
CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

The GTK+ Tree View

1 Overview

The GTK+ TreeView widget, called GtkTreeView in the C language binding, is based on a Model/View/-
Controller (MVC) design paradigm. In this paradigm, the visual display of information is separate from
the object that encapsulates and provides methods for accessing that information. The GtkTreeView wid-
get is the widget for presenting the data, and a GtkTreeModel encapsulates the data. This is analogous
to how the GtkTextView displays the data stored in a GtkTextBuffer. There is a big di�erence between
the tree view and the text view however. A GtkTreeModel is an abstraction; it is purely an interface that
must be implemented by some other widget. A program cannot instantiate a GtkTreeModel. It can only
instantiate a concrete class that implements it. Fortunately, there are two such classes provided by GTK:
the GtkListStore and the GtkTreeStore. As you would expect, the GtkListStore implements a list and
the GtkTreeStore implements a tree.

There are four major components to understand in order to use a GtkTreeView:

• The tree view widget itself (GtkTreeView)

• The tree view column (GtkTreeViewColumn)

• The cell renderer and its subclasses (GtkCellRenderer), and

• The tree model interface (GtkTreeModel).

The physical appearance of the tree view is governed by the �rst three objects, while the data contained in
it is entirely determined by the model.

Just as multiple text view widgets could display a single text bu�er, multiple tree views can be created from
a single model. A good example is how �le managers/browsers are constructed. Consider a model that
contains a mapping of the �le system. Many tree view widgets can be created to display various parts of the
�le system, with only one copy of the model in memory. Any change made in one view would be re�ected
immediately in the others.

The GtkTreeViewColumn object represents a visible column in a GtkTreeView widget. It lets you set speci�c
properties of the column header and the column in general (visibility, spacings, width, sortability, etc.), and
acts like a container for the cell renderers which determine how the data in the column is displayed.

The GtkCellRenderer objects provide extensibility to the tree view widget. They provide a means of
rendering a single type of data in di�erent ways. For example, di�erent cell renderers can render a boolean
variable as a string of "True" or "False" or "On" or "Off", or as a checkbox. Multiple cell renderers can be
packed into a single column.

Figure 1 shows a GtkTreeView widget displaying a GtkListStore consisting of rows whose members include
images, boolean values rendered as check boxes, numeric values rendered as dollar amounts, and strings.

2 A Bit of Terminology

Perhaps it is obvious, but to be clear, a row is a single horizontal set of data. A column is a vertical slice
through the tree view, containing all values in that column. The title of a column is the label that appears at
the top of the column. In Figure 1, the �rst column's title is �Image�. A cell is the intersection of a column
and a row. Cells are thus parts of rows and columns.

1

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

Figure 1: A GtkTreeView displaying a list

3 Creating a Tree View

In order to create a tree view, you must:

1. Create the tree model,

2. Create and con�gure the tree view, and

3. Set the model into the tree view.

We now explain these tasks in more detail.

3.1 Creating the Tree Model

GTK+ provides two existing implementations of the GtkTreeModel: the GtkListStore and the GtkTreeStore.
The GtkListStore is used to model lists of data, whereas the GtkTreeStore models trees. These models
should be su�cient for most of your purposes.

To create a list store, you should use the function

GtkListStore * gtk_list_store_new (gint n_columns,

...);

This function has a variable number of arguments. The �rst argument is the number of columns that will be
in the store. If the �rst argument is n, then there must be n arguments following. Each successive argument
must be the name of a GType. These are names such as G_TYPE_INT, G_TYPE_BOOLEAN, G_TYPE_STRING,
and GDK_TYPE_PIXBUF. For example, to create a list store with three columns, one containing a GdkPixBuf

image, one, a string, and one, an integer, you would write

liststore = gtk_list_store_new (3, GDK_TYPE_PIXBUF, G_TYPE_STRING, G_TYPE_INT);

As a coding convenience, it is better to create an enumerated type containing names for the columns that
will be in the store, followed by a name that will store the total number of values in the enumeration:

2

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

typedef enum {

IMAGE_COLUMN, // 0

TITLE_COLUMN, // 1

QUANTITY_COLUMN, // 2

NUM_COLUMNS // 3

} Column_type;

This way, you can write, instead,

liststore = gtk_list_store_new (NUM_COLUMNS, GDK_TYPE_PIXBUF, G_TYPE_STRING, G_TYPE_INT);

and if you need to add a new column, you will not have to change the value of NUM_COLUMNS.

Creating a tree store is almost the same; the function is

GtkTreeStore * gtk_tree_store_new (gint n_columns,

...);

The parameters have the same meanings as in gtk_list_store_new(). This creates a tree store rather than
a list store. The di�erences will be apparent shortly.

3.2 Adding Data to the Tree Model

Data is added to an implementation of a GtkTreeModel one row at a time. In general, it is a two-step
process, in which you �rst create a new, empty row, setting an iterator to that row, and then add the data
to that new row. There are a few shortcut functions that let you do this in a single step, but it is usually
easier from a programmer's point of view to use the two-step method. The functions for adding to a list
store are di�erent from those that add to a tree store. We will begin with the list store.

3.2.1 Adding to a List Store

To add data to a list store, you �rst need to create a row and acquire an iterator to that row. There are
several di�erent ways to do this, depending on whether you want to prepend, append, insert at a speci�c
position, or insert after or before a given, existing row. The functions to prepend or append are

void gtk_list_store_prepend (GtkListStore *list_store,

GtkTreeIter *iter);

void gtk_list_store_append (GtkListStore *list_store,

GtkTreeIter *iter);

These are both given a pointer to the list store and the address of an uninitialized GtkTreeIter. They each
create a new row and set the iterator to point to that row. The di�erence is that the prepend function
creates the row at the beginning of the list, whereas the append function creates the row after all existing
rows. Notice that the iterator is a tree iterator, not a list iterator.

The function to insert at a speci�c position is a generalization of the preceding two functions. Its prototype
is

void gtk_list_store_insert (GtkListStore *list_store,

GtkTreeIter *iter,

gint position);

3

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

The only way in which it di�ers from the preceding two functions is that a row is created at the position
speci�ed by the integer parameter position. It is an error if position is less than zero. Otherwise, position
speci�es the index of the row in a zero-based list of rows. If position is larger than the number of rows in
the list, it is appended to the list. Remember that this is a list and visualize the insertion as the insertion
of a list node at that point, e�ectively increasing the positions of all existing rows from the existing one at
that position until that of the last row.

The two other functions can be useful when you have a speci�c row and need to do an insertion before or
after it, but do not have its position, as when a user selects a row and clicks a proxy to insert a new row
there (or when you want to drag a row on top of the treeview and have it drop at a given place.) Their
prototypes are

void gtk_list_store_insert_before (GtkListStore *list_store,

GtkTreeIter *iter,

GtkTreeIter *sibling);

void gtk_list_store_insert_after (GtkListStore *list_store,

GtkTreeIter *iter,

GtkTreeIter *sibling);

Their meanings are perhaps obvious. They work the same way as the others, except that they are given
in their third parameter the address of a tree iterator, sibling, that has been set to an existing row. If
sibling is not NULL, then the new row will be created before or after sibling accordingly. If sibling is NULL,
then gtk_list_store_insert_before() will append the new row and gtk_list_store_insert_after()

will prepend it.

Once you have an iterator to an empty row, you can set data into it. You again have a few choices. You can
insert data into multiple cells of the row in one, fell swoop, or insert data into a single cell at a time. To add
to multiple cells, use

void gtk_list_store_set (GtkListStore *list_store,

GtkTreeIter *iter,

...);

The �rst two arguments are the list in which to insert and the tree iterator that points to the row whose
cells are to be set. The remaining arguments are a sequence of pairs terminated by a -1. Each pair consists
of an integer column number followed by the value to assign to the cell in that column. For example, if
column 0 has data of type G_TYPE_STRING, column 1 has data of type G_TYPE_INT, and column 2, of type
G_TYPE_BOOLEAN, then we can call the function with

gtk_list_store_set(liststore, &iter, 0, �A string�, 1, 64, 2, TRUE, -1);

You need to know when data is copied versus when the store acquires a pointer to it and increments its
reference count. These are summarized as follows:

1. If the data is a GObject (i.e., an object derived directly from GObject) , then the store takes ownership
of it by calling g_value_dup_object() on the object and relinquishing ownership of the previously
held object in that cell, if it is replacing an old value. Pixbufs fall into this category.

2. If the data is a simple scalar data type such as a numeric, Boolean, or enumerated type or a pointer,
then the store makes a copy of the data. In particular, if the data is a pointer, the pointer is copied,
not the data to which it points.

3. If the data is a string or a boxed structure, then the store duplicates the string or the boxed structure
and stores a pointer to it. If the data is replacing existing data, then in this case the old string or
boxed structure is freed �rst using g_free() or g_boxed_free() respectively. (GBoxed is a wrapper
mechanism for arbitrary C structures. They are treated as opaque chunks of memory.)

4

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

Usually when you call this function, instead of passing column numbers as numeric literals, you will use the
values of an enumerated type. Also, the data will be in variables, not literals. The following code fragment
illustrates these steps in creating a list store. Some details are omitted.

Listing 1: Creating a list store from data in a �le.

// Assume the f o l l ow i ng enumeration has been dec l a r ed :
typede f enum
{
ON_EXHIBIT,
PRICE,
ARTIST,
TITLE,
NUM_COLUMNS

} Column_type ;

// Assume a s t o r e has been created with the columns s p e c i f i e d here :
GtkListStore ∗ s t o r e = gtk_list_store_new (NUM_COLUMNS,

G_TYPE_BOOLEAN,
G_TYPE_FLOAT,
G_TYPE_STRING,
G_TYPE_STRING
) ;

/∗ Open a f i l e , and get the data out o f the f i l e , r ecord by record .
Assume that each record conta in s the data f o r a s i n g l e row . Also
assume that :

on_exhibit i s a boolean
p r i c e i s a f l o a t
a r t i s t i s a s t r i n g
t i t l e i s a s t r i n g

∗/

// Within a loop , the se s t ep s would be taken :
gtk_list_store_append (∗ s tore , &i t e r) ;
g tk_l i s t_store_set (∗ s tore , &i t e r ,

ON_EXHIBIT, on_exhibit ,
PRICE, pr i ce ,
ARTIST, a r t i s t ,
TITLE, t i t l e ,
−1);

The function to add data to a single cell in the store is

void gtk_list_store_set_value (GtkListStore *list_store,

GtkTreeIter *iter,

gint column,

GValue *value);

This will set the given value into the cell speci�ed by column in the row pointed to by iter. The value
parameter is a pointer to a GValue. A GValue is de�ned in the GObject library. It is an opaque structure,
which means that you do not have access to its members. The GObject library has methods that act on
GValue objects. When you use this function, you must supply a pointer to a value that can be cast to the
type of the given column. The GObject type system will cast it accordingly.

3.2.2 Adding Data to a Tree Store

A tree store is hierarchical. Every row is the child of some parent, and if the parent row is not visible in the
view, its children will be invisible as well. Adding data to a tree store is a bit more complex because of this

5

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

hierarchical structure. A new row must be made the child of an existing row. Generally speaking, each of the
functions de�ned for inserting into a list store has an analog in the tree store with an extra parameter that
speci�es the parent whose child that row is to become. The complications arise because of the possibilities
of that parameter being NULL, or the sibling, if it is supplied, being NULL.

It will be easy to sort things out if you remember that the root of the tree store is not any of the rows you
put into it, but an invisible, abstract row that has no data. We call this invisible row the root of the tree.
When a row is added to the tree with a NULL parent, it means that this row is a top-level row, an immediate
child of the root. Another way to see this is that your tree is not really a tree, but a forest whose root is not
part of your tree, but is a part of the library.

The simplest case is appending a new row to the children of a given parent, which is done with

void gtk_tree_store_append (GtkTreeStore *tree_store,

GtkTreeIter *iter,

GtkTreeIter *parent);

If parent is not NULL, then the row is appended after the last child of this parent. Otherwise, it is created
as a top-level row and appended after the last top-level row.

There is a similar function to prepend a row before all children of a given parent:

void gtk_tree_store_prepend (GtkTreeStore *tree_store,

GtkTreeIter *iter,

GtkTreeIter *parent);

The semantics are analogous to the appending version.

There are functions to insert at a speci�c position in a child list, or to insert before or after a sibling within
a child list. To insert a row at a speci�c position within the list of children of a given parent row, use

void gtk_tree_store_insert (GtkTreeStore *tree_store,

GtkTreeIter *iter,

GtkTreeIter *parent,

gint position);

This is like the corresponding function for the list store, except that it is relative to the list of children of
the given parent. That is, if parent is not NULL, it inserts a new row within the parent's child list at the
given position. If position is larger than the number of children, it is appended after the last child. If
position is negative it is an error. If parent is NULL, the row is inserted as a top-level row using the same
rules for position.

The two functions for inserting relative to a sibling are

void gtk_tree_store_insert_before (GtkTreeStore *tree_store,

GtkTreeIter *iter,

GtkTreeIter *parent,

GtkTreeIter *sibling);

and

void gtk_tree_store_insert_after (GtkTreeStore *tree_store,

GtkTreeIter *iter,

GtkTreeIter *parent,

GtkTreeIter *sibling);

The semantics are a bit complex. There are four cases to consider for each.

6

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

Case 1: parent is not NULL and sibling is not NULL. In this case, both of these functions �rst check
whether sibling is a child of parent. If not, it is an error. If it is, then gtk_tree_store_insert_before()

inserts a new row before the row pointed to by sibling, and gtk_tree_store_insert_after() inserts a
new row after it.

Case 2: parent is NULL and sibling is not NULL. This is the same as Case 1 except that no check is
performed; a row is inserted before or after sibling as speci�ed.

Case 3: parent is not NULL and sibling is NULL. In this case, gtk_tree_store_insert_before() will
append a new row after its last child, and gtk_tree_store_insert_after() will prepend a new row before
its �rst child.

Case 4: parent is NULL and sibling is NULL. gtk_tree_store_insert_before() will append a new
row to the top-level, and gtk_tree_store_insert_after() will prepend a new row to the top-level.

The functions to set data in a tree store row have the exact same semantics and form as those of the list
store. They di�er only in name:

void gtk_tree_store_set (GtkTreeStore *tree_store,

GtkTreeIter *iter,

...);

void gtk_tree_store_set_value (GtkTreeStore *tree_store,

GtkTreeIter *iter,

gint column,

GValue *value);

3.3 Creating and Con�guring the Tree View Component

3.3.1 Creating the Tree View

There are two functions to create a tree view widget, one with an existing model, and one without a model.
To create a tree view with an existing model, use

GtkWidget * gtk_tree_view_new_with_model (GtkTreeModel *model);

This initializes the tree view's model to the model passed to it. To create a tree view with no model, use

GtkWidget * gtk_tree_view_new (void);

If you create a tree view without a model you then have to set the model into it with

void gtk_tree_view_set_model (GtkTreeView *tree_view,

GtkTreeModel *model);

This will set the given model into the tree view. If the tree view already has a model, it will be removed. If
model is passed as a NULL value, then the old model is unset.

Once the tree view has been created, the next step is to con�gure how it will display the data in its model.
Display is controlled by (1) the global properties of the GtkTreeView itself, (2) the GtkTreeColumn object,
and (3) the GtkCellRenderer objects. Global properties include things such as making headers visible or
hidden.

7

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

3.3.2 Creating and Adding Columns

In simple cases, creating and adding columns is a relatively easy task, but the GtkTreeViewColumn object
has been designed with a great deal of �exibility in mind.

A GtkTreeViewColumn is the object that GtkTreeView uses to organize the vertical columns in the tree view.
To use a tree view column, you have to give it the title that will be displayed in the column header and a
set of one or more cell renderers that will render the data in the column. The column object does not do
any drawing itself; it is just a container for the cell renderers. In the simplest case, a column has a single
cell renderer, but there are times when you may want to give it more than one.

In a sense, describing how to add and customize columns is like putting the cart before the horse, because
unless you understand what a cell renderer does, you will not understand how to create the columns.
Therefore, we discuss the cell renderers brie�y before continuing.

Overview of GTK Cell Renderers The GtkCellRenderer is derived directly from GObject. It is not a
widget and has no window. It is the base class of a set of objects that can render a cell onto a GdkDrawable,
i.e., the underlying window of the treeview widget. Although these objects exist independently of the
GtkTreeView widget and could be used outside of it, they exist in order to render the cells in GtkTreeView

widgets. There are several subclasses of the GtkCellRenderer:

• GtkCellRendererText for rendering text in a cell.

• GtkCellRendererPixbuf for rendering images in a cell.

• GtkCellRendererProgress for rendering numeric values as progress bars

• GtkCellRendererSpinner for rendering a spinning animation in a cell

• GtkCellRendererToggle for rendering a toggle button in a cell.

The base class has a set of properties such as �width� , �height�, �cell-background�, �visible�, and more, and
the child classes add to these properties their own speci�c ones. For example, a GtkCellRendererText

object has a �foreground� property and a �foreground-set� property. A cell renderer applies its properties
to every cell in the column that it renders. So if the �foreground� is set to �Blue� and the �foreground-set�
property is set to TRUE (meaning that the renderer should use the foreground property), then every cell will
have blue text. Cell renderer properties are set with the underlying GObject g_object_set() function.

To repeat, the properties of a cell renderer are applied to every cell in the column. One way to render
di�erent cells di�erently, is to use a method of the GtkTreeViewColumn class to specify this. This may seem
counterintuitive at �rst, but you will see why it makes sense soon. A second method is to use a special
function called a GtkTreeCellDataFunc function. This is a function that can be attached to a renderer and
that will be called for each data cell in the column. The cell renderer function can use the data in the cell
to customize the appearance of that cell.

Returning to the tree view columns, the simplest way to create a column is with a function that creates it
and also sets the attributes of a single cell renderer to use in that column. This function is

GtkTreeViewColumn * gtk_tree_view_column_new_with_attributes

(const gchar *title,

GtkCellRenderer *cell,

...);

This function has a variable number of arguments. The �rst argument is the title of the column. This
will be displayed in the column's header. The second argument is a GtkCellRenderer, which will draw
each cell's contents on the underlying GDK window. Following the cell renderer is a NULL-terminated list of

8

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

attribute-value pairs. Each pair consists of a cell renderer property name, such as �text�, and the number
of a GtkTreeModel column from the store that is set in the tree view. The cell renderer will take the data
from that column of the model and apply its value to the property that is associated with it. For example,
the lines

renderer = gtk_cell_renderer_text_new ();

column = gtk_tree_view_column_new_with_attributes

("Artist", renderer, "text", ARTIST, NULL);

will create a text renderer, storing a pointer to it in renderer, and create a column whose title is �Artist�
and pack renderer into it. A GtkCellRendererText has a property called �text�, and the above call tells
the column object that every time the renderer renders a cell in this column, it should set its �text� property
to have the value of the cell from the ARTIST column in the model. If the model's ARTIST column's �rst row
has the string �Renoir�, then the cell renderer will print the string �Renoir� in that cell.

This function will remove all existing attributes from the column. Sometimes, you may want to preserve a
column's existing attributes but add a new one. This would be the case if you want a column to have two or
more renderers. You might want to do this to render the data from a single column in di�erent ways in the
same column. An example of this is when you have a boolean value in a model column, and you want to put
both a checkbox and a string of some kind into the column. You could pack a GtkCellRendererToggle into
the column as well as a GtkCellRendererText into the same column. The former will display the boolean
as a checkbox, and the latter, as the word TRUE or FALSE. (This word can be customized, as you will see
later.)

To put two renderers into a single column, you have to add a second renderer to the column after putting
the �rst one into it. The function to do this is

void gtk_tree_view_column_add_attribute (GtkTreeViewColumn *tree_column,

GtkCellRenderer *cell_renderer,

const gchar *attribute,

gint column);

This adds a single attribute pair to a cell renderer, packing it into the column.

3.4 Speci�c Cell Renderers

3.4.1 GtkCellRendererToggle

A GtkCellRendererToggle renders a toggle button in a cell. The button is drawn as a radio- or check-
button, depending on the radio property. When activated, it emits the toggled signal. You create one
with

GtkCellRenderer *gtk_cell_renderer_toggle_new (void);

The default is to create a checkbutton. To render it as a radio button, use

void gtk_cell_renderer_toggle_set_radio (GtkCellRendererToggle *toggle,

gboolean radio);

with the second argument TRUE. In order to allow the user to change the state of the toggle, it needs to have
its �activatable� property set to TRUE, which you can use the g_object_set() function to do, or call

9

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

void gtk_cell_renderer_toggle_set_activatable (GtkCellRendererToggle *toggle,

gboolean setting);

When the user clicks on the button, the renderer will emit a �toggled� signal. Since you must change the
model data to re�ect the change in the view, you must connect a callback to the signal that will update the
model. The callback for this signal has the prototype

void user_function (GtkCellRendererToggle *cell_renderer,

gchar *path,

gpointer user_data);

This function is passed the pointer to the emitting rendered and a string representing a tree path. Tree
paths are explained below. In order to change the model, the user data should have a pointer through which
you can access the model. You can pass in the tree view and get the model from it. The following callback
illustrates. Assume that ON_EXHIBIT is the column number in the model whose data is rendered by the
toggle button.

void on_exhibit_toggled (GtkCellRendererToggle *renderer ,

gchar *path ,

GtkTreeView *treeview)

{

GtkTreeModel *model;

GtkTreeIter iter;

gboolean state;

model = gtk_tree_view_get_model(treeview);

if (gtk_tree_model_get_iter_from_string (model , &iter , path)) {

gtk_tree_model_get (model , &iter , ON_EXHIBIT , &state , -1);

gtk_list_store_set (GTK_LIST_STORE (model), &iter , ON_EXHIBIT ,

!state , -1);

}

}

The path is delivered to the callback by the signaling system. It is a reference to the speci�c row whose
toggle button was clicked. In order to get the data in the cell, we need to pass an iterator to that row to
gtk_tree_model_get(), as well as the number of the column in the model whose data is being rendered by
the toggle. This callback hard-codes that number because it is only called for this particular toggle. If the
row had several toggles, and we wanted to use a single callback, then we would have to either set the column
number as data against the renderer, or pass it in the user data also.

3.4.2 GtkCellRendererSpinner

3.4.3 GtkCellRendererPixbuf

4 Referencing Rows

The GtkTreeModel provides a few di�erent ways to access the nodes (rows) of the tree, and within a row,
to access a particular column. The approach is to get a reference to the row, and having that, to access

10

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

the particular column on that node. The structures that reference a particular node in a model are the
GtkTreePath, the GtkTreeIter, and the GtkTreeRowReference.

A tree path represents a potential node. Paths de�ne locations within a generic model. A given model may
not actually have a node at the speci�ed path. This will be clear momentarily.

The GtkTreeModel provides methods that can convert a GtkTreePath into either an array of unsigned
integers or a string. The string representation is a list of numbers separated by a colon. Each number refers
to the o�set at that level. for example

�0� refers to the �rst top-level row

�0:0� refers to the �rst child of the �rst top-level row

�1:2:3� refers to the fourth child of the third child of the second top-level row

�1:0:0:4� refers to the �fth child of the �rst child of the �rst child of the second top-level row

After a tree changes as a result of a row insertion or deletion, a path may no longer correspond to an actual
row. One can de�ne a path arbitrarily as well, using the function

GtkTreePath * gtk_tree_path_new_from_string (const gchar *path);

Given a string in the above form, this creates a GtkTreePath and returns a pointer to it. The fact that
such a path structure exists has no bearing on whether or not a node exists at that location! Many callback
functions are supplied paths by the run-time signaling system. These will be valid paths pointing to rows at
within which some event took place.

In contrast, a GtkTreeIter is a reference to a speci�c node on a speci�c model. These iterators are the
primary way of accessing a model and are similar to the iterators used by GtkTextBuffer. They are generally
statically allocated on the stack and only used for a short time. Like the iterators used with text bu�ers, tree
iterators can become invalidated as a result of various changes to the tree. In the GtkTreeModel in general,
when the model emits a signal, the iterators become invalid. Signals are emitted when rows are inserted
or removed, so generally speaking, such changes invalidate iterators. In the tree and list store, this is not
true though � they preserve iterators as long as the rows are valid, and when a row becomes invalid any
iterator to it is invalidated as well. A speci�c implementation of a GtkTreeModel may or may not persist
the iterators when the tree is changed. In recent version of GTK+, the GTK_TREE_MODEL_ITERS_PERSIST

�ag indicates whether that implementation preserves the validity of iterators when the rows they reference
exist. This �ag can be checked with gtk_tree_model_get_flags().

The GtkTreeRowReference is like a GtkTextMark in the sense that it is a permanent reference to a row in
the tree. This reference will keep pointing to the node to which it was �rst associated, so long as it exists. It
listens to all signals emitted by model, and updates its path appropriately. Therefore, these row references
are useful if you need a permanent reference to a row. The penalty is a hit on performance, since every
signal emission must update the references.

The GtkTreeModel provides an assortment of methods to acquire iterators to speci�c rows and navigate
around with them. In addition, it has methods to convert between iterators and paths.

To create the string representation of a path, use

gchar * gtk_tree_path_to_string (GtkTreePath *path);

To obtain an iterator to a given path:

gboolean gtk_tree_model_get_iter (GtkTreeModel *tree_model,

GtkTreeIter *iter,

GtkTreePath *path);

11

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

To get a path at the row of a given iterator, use

GtkTreePath * gtk_tree_model_get_path (GtkTreeModel *tree_model,

GtkTreeIter *iter);

The returned path must be freed with

void gtk_tree_path_free (GtkTreePath *path);

when it is no longer needed. If you have a string representing a path, and you want an iterator at that row,
you can use

gboolean gtk_tree_model_get_iter_from_string (GtkTreeModel *tree_model,

GtkTreeIter *iter,

const gchar *path_string);

and the inverse

gchar * gtk_tree_model_get_string_from_iter (GtkTreeModel *tree_model,

GtkTreeIter *iter);

These are just a few of the conversion functions. In addition there are functions back and forth from
GtkTreeRowReference to paths. Consult the API documentation.

4.1 Navigating the Tree

The GtkTreeModel provides many functions for moving paths and iterators around in the tree. Functions
to move a path include

void gtk_tree_path_next (GtkTreePath *path);

gboolean gtk_tree_path_prev (GtkTreePath *path);

void gtk_tree_path_down (GtkTreePath *path);

gboolean gtk_tree_path_up (GtkTreePath *path);

The next() function moves the path to the next row in the same level; the prev() function to the preceding
row, returning FALSE if it was the �rst in its level. The down() function moves the path to the �rst child
of the current path, and up() moves it to the parent of the current path, returning FALSE if it is a top-level
row.

There are even more functions for moving iterators around. Each returns TRUE on success.

gboolean gtk_tree_model_get_iter_first (GtkTreeModel *tree_model,

GtkTreeIter *iter);

This gets an iterator to the �rst top-level node, returning FALSE for an empty tree. The iterator will not be
changed in this case.

gboolean gtk_tree_model_iter_next (GtkTreeModel *tree_model,

GtkTreeIter *iter);

12

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

This advances the iterator to the next node at the same level if it exists, returning FALSE if it is the last
node in its level and invalidating the iterator.

gboolean gtk_tree_model_iter_children (GtkTreeModel *tree_model,

GtkTreeIter *iter,

GtkTreeIter *parent);

If parent is not NULL, this makes the iterator point to the �rst of its child nodes if it has any, and if not, return-
ing FALSE and invalidating the iterator. If parent is NULL, this is equivalent to gtk_tree_model_get_iter_first().

gboolean gtk_tree_model_iter_nth_child (GtkTreeModel *tree_model,

GtkTreeIter *iter,

GtkTreeIter *parent,

gint n);

This sets iter to be the child of parent, using the given index. The �rst index is 0. If n is too big, or parent
has no children, iter is set to an invalid iterator and FALSE is returned. If parent is NULL, then iter is set
to point to the nth top-level node.

gboolean gtk_tree_model_iter_parent (GtkTreeModel *tree_model,

GtkTreeIter *iter,

GtkTreeIter *child);

Lastly, this makes iter point to its parent. If it is a top-level row, it returns FALSE and invalidates iter.

4.2 Using Iterators and Paths

You need to get the hang of using iterators and paths to do any serious programming with the GtkTreeView
and its cohort of objects. In this section, we will look at a few di�erent applications.

One simple application of these methods is to traverse all of the rows in a model, printing the data in each
row to a �le. For simplicity, we begin with a list store. The idea is simply to set an iterator to the �rst row
and advance it until all rows have been printed. We will assume the same set of model columns as in Listing
1.

Listing 2: Saving a list store to a �le.

g in t save_store_to_f i l e (GtkListStore ∗ s tore ,
gchar ∗ f i l ename)

{
FILE∗ f i l e_p t r ;
gchar ∗ a r t i s t ;
gchar ∗ t i t l e ;
g i n t on_exhibit ;
g f l o a t p r i c e ;
GtkTreeIter i t e r ;
gboolean va l i d ;
g in t row_count = 0 ;

// Val idate f i l e a c c e s s and ex i s t e n c e
f i l e_p t r = fopen (f i l ename , "w") ;
i f (f i l e_p t r == NULL) {

// check errno

13

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

re turn −1;
}

va l i d = gtk_tree_model_get_iter_first (GTK_TREE_MODEL(s t o r e) ,
&i t e r) ;

whi l e (v a l i d) {
gtk_tree_model_get (GTK_TREE_MODEL(s t o r e) , &i t e r ,

ON_EXHIBIT, &on_exhibit ,
PRICE, &pr i ce ,
ARTIST, &a r t i s t ,
TITLE, &t i t l e ,
−1);

f p r i n t f (f i l e_pt r , "%d:% f :%s :%s : " ,
on_exhibit , p r i ce , a r t i s t , t i t l e) ;

row_count++;
va l i d = gtk_tree_model_iter_next (GTK_TREE_MODEL(s t o r e) , &i t e r) ;

}
f c l o s e (f i l e_p t r) ;
r e turn row_count ;

}

If we had to use the same technique to traverse all of the rows in a tree store, we would be forced to use
a stack or write a recursive traversal function. Fortunately, the GtkTreeModel has a �foreach� method
that will traverse the entire model, executing a user-supplied function at each model node. As both the
GtkListStore and the GtkTreeStore implement the model, we can use the foreach function for either of
these. Its prototype is

void gtk_tree_model_foreach (GtkTreeModel *model,

GtkTreeModelForeachFunc func,

gpointer user_data);

The �rst argument is the model to be traversed, and the last argument is user-supplied data. The second
argument is a GtkTreeModelForeachFunc function. Such a function is de�ned by

gboolean (*GtkTreeModelForeachFunc) (GtkTreeModel *model,

GtkTreePath *path,

GtkTreeIter *iter,

gpointer data);

When the function is called, the model will supply the path to the current row, an iterator to the row, and
the user data provided to gtk_tree_model_foreach(). The function must return a boolean value, TRUE
to stop successive iteration, FALSE to continue it. You might be using this function to search the tree, for
example, and having found what you were looking for, you could stop by returning TRUE.

To illustrate, we will work with a tree store based on the list store above, except that there is now a new
model column with number PERIOD. The PERIOD column holds string data and will contain the name of a
stylistic period in the history of painting, such as �Renaissance� or �Post-Impressionist�. The top-level rows
will be periods, and their children will be rows with speci�c paintings.

Figure 2 shows our example tree store model on view. Notice that the top-level rows have no data other
than the name of the period. Cell renderer functions ensure that the only displayed data in a top-level row
is the period. The images are created from thumbnails, but for simplicity, the example code here omits the
logic related to thumbnails. The data for this model comes from a plain text �le in CSV format, with colons
':' separating the �elds. A fragment of such a �le might look like

14

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

Figure 2: Treeview with a tree store in view.

0:0.00:Renaissance: : : :

1:12500000.00:Renaissance:da Vinci, Leonardo:Mona Lisa:

1:12500000.00:Renaissance:da Vinci, Leonardo:Lady With an Ermine:

1:12500000.00:Renaissance:da Vinci, Leonardo:Leonardo the Astrologer:

0:0.00:Post-Impressionist: : : :

0:5760000.00:Post-Impressionist:Van Gogh, Vincent:Apricot Trees In Blossom:

The top-level rows have a single blank character in the string �elds other than the period. To create such a
tree store from the data in the CSV �le, we use the function create_store_from_�le() in Listing 3.

Listing 3: Creating a tree store from �le data.

g in t create_store_from_f i l e (GtkTreeStore ∗∗ s tore ,
gchar ∗ f i l ename)

{
FILE∗ f i l e_p t r ;
GtkTreeIter i t e r , c h i l d ;
gchar a r t i s t [MAX_ARTIST_NAME] ;
gchar t i t l e [MAX_TITLE_LENGTH] ;
gchar per iod [MAX_PERIOD_NAME] ;
g in t on_exhibit ;
g f l o a t p r i c e ;

// Val idate f i l e a c c e s s and ex i s t e n c e
f i l e_p t r = fopen (f i l ename , " r ") ;
i f (f i l e_p t r == NULL) {

return −1;
}

∗ s t o r e = gtk_tree_store_new (NUM_COLUMNS,
G_TYPE_BOOLEAN,
G_TYPE_FLOAT,

15

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

G_TYPE_STRING,
G_TYPE_STRING,
G_TYPE_STRING
) ;

whi l e (f s c a n f (f i l e_pt r , "%d:% f :% [^ :] :% [^ :] :% [^ :] : " ,
&on_exhibit , &pr i ce , per iod , a r t i s t , t i t l e) != EOF) {

i f (g_asci i_strcasecmp (a r t i s t , " ") == 0 &&
g_asci i_strcasecmp (t i t l e , " ") == 0 &&
g_asci i_strcasecmp (per iod , " ") != 0) {

// I t i s a per iod entry to be put at root l e v e l
gtk_tree_store_append (∗ s tore , &i t e r , NULL) ;
gtk_tree_store_set (∗ s tore , &i t e r ,

PERIOD, per iod ,
ARTIST, a r t i s t ,
TITLE, t i t l e ,
THUMB_PATH, full_thumb_path ,
−1);

}
e l s e {

// I t i s an ac tua l pa in t ing row
gtk_tree_store_append (∗ s tore , &ch i ld , &i t e r) ;
gtk_tree_store_set (∗ s tore , &ch i ld ,

ON_EXHIBIT, on_exhibit ,
PRICE, pr i ce ,
ARTIST, a r t i s t ,
TITLE, t i t l e ,
PERIOD, per iod ,
−1);

}
}
re turn 0 ;

}

Notice that we create the top-level rows with

gtk_tree_store_append(*store, &iter, NULL);

but that the child rows are created with

gtk_tree_store_append (*store, &child, &iter);

The value of the iterator iter when it is used to create the child row is the last value that it was set to when
a top-level row was created, so all rows found in the �le until the next top-level row will be appended to the
list of children of the preceding one.

To write the currently displayed model to a �le requires that its data be written back to the �le in the same
format in which it was read. To do this, we de�ne a GtkTreeModelForeachFunc named print_row() that
will get the model data in the row pointed to by the iterator, and print it to the �le whose FILE* pointer
is passed to it in the user_data argument. print_row() is shown in Listing 4, as well as the function that
would traverse the tree with the foreach method.

16

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

Listing 4: Functions to save tree to a file

gboolean print_row (GtkTreeModel ∗model ,
GtkTreePath ∗path ,
GtkTreeIter ∗ i t e r ,
gpo in t e r user_data)

{
gchar ∗ a r t i s t ;
gchar ∗ t i t l e ;
gchar ∗ per iod ;
g in t on_exhibit ;
g f l o a t p r i c e ;
FILE ∗ f i l e_p t r = (FILE∗) user_data ;

gtk_tree_model_get (model , i t e r ,
ON_EXHIBIT, &on_exhibit ,
PRICE, &pr i ce ,
PERIOD, &period ,
ARTIST, &a r t i s t ,
TITLE, &t i t l e ,
−1);

f p r i n t f (f i l e_pt r , "%d:%.2 f :%s :%s :%s : \ n" ,
on_exhibit , p r i ce , per iod , a r t i s t , t i t l e) ;

g_free (a r t i s t) ;
g_free (t i t l e) ;
g_free (per iod) ;
r e turn FALSE;

}

g in t save_store_to_f i l e (GtkTreeStore∗ s tore ,
gchar ∗ f i l ename)

{
// Val idate f i l e a c c e s s and ex i s t e n c e
FILE∗ f i l e_p t r = fopen (f i l ename , "w") ;
i f (f i l e_p t r == NULL) {

return −1;
}
gtk_tree_model_foreach (GTK_TREE_MODEL(s t o r e) , print_row , (gpo in t e r) f i l e_p t r) ;
f c l o s e (f i l e_p t r) ;
r e turn 0 ;

}

As a �nal example that uses iterators, suppose that we want to create a function that, given the name of a
period, and the data for a new row, appends a new row to the end of the list of child rows of that period.
To do this requires that we

1. �nd the top-level row in the model whose PERIOD data matches the period name we are given,

2. get a new iterator at the end of the list of children of that row, and

3. sets the data into that new row.

The following code snippet does this. Assume that period is the string containing the period we are looking
for in the model.

17

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

gtk_tree_model_get_iter_from_string (model, &iter, "0");

/* Retrieve an iterator pointing to the selected period. */

do {

gtk_tree_model_get (model, &iter, PERIOD, &name, -1);

if (g_ascii_strcasecmp (name, period) == 0) {

g_free (name);

break;

}

g_free (name);

} while (gtk_tree_model_iter_next (model, &iter));

gtk_tree_store_append (GTK_TREE_STORE (model), &new_row_iter, &iter);

gtk_tree_store_set (GTK_TREE_STORE (model), &new_row_iter,

ON_EXHIBIT, on_exhibit,

PRICE, price,

ARTIST, artist,

TITLE, title,

PERIOD, period,

-1);

This sets the iterator iter to point to the �rst top-level row, and successively searches only top-level rows for
those whose PERIOD column data matches period, breaking out of the loop on success. This code assumes
the period is present; it does not contain code to handle the case that it is not.

5 GtkTreeView Signals

When a user double-clicks on a row in a tree view widget, or when a non-editable row is selected and one
of the keys: Space, Shift+Space, Return or Enter is pressed, the tree view emits a �row-activated� signal. If
you want the application to respond to this signal in some way, then you need to connect a callback with
the prototype below to the tree view widget:

void user_function (GtkTreeView *tree_view,

GtkTreePath *path,

GtkTreeViewColumn *column,

gpointer user_data);

The second argument is a GtkTreePath. The third is the address of the column within which the click event
occurred. The last is whatever user data you want to pass to the callback. You may or may not wish to
use the column argument; it is there in case you want to do something in particular with the cell that was
clicked. A simple function to illustrate the use of this callback is shown in Listing 5 below. It prints the
data in the activated row to the standard output stream.

Listing 5: Handling a row-activated signal.

void on_row_activated (GtkTreeView ∗ treev iew ,
GtkTreePath ∗path ,
GtkTreeViewColumn ∗column ,
gpo in t e r data)

{
GtkTreeModel ∗model ;
GtkTreeIter i t e r ;
gchar ∗ a r t i s t ;

18

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

gchar ∗ t i t l e ;
g i n t on_exhibit ;
g f l o a t p r i c e ;

model = gtk_tree_view_get_model (t r eev i ew) ;
i f (gtk_tree_model_get_iter (model , &i t e r , path)) {

gtk_tree_model_get (model , &i t e r ,
ON_EXHIBIT, &on_exhibit ,
PRICE, &pr i ce ,
ARTIST, &a r t i s t ,
TITLE, &t i t l e ,
−1);

g_print (" Ar t i s t : \ t%s \n" , a r t i s t) ;
g_print (" T i t l e : \ t%s \n" , t i t l e) ;
g_print (" Pr i ce : \ t$% '.2 f \n" , p r i c e) ;
i f (on_exhibit)

g_print (" Current ly on exh i b i t . \ n ") ;
e l s e

g_print (" Current ly not on exh i b i t . \ n ") ;
g_free (a r t i s t) ;
g_free (t i t l e) ;

}
}

The on_row_activated() callback would be connected to the �row-activated� signal with

g_signal_connect (G_OBJECT (*treeview), "row-activated",

G_CALLBACK(on_row_activated), NULL);

The tree view widget emits several other signals.

6 Handling Selections

to be continued...

7 Sorting Rows

There are two di�erent ways in which sortability can be added to a GtkTreeView application, one of which
is much more complex than the other to implement. The simpler of the two methods is su�cient provided
that there is only one view of the model at any time. If, on the other hand, the model data can be viewed
by two or more views, then the simpler method will not work. In either case, the basic idea is that the user
can click on the column headings to have the rows of the model sorted by the data in that column. The
comparison function that will be used to decide the sorting order can be customized by the programmer.

The simpler of the two methods is to use just the GtkTreeSortable interface. This is an interface that
tree models can implement to support sorting. Both the GtkListStore and the GtkTreeStore implement
GtkTreeSortable. The GtkTreeView uses the methods de�ned in the GtkTreeSortable interface to sort
the model, actually reordering the model data. Therefore, it is enough to cast a list or tree store to a

19

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

GtkTreeSortable and use its methods for sorting the rows. The programmer can con�gure the treeview so
that each column has a di�erent sort comparison function.

The problem with this simple approach is that when the view sorts the data, the model data itself is re-
sorted. If the model data is to be held by two or more views, then sorting in one view would cause the other
view's display to be sorted as well, which is usually antithetical to the purpose of allowing multiple views.
For this reason, GTK+ provides a third tree model that implements the GtkTreeSortable interface, called a
GtkTreeModelSort, which does not hold any data itself. When the treeview is sorted, the underlying model
data does not get re-sorted; instead, the GtkTreeModelSort re-sorts its representation of the underlying
data. The GtkTreeModelSort is created with a child model, such as a list store or a tree store, and proxies
its data. It has identical column types to the child model, and the changes in the child's data are propagated.
The di�culty in using this approach lies in the fact that the iterators held by the model are inconsistent
with those presented by the GtkTreeModelSort interface, and therefore, getting at the actual data takes a
bit more work.

We will begin by showing how to use the GtkTreeSortable interface directly, without an interposed GtkTreeModelSort
model. Then we will introduce the GtkTreeModelSort.

7.1 Using the GtkTreeSortable Interface

Using the GtkTreeSortable interface for a simple application is pretty straightforward. Basically, you �rst
need to decide on which columns the user should be able to sort. For each such column, you have to tell the
model how to sort based on that particular column,. Then you have to tell the view that these columns can
be used for sorting. The view takes care of making each such column header clickable and connecting the
�clicked� signal to the comparison function that you write and attach to the model.

Let us call a column that is to be used for sorting, a sort-column. The procedure for enabling sorting with
this interface is as follows:

1. For each sort-column in the model, create a comparison function that, for a pair of values of the sort-
column's data type, returns -1, 0, or 11 depending on which is greater. This is called a GtkTreeIterCompareFunc
function.

2. Assign a sort column-id to each tree view column that will hold a model's sort-column, using gtk_tree_view_column_set_sort_column_id().

3. Using the gtk_tree_sortable_set_sort_func() in the tree sortable interface, add the comparison
function to the model's column.

4. Tell GTK+ what the initial sorting method will be.

These steps are now described in detail.

1. A GtkTreeIterCompareFunc function is a function with prototype

gint (*GtkTreeIterCompareFunc) (GtkTreeModel *model,

GtkTreeIter *a,

GtkTreeIter *b,

gpointer user_data);

It should return a negative integer, zero, or a positive integer. Speci�cally, within the column in which it is
run, if the cell pointed to by iterator a �sorts before� that of b, then it should return a negative number, say
-1. If the data pointed to by a and b sorts equally, then it returns 0, and if the data pointed to by a �sorts
after� b, then it should return a positive number, usually 1.

For example, if the data being compared are two numbers, such as the price in our catalog example, the
function could be

1Technically it can return any negative number, 0, or any positive number.

20

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

Listing 6: Example sort comparison function

g in t sort_by_price (GtkTreeModel ∗model ,
GtkTreeIter ∗a ,
GtkTreeIter ∗b ,
gpo in t e r userdata)

{
g f l o a t pr i ce1 , p r i c e 2 ;

gtk_tree_model_get (model , a , PRICE, &pr ice1 , −1);
gtk_tree_model_get (model , b , PRICE, &pr ice2 , −1);
return_value = pr i c e 1 − pr i c e 2) ;

}

It is required that the function de�nes a partial order so that the GtkTreeSortable behaves as expected. A
partial order is re�exive, antisymmetric and transitive. A relation R has these three properties if for any x,
xRx, and any x and y, if xRy and yRx then x = y, and for any x, y, and z, if xRy and yRz then xRz. An
example of an antisymmetric relation is the ≤relation.

If the data are strings, such as titles, and you want to compare them using the user's current locale settings,
you could use a function such as

g in t sor t_by_t i t l e (GtkTreeModel ∗model ,
GtkTreeIter ∗a ,
GtkTreeIter ∗b ,
gpo in t e r userdata)

{
gchar ∗ f i r s t , ∗ second ;
gtk_tree_model_get (model , a , ARTIST, &f i r s t , −1);
gtk_tree_model_get (model , b , ARTIST, &second , −1);

g in t return_value = g_utf8_col late (f i r s t , second) ;
g_free (f i r s t) ;
g_free (second) ;
r e turn return_value ;

}

2. Next, add to each column a logical sort_id to be used for sorting that column. If you want, you can
create a separate set of logical sort-ids for the columns, using an enumeration such as

typedef enum

{

SORT_BY_PRICE,

SORT_BY_ARTIST,

SORT_BY_TITLE,

SORT_BY_PERIOD,

NUM_SORT_IDS

} sort_id_type;

This might make the code more readable. Then, when adding the columns to the GtkTreeView widget, you
can assign the logical sort ids to each column as the column is created and appended to the view, using

void gtk_tree_view_column_set_sort_column_id (GtkTreeViewColumn *tree_column,

gint sort_column_id);

21

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

This is given the column and the logical sort id to be assigned to that column. Not only does this associate
the logical sort id to the column, but it makes that column clickable as well, so that the user can sort by
clicking in the column header. For example, to make the TITLE column sortable by id SORT_BY_TITLE, you
would write

gtk_tree_view_column_set_sort_column_id(column, SORT_BY_TITLE);

You can also just use the actual model column numbers, which will simplify the number of di�erent symbols
to keep track of. In this case, you would just issue the instruction

gtk_tree_view_column_set_sort_column_id(column, TITLE);

Using the latter approach, we would set up the TITLE column as follows:

renderer = gtk_cell_renderer_text_new ();

g_object_set (renderer,"xalign", 0.0, NULL);

column = gtk_tree_view_column_new_with_attributes

("Title", renderer, "text", TITLE, NULL);

gtk_tree_view_column_set_alignment(column, 0.0);

// Make the logical sort id for this column the one defined by TITLE id

gtk_tree_view_column_set_sort_column_id(column, TITLE);

gtk_tree_view_append_column (GTK_TREE_VIEW (*treeview), column);

3. For each column that you enable sorting on, you must then set the sorting function in the corresponding
column in the model to be the one you want called when that column's header is clicked. The function that
associates the GtkTreeIterCompareFunc function to the model column is

void gtk_tree_sortable_set_sort_func (GtkTreeSortable *sortable,

gint sort_column_id,

GtkTreeIterCompareFunc sort_func,

gpointer user_data,

GDestroyNotify destroy);

This is given the model, cast to a GtkTreeSortable, the logical sort id of the column to be sorted, the name
of the function, user data, or NULL, and an optional function to be called to destroy memory allocated to the
user data passed to the function, or NULL.

To illustrate, suppose that store is the name of our GtkTreeStore model. If we want the sort_by_price()
function to be called when the PRICE column is clicked, and the sort_by_title() function to be called when
the TITLE column is clicked, we would cast store to a GtkTreeSortable and call the function as follows.
We assume that the model column value is the same as the logical sort id that the treeview column uses for
sorting:

sortable = GTK_TREE_SORTABLE(*store);

gtk_tree_sortable_set_sort_func(sortable, PRICE, sort_iter_compare_func,

NULL, NULL);

gtk_tree_sortable_set_sort_func(sortable, TITLE, sort_iter_compare_func,

NULL, NULL);

assuming that we do not need to pass any user data to the functions.

22

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

4. Having set up the columns, we need to pick a column by which to sort the data initially. The
GtkTreeSortable function

void gtk_tree_sortable_set_sort_column_id (GtkTreeSortable *sortable,

gint sort_column_id,

GtkSortType order);

sets the current sort column to be sort_column_id. The sortable will sort itself automatically when this
call is made. The order argument can be one of GTK_SORT_ASCENDING or GTK_SORT_DESCENDING. Also, if
you do not want the rows to be sorted at all, then instead of a sort column id, pass
GTK_TREE_SORTABLE_UNSORTED_SORT_COLUMN_ID as the second argument.

If you pass GTK_TREE_SORTABLE_DEFAULT_SORT_COLUMN_ID and you have set a default sort function with
gtk_tree_sortable_set_default_sort_func(), that function will be used instead.

To make the TITLE column the initial sort criterion, we would call

gtk_tree_sortable_set_sort_column_id(sortable, TITLE, GTK_SORT_ASCENDING);

These are the basics, and all you need to do to set up a fairly simple application. The GtkTreeSortable

interface takes care of the details, emitting the required signals when headers are clicked, making indica-
tors visible and invisible when the sorting column changes, reversing their directions and toggling the sort
direction, and sorting everything for you as required. It is a pretty powerful interface.

7.2 Using the GtkTreeModelSort Interface

The problem with the preceding method of sorting is that the data itself gets rearranged each time that the
column headers are clicked. This may be �ne in most cases, but it will not work when multiple views need
to share a model. The GtkTreeModelSort model implements GtkTreeSortable but does not hold any data.
It acts like a proxy.

It may help to think of the model as a set of pointers to the rows of the underlying model. If you have ever
written an indirect sort of an array, in which you do not sort the array, but instead sort an array of pointers
or indices into the original array, then your understanding of the GtkTreeModelSort will be made clearer if
you think of it as that array of pointers. of course it is far more complex than this, but it is the basic idea.

Indirect sorting of an array works as follows. Suppose A is an array of 6 unequal strings:

pear apple kiwi mango banana lemon
0 1 2 3 4 5

Let P be an array of 6 non-negative integers, such that initially, P[i] == i for all i:

0 1 2 3 4 5
0 1 2 3 4 5

In an indirect sort, the array P is permuted so that, for all k, 0 ≤ k < 5, A[P[k]] < A[P[k+1]]:

1 4 2 5 3 0
0 1 2 3 4 5

The data in the array A is unsorted, but using the array P, it can be presented in sorted order. This is a
useful sort when the data should not be rearranged, or when doing so is a very costly operation because of
its size.

GtkTreeModelSort uses this principle. The actual model containing the data to be sorted is embedded in
the GtkTreeModelSort, which we will now call the sort model. The embedded model is called the child

23

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

model. The sort model maintains a set of iterators that point to its own rows, called the parent, or sort
iterators. The child model has its own iterators, which we call the child iterators.

To use this method, the sort model is added to the tree view, not the child model. The child model is
added to the sort model. When the treeview column is clicked, the treeview uses the corresponding column
of the sort model to re-sort the data. The sort model's rows are �sorted�, not the child model's rows. The
GtkTreeModelSort contains methods to convert between child and parent iterators and child and parent
paths.

To summarize, given that you have already made the model sortable by using the functions in the Gtk-
TreeSortable interface, to interpose the GtkTreeModelSort model between the view and the actual data
store, you need to make the following changes:

Setting Up the Models

Instead of adding the store that contains the actual data to the treeview, you add it to the sort model and
add the sort model to the treeview. The function

GtkTreeModel * gtk_tree_model_sort_new_with_model(GtkTreeModel *child_model);

is given the child model, i.e., the store to be added to the sort model, and adds it to a newly created sort
model, returning a pointer to that new model. A sample code sequence could be:

// Create the GtkTreeView, passing in application state data

setup_tree_view (treeview, appState);

if (create_store_from_file(store, fileName) == -1) {

g_print("Could not create tree store from input file\n");

exit(1);

}

sort_model = gtk_tree_model_sort_new_with_model(GTK_TREE_MODEL (store));

gtk_tree_view_set_model (GTK_TREE_VIEW (treeview),GTK_TREE_MODEL (sort_model));

assuming the the functions setup_treeview() and create_store_from_file() do what their names sug-
gest.

Modifying Accesses to Data

In every part of the code where the store's data would be accessed, the code must be modi�ed so that the
child model is �rst obtained from the sort model, and the sort model iterators are converted to child iterators.

Examples

To remove the row that is currently selected.

sort_model = gtk_tree_view_get_model (GTK_TREE_VIEW(appState−>treev i ew)) ;

/∗ Get the under ly ing ch i l d model out o f the s o r t model ∗/
child_model = gtk_tree_model_sort_get_model (GTK_TREE_MODEL_SORT (sort_model)) ;

t r e e_s e l e c t i o n = gtk_tree_view_get_select ion (GTK_TREE_VIEW (treev i ew)) ;

i f (g tk_tree_se lec t ion_get_se l ec ted (t r e e_se l e c t i on , &sort_model , &so r t_ i t e r)) {

24

CSci493.70 Graphical User Interface Programming
The GTK+ Tree View

Prof. Stewart Weiss

/∗ In order to remove any r e a l data , we have to get the i t e r a t o r to
the row in the under ly ing ch i l d model . The nect func t i on does t h i s .

∗/
gtk_tree_model_sort_convert_iter_to_child_iter (

GTK_TREE_MODEL_SORT (sort_model) ,
&ch i ld_ i t e r , &so r t_ i t e r) ;

gtk_tree_store_remove (GTK_TREE_STORE (child_model) , &ch i l d_ i t e r) ;
}

To insert a new row of data at the end of the list of children of the �rst row of the store, given the data
already exists:

sort_model = gtk_tree_view_get_model (GTK_TREE_VIEW(treev i ew)) ;
child_model = gtk_tree_model_sort_get_model (GTK_TREE_MODEL_SORT (sort_model)) ;

gtk_tree_model_get_iter_from_string (child_model , &i t e r , "0") ;
gtk_tree_store_append (GTK_TREE_STORE (child_model) , &new_row_iter , &i t e r) ;

gtk_tree_store_set (GTK_TREE_STORE (child_model) , &new_row_iter ,
PRICE, pr i ce ,
ARTIST, a r t i s t ,
TITLE, t i t l e ,
−1);

To illustrate how to modify the sort comparison functions to access the data in the child model, we modify
the one from Listing 6:

g in t sort_by_price (GtkTreeModel ∗ sort_model ,
GtkTreeIter ∗a ,
GtkTreeIter ∗b ,
gpo in t e r userdata)

{
g f l o a t pr i ce1 , p r i c e 2 ;
GtkTreeModel ∗ child_model ;
GtkTreeIter chi ld_a ;
GtkTreeIter child_b ;

/∗ Get the under ly ing ch i l d model out o f the s o r t model ∗/
child_model = gtk_tree_model_sort_get_model (

GTK_TREE_MODEL_SORT (sort_model)) ;

gtk_tree_model_sort_convert_iter_to_child_iter (
GTK_TREE_MODEL_SORT (sort_model) ,
&child_a , a) ;

gtk_tree_model_sort_convert_iter_to_child_iter (
GTK_TREE_MODEL_SORT (sort_model) ,
&child_b , b) ;

gtk_tree_model_get (child_model , &child_a , PRICE, &pr ice1 , −1);
gtk_tree_model_get (child_model , &child_b , PRICE, &pr ice2 , −1);
return_value = pr i c e 1 − pr i c e 2) ;

}

25

	Overview
	A Bit of Terminology
	Creating a Tree View
	Creating the Tree Model
	Adding Data to the Tree Model
	Adding to a List Store
	Adding Data to a Tree Store

	Creating and Configuring the Tree View Component
	Creating the Tree View
	Creating and Adding Columns

	Specific Cell Renderers
	GtkCellRendererToggle
	GtkCellRendererSpinner
	GtkCellRendererPixbuf

	Referencing Rows
	Navigating the Tree
	Using Iterators and Paths

	GtkTreeView Signals
	Handling Selections
	Sorting Rows
	Using the GtkTreeSortable Interface
	Using the GtkTreeModelSort Interface

