
CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
Lesson 3

Container Widgets and Packing
As mentioned in Chapter 2, there are two kinds of containers, those that can hold no more than one
child widget, and those that can hold more than one. Containers that can contain a single widget are
called decorator containers, because their principal purpose is to add functionality and decorative
effects to the child. Containers that can hold several children are called layout containers, because
they are used for laying out the child widgets within their (GDK) windows.

The GtkContainer base class supports four signals: add, check_resize, remove, and
set_focus_child. You should consult the GTK+ documentation or the textbook for details.

GtkBin is the abstract base class of all decorator containers. Its derived classes include GtkWindow,
GtkAlignment, GtkFrame, GtkButton, GtkItem, GtkComboBox, GtkEventBox,
GtkExpander, GtkHandleBox, GtkToolItem, GtkScrolledWindow, and the
GtkViewport . The last two of these will be covered in a later chapter on scrolling. The decorator
containers that we will examine are the GtkExpander and the GtkEventBox; the rest can be
looked up in the GTK+ documentation.

The GtkBin class does not, in itself, provide much functionality. It has one method:

GtkWidget* gtk_bin_get_child (GtkBin* bin);

which, given the GtkBin, returns a pointer to its only child. If you want to retrieve the text of a label
inside a window, and all you have is a pointer to the window widget, you can use this to get the label
widget and then get its text.

Layout Containers
There are several choices for organizing your visual elements in a window; some of the most useful
classes are:

GtkHBox Horizontal box with multiple children
GtkVBox Vertical box with multiple children
GtkTable Grid with rows and columns for multiple children
GtkFixed Fixed positioning container for multiple children
GtkLayout Versatile scrollable container for multiple children
GtkAlignment Container to control relative position of single child widget

We will start with horizontal and vertical boxes.

Packing Boxes

Boxes are invisible containers into which widgets can be packed. There are two basic boxes: a
horizontal box GtkHBox, and a vertical box GtkVBox. I will refer to them as an hbox and vbox
respectively. When widgets are packed into a horizontal box, the objects are inserted horizontally from
left to right or right to left depending on the call used. In a vertical box, widgets are packed from top to

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
Lesson 3

bottom or vice versa. You may use any combination of boxes inside or beside other boxes to create a
layout.

Box Creation

To create a new hbox or vbox, use the appropriate gtk_*_new() function, which has two parameters.

GtkWidget* gtk_hbox_new(gboolean homogeneous, guint spacing);

If homogeneous is true, then all widgets in the box are given equal space in the dimension of the box
(e.g., horizontal space in an hbox, vertical in a vbox.) GTK uses the size of the largest widget as a
starting value. If, for example, an hbox has six buttons inside, and one needs to be 100 pixels long
because it contains a label that long, then no matter how small the other buttons' labels might be, they
will each be given 100 pixels if homogeneous is true, provided that the size negotiation can grant that
much space to each, as per the discussion in Lesson 2 entitled Size Requisition and Allocation.
Whatever the allocation is, though, each child receives the same amount.

The value of the spacing parameter is the amount of space to place between widgets within the box,
also in the corresponding dimension. The hbox will make its size request to its parent based on the total
space it needs to do this. For example, if there are six buttons in an hbox, and each button needs to be
100 pixels wide, and spacing = 20, then the hbox will ask for 6∗1005∗20=700 pixels.

Box Packing

The two functions related to packing boxes are gtk_box_pack_start() and
gtk_box_pack_end(). The gtk_box_pack_start() function will pack from the top and
work its way down in a vbox, and pack from left to right in an hbox. gtk_box_pack_end() will do
the opposite, packing from bottom to top in a vbox, and right to left in an hbox.

The prototype for gtk_box_pack_start() is

void gtk_box_pack_start (GtkBox *box,
 GtkWidget *child,
 gboolean expand,
 gboolean fill,
 guint padding);

The parameters and their interactions are fairly complicated and depend upon how the box was created.
I will start with the case in which the box is not homogeneous.

Case 1: Non-homogeneous Box

If the expand parameter is false, then any extra space in the box is placed at the growing end of the box;
i.e., at the right end of an hbox unless gtk_box_pack_end() is used, or at the top or bottom of a
vbox depending on which packing function is used. For example, an hbox that is 600 pixels long with
six children whose total length is 480 pixels has an extra 120 pixels inside.

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
Lesson 3

If expand is true and the box has more space than is necessary to display all of the child widgets, then
the extra space is divided equally among those child widgets that have set this parameter to true. This
does not mean that each of these children will be equal size; it means that each of them will be given an
equal amount of extra space in addition to whatever part of their size request was granted. For example,
if the box is 600 pixels long and it has six children, and the total length of its children is 480, then the
extra 120 pixels is divided equally among the children and each gets an extra 20 pixels.

Furthermore, if expand is true, the fill parameter determines whether the extra space given to that child
is within the child widget or outside the child widget, providing space on either side of it. If fill is true,
the extra space is within the widget; if false, it is outside the widget. If expand is false, the fill
parameter is ignored.

The padding parameter is the number of extra pixels to place between the child widget and its
neighbors in the box, over and above any space that might be between them because of the spacing
parameter or the expansion of the widgets caused by setting expand to be true. If a child is at an end o f
the box, then this many pixels are placed on the outside of the child as well. Note that each widget gets
padding pixels on each side, so that double the number of pixels ends up between adjacent children that
have requested padding. For example, if the hbox of size 600 has six children totaling 480 pixels in
length, and each asked for 5 pixels of padding, then 10 pixels will be between pairs and 5 will be at
each end.

Case 2: Homogeneous Box

If a box is homogeneous, then the value of the expand parameter is ignored. In this case, every child is
given an equal amount of space in the box. If fill is false, then the space is outside of the child widget,
and if it is true, it is within the widget. The padding specified by the padding parameter is added to the
space allocated to each widget, using the same rule as described in the preceding section; padding
pixels are added to the left and right of each widget, expanding the box as needed, if the request can be
granted.

Tables

Tables provide a grid within which you can place widgets. The nice thing about tables is that widgets
can span multiple rows and/or columns, and they can be of uniform or non-uniform row height or
column width. Tables are a suitable container when you want to organize child widgets on a grid or
any regular two-dimensional pattern.

To create a new table, use

GtkWidget* gtk_table_new (guint rows,
 guint columns,
 gboolean homogeneous);

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
Lesson 3

The first two parameters are pretty obvious -- they specify the number of rows and columns in the
table. The third parameter determines whether or not homogeneous spacing is used. It also has
implications about how children are resized when the containing widget is resized. If homogeneous is
true, then all rows are of equal height and all columns are of equal width, and the heights and widths
are determined by the tallest and widest widgets within the table. If homogeneous is false, then rows
may be of unequal heights and columns of unequal widths, and the height of a row is determined by the
tallest widget in the row, and the width of a column, by the widest widget within the column.

Although there are several methods in the GtkTable class, I will describe just two of them here.
These are the most important, and knowing just these two, you can pretty much do 90% of the common
programming tasks associated with tables. The methods I am omitting are also relatively easy to
understand, unlike what you are about to see.

To insert a child widget into a table, you can use either gtk_table_attach(), or
gtk_table_attach_defaults(). The former requires that you specify all of the positioning
and resizing parameters, whereas the latter supplies default values for you.

void gtk_table_attach(GtkTable *table,
GtkWidget *child,
guint left_attach,
guint right_attach,
guint top_attach,
guint bottom_attach,
GtkAttachOptions xoptions,
GtkAttachOptions yoptions,
guint xpadding,
guint ypadding);

The first parameter is the table into which to insert the widget, and the second is the widget to insert.
To understand the next four parameters, you need to know the table's coordinate system. A table has a
coordinate system in which the upper-left corner is at (0,0) and the lower-right corner is at (rows,
columns), where these are the current number of rows and columns respectively (yes, the table can
change dynamically.)

(0,0)

(4,4)

(0,4)

(4,0)

(1,2)

CSci 493.73 Windows Programming Lecture Notes Prof. Stewart Weiss
Lesson 3

With this in mind, the next four parameters are the left column coordinate, the right column coordinate,
the top row coordinate and the bottom row coordinate of the widget. If they are (1, 3, 2, 4), then the
widget will appear in the shaded are in the above illustration.

The next two parameters specify the attachment options in the x-direction and y-direction respectively,
and they are bitwise-OR of three boolean flags:

GTK_EXPAND If this flag is set, and the table's homogeneous flag is false, then the widget is
allowed to grow if the table grows in the given axis. If it is not set, the widget will
remain the same size.

GTK_SHRINK If this flag is set, and the table's homogeneous flag is false, then the widget is
allowed to shrink if the table is reduced in size in the given axis. If it is not set, the
widget will remain the same size.

GTK_FILL This flag determined whether any extra space given to the child widget will be
within the widget or not. If it is false, the extra space is outside the widget but
within the allocated grid cells. If true, it is within the widget.

You will not see the effect of the attachment parameters if the table is homogeneous. The last two
parameters specify the padding between the widgets in the x and y directions respectively, in pixels.

If you are willing to accept the default values for the last six parameters, you can use the following
function. It sets the attachment parameters to (GTK_EXPAND | GTK_FILL) in both directions and sets
the padding to 0.

void gtk_table_attach_defaults (GtkTable *table,
 GtkWidget *widget,
 guint left_attach,
 guint right_attach,
 guint top_attach,
 guint bottom_attach);

	Container Widgets and Packing
	Layout Containers
	Packing Boxes
	Box Creation
	Box Packing
	Case 1: Non-homogeneous Box
	Case 2: Homogeneous Box

	Tables

