s t i n a t i on widget .
i f (! g_object_get_data (G_OBJECT(dest_button) ,

" h i gh l i gh t ed ") && dc−>suggested_act ion)
{

g_object_set_data (G_OBJECT(dest_button) ,
" h i gh l i gh t ed " , (gpo in t e r)TRUE) ;

gtk_drag_highl ight (dest_button) ;
}

/∗ The widget i s a va l i d d e s t i n a t i on . ∗/
return TRUE;

}
gdk_drag_status (dc , 0 , time) ;
r e turn FALSE;

}

/∗∗∗/
void on_db_drag_leave (GtkWidget ∗dest_button ,

GdkDragContext ∗dc ,
gu int time ,
gpo in t e r user_data)

{
gtk_drag_unhighlight (dest_button) ;
g_object_set_data (G_OBJECT(dest_button) , " h i gh l i gh t ed " , (gpo in te r)FALSE) ;

}

22

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

The destination has to have a handler for the �drag-drop� signal, which occurs when the user releases the
mouse button over the widget. The prototype for this handler is

gboolean user_function (GtkWidget *widget,

GdkDragContext *drag_context,

gint x,

gint y,

guint time,

gpointer user_data);

which is the same as that of the drag motion handler, and the arguments have the same meanings. The
drag-drop handler has to request the data from the source widget. To do this it needs to know which data
to request. If there were no drag-motion handler, this handler would have to check the targets being o�ered
against those in the destination's target list, just as was done in the drag motion handler. But since that
work was already done, we know that a drop is possible, and all that a handler has to do is to ask for the
data by calling

void gtk_drag_get_data (GtkWidget *widget,

GdkDragContext *context,

GdkAtom target,

guint32 time_);

passing the required target atom. How does it know which target to request? It could look in its target list.
In our case, each destination button requests a speci�c type of data, so we just inspect the user data, which
encodes the button's ID, and request that target that the button is designed to accept. Listing 9 clari�es
this.

Listing 9: drag-drop handler

gboolean on_db_drag_drop (GtkWidget ∗dest_button ,
GdkDragContext ∗dc ,
g in t x ,
g in t y ,
gu int time ,
gpo in t e r user_data)

{

GdkAtom target_atom = GDK_NONE;

// Decide which widget emitted the s i gna l , based on user_data
Dest inationType button_type = GPOINTER_TO_UINT(user_data) ;

// The target_atom to reque s t depends on the widget . The Markup button w i l l
// ask f o r the text as markup ; the Number button w i l l ask f o r the data as
// a number . The p l a i n text cho i c e has no widget at pre sent .
i f (button_type == MARKUP_DROP)

target_atom = gdk_atom_intern (" text /html " , TRUE) ;
e l s e i f (button_type == TEXT_PLAIN_DROP)

target_atom = gdk_atom_intern ("STRING" , TRUE) ;
e l s e i f (button_type == NUMBER_DROP)

target_atom = gdk_atom_intern ("number" , TRUE) ;

// This should always be true , un l e s s the atoms got de l e t ed somehow .
i f (target_atom != GDK_NONE)

23

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

gtk_drag_get_data (dest_button , dc , target_atom , time) ;

r e turn TRUE;
}

The destination widget then needs the handler for the �drag-data-received� signal, which is emitted on it
when the source has supplied the data. The callback prototype is

void user_function (GtkWidget *widget,

GdkDragContext *drag_context,

gint x,

gint y,

GtkSelectionData *data,

guint info,

guint time,

gpointer user_data);

The parameters are at this point self-explanatory, except possibly for the (x,y) coordinates. This is the
position where the drop occurred.

The responsibility of this handler is to get the data from the GtkSelectionData structure and copy it into
its own variables, and to call gtk_drag_finish() to notify the source that the drag has been completed.
In the simple case, it does not need to look at the position of the drop. It should look at the value of
drag_context->action to see if it is a move or a copy, or whether it is GDK_DRAG_ASK, in which case it
should display a dialog box asking the user what to do.

In our application we just treat the action as a copy and forgo checking the action. Again, because the
callback has to do di�erent things for di�erent buttons, its logic is based on the value of the button id passed
as user data. It is in Listing 10.

Listing 10: drag-data-received handler

void on_db_drag_data_received (GtkWidget ∗dest_button ,
GdkDragContext ∗dc ,
g in t x ,
g in t y ,
GtkSelect ionData ∗ se l ec t ion_data ,
gu int in fo ,
gu int time ,
gpo in t e r user_data)

{
gchar ∗ l a b e l = NULL;
gu int elapsed_time ;

Dest inationType button_type = GPOINTER_TO_UINT(user_data) ;
switch (button_type) {
case MARKUP_DROP:

l a b e l = g_strconcat ((gchar ∗) se l ec t ion_data−>data , " " , NULL) ;
gtk_label_set_markup (GTK_LABEL(GTK_BIN(dest_button)−>ch i l d) , l a b e l) ;
g_free (l a b e l) ;
break ;

case TEXT_PLAIN_DROP:
l a b e l = g_strconcat ((gchar ∗) se l ec t ion_data−>data , " " , NULL) ;
gtk_label_set_text (GTK_LABEL(GTK_BIN(dest_button)−>ch i l d) , l a b e l) ;
g_free (l a b e l) ;
break ;

24

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

case NUMBER_DROP:
elapsed_time = (guint)∗ (se l ect ion_data−>data) ;
l a b e l = g_strdup_printf ("The drag s t a r t ed %u seconds a f t e r "

" the app l i c a t i o n s t a r t ed . \ n" , elapsed_time) ;

gtk_label_set_text (GTK_LABEL(GTK_BIN(dest_button)−>ch i l d) , l a b e l) ;
g_free (l a b e l) ;
break ;

d e f au l t :
g_print (" Got some other data . \ n ") ;

}

// Ind i c a t e that the drag i s f i n i s h e d and f r e e the target_name s t r i n g
gtk_drag_finish (dc , TRUE, FALSE, time) ;

}

6.3 The Drawing Area Widget

This widget is also a destination widget. Its setup was displayed in Listing 1. The signal handlers for it are
conceptually the same as those for the buttons, but the technical details are di�erent. We describe here how
to extract image and text/uri-list data in the �drag-data-received� handler, and how to check for valid drop
targets in the motion and drop handlers.

(to be continued...)

25

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

Appendix

Listing 11: Drawing a Custom Drag Icon

void draw_drag_icon (GtkWidget ∗widget ,
GdkDragContext ∗drag_context ,
gchar ∗ t ex t)

{
GtkStyle ∗ s t y l e = NULL;
GdkPixmap ∗ icon_pixmap = NULL;
GdkPixmap ∗ icon_mask = NULL;
GdkGC ∗pixmap_gc = NULL;
GdkGC ∗mask_gc = NULL;
GdkColor mask_color ;
PangoFontDescription ∗ fd ;
PangoLayout ∗ l ayout ;
PangoContext ∗ context ;
g in t width ,

he ight ;

// Get the s t y l e o f the widget . To be sure i t a c t ua l l y has a s ty l e , we
// c a l l gtk_widget_ensure_style , which b a s i c a l l y t e s t s that the widget i s
// r e a l i z e d .
gtk_widget_ensure_style (widget) ;
s t y l e = gtk_widget_get_style (widget) ;

/∗∗∗ The next few s t ep s are r equ i r ed to draw text in to a pixmap . ∗∗∗/
// Get the cur rent font d e s c r i p t i o n from the widget ' s GtkStyle
fd = widget−>sty l e−>font_desc ;

// Get a PangoContext with the appropr ia t e f ont map, f ont de s c r i p t i on ,
// and base d i r e c t i o n f o r t h i s widget .
context = gtk_widget_get_pango_context (widget) ;

// Create a new PangoLayout ob j e c t with a t t r i b u t e s i n i t i a l i z e d to
// d e f au l t va lue s f o r the newly c rea ted PangoContext .
layout = pango_layout_new (context) ;

// We have to determine the s i z e o f the r e c t ang l e that w i l l be used to
// render the text . We s e t the font d e s c r i p t i o n in the layout and then
// copy the text in to i t . The layout can then c a l c u l a t e the width and he ight
// o f the rendered text , measured in PANGO_distance un i t s ! !
pango_layout_set_font_descript ion (layout , fd) ;
pango_layout_set_text (layout , text , −1);
pango_layout_get_size (layout , &width , &he ight) ;

// PANGO_SCALE i s the number o f pango un i t s per p ixe l , so we s c a l e the
// width and he ight in to p i x e l s
width = width / PANGO_SCALE;
he ight = he ight / PANGO_SCALE;

// Create and a l l o c a t e the i con pixmap and mask
icon_pixmap = gdk_pixmap_new(widget−>window , width , height , −1);
icon_mask = gdk_pixmap_new(NULL, width , height , 1) ;

// Next we i n i t i a l i z e the i con pixmap and mask g raph i c a l context s
pixmap_gc = gdk_gc_new(icon_pixmap) ;
gdk_gc_set_background (pixmap_gc , &s ty l e−>white) ;

26

CSci493.73 Graphical User Interface Programming

The GTK+ Drag-and-Drop Mechanism

Prof. Stewart Weiss

gdk_gc_set_foreground (pixmap_gc , &s ty l e−>black) ;
gdk_gc_set_function (pixmap_gc , GDK_COPY) ;

mask_gc = gdk_gc_new(icon_mask) ;
mask_color . p i x e l = 1 ;
gdk_gc_set_foreground (mask_gc , &mask_color) ;
gdk_gc_set_function (mask_gc , GDK_COPY) ;

// Now we draw a white background f o r the i con r e c t ang l e and s e t the
// foreground co l o r o f the gc to black
gdk_gc_set_foreground (pixmap_gc , &s ty l e−>white) ;
gdk_draw_rectangle (icon_pixmap , pixmap_gc , TRUE, 0 , 0 , width , he ight) ;
gdk_gc_set_foreground (pixmap_gc , &s ty l e−>black) ;

// Make the i con complete ly opaque
gdk_draw_rectangle (icon_mask , mask_gc , TRUE, 0 , 0 , width , he ight) ;
mask_color . p i x e l = 0 ;
gdk_gc_set_foreground (mask_gc , &mask_color) ;

// Render the text in to the i con pixmap , ca s t as a GtkDrawable
gdk_draw_layout (GDK_DRAWABLE(icon_pixmap) ,

pixmap_gc ,
0 ,
0 ,
layout) ;

// Set the i con as the drag i con .
gtk_drag_set_icon_pixmap (drag_context ,

gdk_colormap_get_system () , icon_pixmap , icon_mask ,
width /2 , he ight / 2) ;

/∗ unre f the layout ∗/
g_object_unref (layout) ;

}

27

	Overview
	Background
	Atoms
	Selections
	Targets
	Target Tables and Target Lists

	Signals Involved in Drag-and-Drop
	The Typical Sequence of Events

	Setting Up a Source Widget
	Example

	Setting Up a Destination Widget
	Example
	Adding Targets to the Destination

	Signal Handlers in Depth
	The Source Widget
	The Button Destination Widgets
	The Drawing Area Widget

