
C SCI 493.73 The X Window System Stewart Weiss
Windows Programming. All rights reserved

The X Window System

The X Window System is a networking and display protocol which provides windowing on
bitmapped displays. X provides the basic framework for building GUI environments, such as
drawing and moving windows on the screen and interacting with a mouse and/or a keyboard.
The X project was started at MIT in 1984. The current release protocol, X11, was first released
in 1987.

X is based on a client-server model of computing. An X server program runs on a computer with
a graphical display and communicates with various client programs. The server accepts requests
for graphical output (windows) and sends back user input (keyboard, mouse).

In X, the server runs on the user's computer, while the clients may run on a different machine.
This is the reverse of the common configuration of client-server systems, where the client runs
on the user's computer and the server runs on a remote computer. This reversal often confuses
new X users. The X Window terminology takes the perspective of the program, rather than the
end-user or the hardware: the remote programs connect to the X server display running on the
local machine, and thus act as clients; the local X display accepts incoming traffic, and thus acts
as a server.

Why X?
X was designed to be portable but fast: it had to run on many operating systems and many
different hardware configurations and yet have good performance.

X was designed to work across networks. In other words, it was designed so that the client
application could run on one machine and the server on another machine in the same network. It
was designed to work across networks regardless of the underlying network protocols. This was
achieved by writing a low level protocol that X itself would use.

X does not require a particular style of user interface (unlike Microsoft Windows and Apple's
OS, which both had user interface guidelines for developers.) It can work with any style of GUI.
X was essentially “policy free”, very much like the way UNIX itself was designed.

X is widely used on UNIX systems and there are ports to Windows, Apple OS, and other major
vendors' systems.

The Xlib Library

Programs that are written to interact with the X Windows System use the Xlib library, which is
simply the collection of primitives and data types that act as an interface to X. Xlib was
originally written as a C library, but there are ports of it for other languages as well.

 1

C SCI 493.73 The X Window System Stewart Weiss
Windows Programming. All rights reserved

Client

Application

X Server Xlib

Events in X Windows
Events are packets sent by the server to the client to communicate that something the client may
be interested in has happened. A client can request the server to send an event to another client;
this is used for communication between clients. For example, when a client requests the text that
is currently selected in a text box, an event is sent to the client that is currently handling the
window that holds the selection.

Another example is the Expose event. The content of a window may be destroyed in certain
circumstances, such as when a window is covered by another window. When the obscured
portion of the window is made visible, such as by making the window the foreground window,
the X server generates an Expose event to notify the client that part of the window has to be
redrawn.

Other examples of events are those that notify clients of keyboard or mouse input, of window
resizing or moving, and so on.

Some kinds of events are always sent to client, but most kinds of event are sent only if the client
previously indicated to the server that it wanted to know about them. For example, a client
program may choose to ignore keyboard events and use only mouse clicks, such as a clock
display, or it may do the reverse; it may ignore the mouse and handle only keyboard events.

Well then, what is an event?
An event is a packet of information that is generated by the server when certain actions occur.
The packet is queued by the server for the client to access when it is ready. Even though the
events are placed in a queue, they are not necessarily processed in FIFO order; the client may
choose to process events that arrived later than others. Usually, though, they are read and
processed in the order in which they occurred.

Some specific events are:

• Mouse (or other pointer) button pressed or released. (ButtonPress, ButtonRelease)
• Window mapped or unmapped. (MapNotify, UnmapNotify)

• Mouse crossing a window boundary. (EnterNotify, LeaveNotify)

These event types are usually used for user input and to control a user interface.

 2

C SCI 493.73 The X Window System Stewart Weiss
Windows Programming. All rights reserved

Another group of events reports s
mentioned above.

A third group of events allows va
window manager. For example:

• A client may request that al
the pointer position; this is
from one window to anoth
client whether or not it can e

• Changing the mapping be
MappingNotify event to be

• A PropertyNotify event is

• SelectionClear, SelectionN
back and forth between a cl
information) and a client th
Some of these events are sen

GIMP and GTK+
GIMP originally stood for General
and Petter Mattis, initially started G
of California in Berkeley. Both w
student club at Berkeley. In 1997,
the name was changed to the GNU
of the GNU Project. A version 2 w

GIMP is a freely distributed pie
composition and image authoring
GIMP's user interface is built using

1 The information in this section was ext

Illustration 1: The GNOME

ide effects of window operations such as the Expose event

rious clients to communicate with each other and with the

l keyboard input be sent to a particular window regardless of
 called a keyboard focus window. Changing keyboard focus
er causes FocusIn and FocusOut events, indicating to the
xpect further keyboard events.
tween keyboard keys and codes they generate causes a
 sent to all clients.
generated when a client changes a property on a window.

otify, and SelectionRequest events are used to communicate
ient that is allowing a user to select a section of text (or other
at is allowing the user to place the information in its window.
t with XSendEvent.

 Image Manipulation Program. Its creators, Spencer Kimball
IMP as a semester-long project for a class at the University

ere integral members of experimental Computing Facility, a
after both Kimball and Mattis had graduated from Berkeley,
Image Manipulation Program when it became an official part
as released in 2005. 1

ce of software for such tasks as photo retouching, image
. It works on many operating systems, in many languages.
 GTK+, the GIMP ToolKit. The GTK+ library was initially a

racted from an article in Wikipedia.

3

C SCI 493.73 The X Window System Stewart Weiss
Windows Programming. All rights reserved

part of the GIMP source tree. It subsequently took on a life of its own. It is now in stable version
2.12.

GLIB
GLib is a cross-platform, general-purpose, software utility library that provides many data types
and macros. It was developed as part of the GTK+ project, but is now used by other applications.
While it was originally a convenient library to collect low-level code in, it has since expanded
into offering wrapper functions for functionality that is typically different across platforms,
including Win32 and Mac OS X.

1. Glib contains, for example, definitions of various data structures such as singly- and
doubly-linked lists, regular expressions, timers, threads, memory allocation, and I/O
channels. It is, in short, a library with many useful types, macros, and functions. The
present version of GTK+ depends upon the GLib library.

GDK
GDK is an acronym for the GIMP Drawing Kit. It is a graphics library that provides primitives
for raster graphics (e.g., bitmaps), color rendering, line drawing, font and cursor handling,
window events, and drag-and-drop functionality. Originally, GDK was developed as an
interface to the X server to make it easier to program using the X server. The data types and
functions in the GDK are for the most part just wrappers for X data types and functions
respectively. For example, X has a data structure called a Pixmap and GDK has a corresponding
GdkPixmap.

GDK has now been ported so that it can communicate with the Win32 graphics API and Quartz,
the Mac OS X graphics API.

GTK+
GTK+ is a powerful, cross-platform library of tools for creating the visual building blocks of
applications. It uses the GDK library to allow your application to create windows, graphic
controls such as buttons and drop-down lists, color bitmaps, and more. It also takes advantage of
Glib's powerful primitives. Because GTK+ is built on GDK and GLib, it is platform-
independent. For simplicity, henceforth, I will use GTK as shorthand for GTK+.

GTK Building Blocks
In GTK, everything is viewed as an object., known as a GtkObject in the library. The single
most important GtkObject is the GtkWidget. The word “widget” comes from the word
“gadget”; in computer science, the word has come to mean something that responds to mouse
clicks, key presses, or other types of user actions. In short, widgets are things like windows,
buttons, menus, and edit-boxes.

Widgets
Although GTK is written in C and provides an interface in C, it is object-oriented. It uses clever
techniques to provide all of the important features of object-oriented programming, including

 4

C SCI 493.73 The X Window System Stewart Weiss
Windows Programming. All rights reserved

private data, encapsulation, and virtual function calls. The top of the object hierarchy is the
GtkObject. The GtkWidget derives from GtkObject and inherits all of its
properties and methods. The GtkWindow is a widget that derives from GtkWidget and the
GtkDialog is a kind of window that derives from GtkWindow.

You may think that all widgets are either containers like windows and boxes of various kinds, or
controls like buttons and menus, but this is not the case. In fact, some widgets are neither, like a
GtkRange, which is a range of values. There are also objects that are not widgets, such as the
GtkCellRenderer class.

Widgets can be grouped together into composite widgets. This is how menus and menu bars are
constructed. A menu is a collection of widgets that act together. Menu bars are collections of
menus.

Widgets have properties, such as their state and visibility. Some properties are inherited from the
ancestral GtkWidget class because they are part of all widgets. Others are specific to particular
kinds of widgets. Windows, for example, have properties not shared by rulers or calendars.
Widgets also have methods, which are the functions that act upon them, and these too are
inherited from ancestor classes or are specific to the class itself.

Object Types and Classes
C does not have true classes or inheritance and yet GTK+ has created a class hierarchy. The
programming is extremely clever and complex. While I do not intend to cover it here, the fact of
it has consequences for how programs are written using GTK. GTK's runtime system registers
types dynamically as they are instantiated and used, and the library provides a set of macros that
enable the runtime type-checking to take place. The following code shows an example of the
kind of runtime type checking that is used.

#include <gtk/gtk.h>
int main (int argc, char *argv[])
{
 gtk_init (&argc, &argv);
 GtkWindow *window = GTK_WINDOW (gtk_window_new(GTK_WINDOW_TOPLEVEL));
 GtkButton *button = GTK_BUTTON (gtk_button_new());

 if(GTK_IS_WINDOW(window))
 g_message("TRUE: window is a window");
 if(GTK_IS_CONTAINER(window))
 g_message("TRUE: window is a container");
 if(GTK_IS_CONTAINER(button))
 g_message("TRUE: button is a container");
 if(!GTK_IS_WINDOW(button))
 g_warning("FALSE: button is not derived from window");
 return 0;
}

 5

C SCI 493.73 The X Window System Stewart Weiss
Windows Programming. All rights reserved

Notice the casting macros and the type checking macros in the code above. This is typical of the
way GTK programs look. Notice that the GTK_IS_CONTAINER macro is applied to a
GtkButton* object. The actual type of the pointer is being tested dynamically at runtime, and
this is C, not C++. It takes some doing to make this happen.

Signals and Events
All GUIs depend upon the propagation of events from the hardware and/or operating system to
the application, so that it can handle those events. Events usually represent inputs from a user,
such as mouse clicks, mouse dragging, or key presses, but they can also represent changes of
focus caused by an application becoming active, or remapping of screen regions to different
applications. GTK distinguishes between events and signals. Events are derived from the
underlying GDK event system, which in turns comes from X Windows. Signals were added to
GTK because events were not robust and flexible enough. It is summarized well by Havoc
Pennington2:

"Events are a stream of messages received from the X server. They drive the Gtk main loop;
which more or less amounts to "wait for events, process them" (not exactly, it is really more
general than that and can wait on many different input streams at once). Events are a Gdk/Xlib
concept."

"Signals are a feature of GtkObject and its subclasses. They have nothing to do with any input
stream; really a signal is just a way to keep a list of callbacks around and invoke them ("emit" the
signal). There are lots of details and extra features of course. Signals are emitted by object
instances, and are entirely unrelated to the Gtk main loop. Conventionally, signals are emitted
"when something changes" about the object emitting the signal."

"Signals and events only come together because GtkWidget happens to emit signals when it gets
events. This is purely a convenience, so you can connect callbacks to be invoked when a
particular widget receives a particular event. There is nothing about this that makes signals and
events inherently related concepts, any more than emitting a signal when you click a button
makes button clicking and signals related concepts."

2 Havoc Pennington, “GTK+/Gnome Application Development, New Riders Publishing, ISBN 0-7357-0078-8

 6

	The X Window System
	Why X?
	The Xlib Library
	Events in X Windows
	Well then, what is an event?
	GIMP and GTK+
	GLIB
	GDK

	GTK+
	GTK Building Blocks
	Widgets
	Object Types and Classes
	Signals and Events

