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1 Number Systems 
Almost all modern computers are digital computers, which means that they can recognize only 
two1 distinct electronic states of electrical charge. For simplicity, these states are identified as 0 
and 1, or equivalently, false and true, or off and on. Since 0 and 1 are the most compact means 
of representing two states, data is represented as sequences of 0's and 1's. Sequences of 0's and 
1's are binary numerals, or in common jargon, binary numbers. 

To understand binary numbers, or for that matter, any other number systems, you should first 
revisit the one you have been used to your whole life, namely, the decimal number system. If you 
truly understand decimal numbers, then the rest is a piece of cake. 
 

1.1 The Decimal Number System  

Throughout the world, the main system of mathematical notation today is the decimal number 
system, which is also called the base-10 system. The term "base" refers to the number of distinct 
symbols that can be found in the numerals. The word "decimal" comes from the Latin word for 
"ten". In the decimal system, there are ten symbols, called digits, which are universally written 0, 
1, 2, 3, 4, 5, 6, 7, 8, and 9. Numerals are sequences of one or more digits. Numerals represent 
quantities, called numbers.  

You probably learned when you were young that the numeral "5" denotes a quantity consisting 
of five things, and that the numeral "9" represents the concept of nine things. I am sure your 
primary school teachers drilled these things into your brain until you could no longer separate the 
idea of nine things from a picture of the digit 9. This was useful then, but it is a hindrance to you 
now. If you speak more than one language, you are one step ahead, because you know that the 
quantity 9 is verbally representable in language in many ways. 

At some point you learned how to find the values of larger numerals, such as 7,154 or 83,762.  
The two digit number "10" means "ten" things. We use the word "value" to mean the actual 
quantity that a numeral represents. The value of "9" is nine things, and the value of "23" is 
twenty-three things. The concept of placeholders is used to evaluate numerals.  

Pick an arbitrary five-digit number such as 83,762. You know that the value of this number is  

(8 × 10,000) + (3 × 1,000) +  (7 × 100) +  (6 × 10) + (2 × 1) 

In other words, in the base-10 number system, the digits occupy specific positions in the number. 
Most people were also taught that the zero, "0", is an indispensable part of this system because 
without it the system could not represent all possible numbers. This is a false statement though; 
we do not need that zero. However, it is very convenient because it makes this place-value 
system easier. The fact that the zero exists makes it easy to represent the quantity six hundred 
four as the numeral 604: 

 (6 × 100) +  (0 × 10) + (4 × 1) 
                                                           
1 This is not entirely accurate. The term "digital" does not imply that there are only two distinguishable states. It 
implies that there is a finite number of such states, but since almost all modern computers are based on two-state 
logic, the term "digital" has come to take on this meaning in usage. 
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because we can use the "0" to "hold" the tens place so that the "6" stays put in the hundreds 
place. 

At some point you learned about powers, or exponents, such as the "3" in 103, which you learned 
is the number of times by which 10 is multiplied by itself, i.e., 103 = 10 × 10 × 10. You also were 
taught that 1 is really 100, and 10 is 101, and 100 is 102, and so on. Thus, 83,762 could also be 
written as 

(8 × 104) + (3 × 103) +  (7 × 102) +  (6 × 101) + (2 × 100) 

These exponents make the representation shorter, and they also make the concepts more concise. 
Each position in a decimal numeral can now be thought of as representing the amount by which 
to multiply a specific power of ten to form the amount contributed by that placeholder in the 
numeral's value.  

To generalize this idea, think of a five-digit numeral more abstractly by writing it as d4d3d2d1d0, 
in which d4 stands for the leftmost digit (e.g., 8 in this case), d3 is the one after that (e.g., 3 in this 
case), d2 is the one after that (e.g., 7 in this case), and so on. Notice that there are five digits, but 
that their subscripts start at 0 and stop at 4: d0  is the ones' place, d1 is the tens' place, d2,  the 
hundreds' place, d3, thousands', and finally d4 ten-thousands' . Since 1 = 100 and 10 = 101 and so 
on,  the value of the numeral d4d3d2d1d0 is 

(d4× 104) + (d3× 103) +  (d2 × 102) +  (d1 × 101) + (d0 × 100)  

In other words, the subscript matches the power of ten by which the digit is multiplied. The usual 
way to visualize this is by thinking of the positions in a number with N digits is as follows: 

10N-1  ... 104  103 102 101 100  

dN-1 ... d4 d3 d2 d1 d0

1.2 The Binary Number System  

We carry these same ideas into the a number system with just two digits. Everything works in 
exactly the same way. Suppose we only have two digits, 0 and 1. The digits 0 and 1 have the 
same value as in base 10, namely 0 represents zero things and 1, one thing. How can we write all 
possible numbers with just two digits? We can use the same principle as we used with base 10, 
except we will replace base 10 by base 2. In other words, a binary numeral is a sequence of 
binary digits, called bits. Each bit position is multiplied by a power of 2. Because these are 
called bits and not digits, I will use the letters b1, b2, and so on to stand for bits. The binary 
numeral 101, for example, represents the quantity that we write as 5 in decimal, because 101 
stands for  

 (1 × 22)  +  (0 × 21)  +   (1 × 20) =  22   + 0  +  20 = 4 + 0 + 1 = 5 

More generally, to evaluate a binary numeral, you need to write out the powers of two the same 
was we wrote powers of ten before. The N-bit binary numeral bN-1 ... b4b3b2b1b0 should be 
visualized by the following table: 
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2N-1  ... 24  23 22 21 20  

bN-1 ... b4 b3 b2 b1 b0

If you do not know powers of two by heart (why should you?), it is easier to write out the table 
with an extra row in which the powers are expanded. For example, to find the value of the binary 
numeral 110101, make the table: 

25 24 23  22 21  20

32 16  8 4 2 1 

1 1 0 1 0 1 

and then calculate its value:  

 (1 × 25) + (1 × 24) +  (0 × 23) +  (1 × 22) + (0 × 21) + (1 × 20) 

= 32 + 16 + 0 ++ 4 + 0 + 1 

= 53 

In general, you would write out the table with as many columns as the length of the number: 

 
... 1024 512 256 128 64 32 16  8 4 2 1 

... 210 29 28 27 26 25 24 23  22 21  20

... b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 

 

 

Since most people can double a number fairly easily, it is easier to determine the value 
represented by a sequence of bits if you start from the right hand side of the numeral and work 
towards the left, doubling as you go. Thus, 1000100101 is: 

 

512 256 128 64 32 16 8  4 2  1 

1 0 0 0 1 0 0 1 0 1 

so that 

1000100101 = (1 × 1) + (1 × 4) +  (1 × 32) + (1 × 512) = 1 + 4 + 32  + 512 = 549. 

The first few binary numbers are listed in the table below with their corresponding values in base 
10.

 3 



CSci 132 Practical UNIX and Programming Fall 2006  Prof. Stewart Weiss 
Lecture Notes: Binary Number System 
 

Binary Decimal 
0 0 

1 1 

10 2 

11 3 

100 4 

101 5 

110 6 

111 7 

1000 8 

1001 9 

1010 10 

1011 11 

1100 12 

1101 13 

1110 14 

1111 15 

10000 16 

 

1.2.1 Binary Arithmetic 

Notice in the table how the successive number is obtained from the one before it. Adding 1 in 
binary is just like adding 1 in decimal; the same methods are used, except that carrying and 
borrowing are in base 2. 

Examples 
       11      111      1001 

    +   1  =>    1      +  1 

        0      100      1010 

 
 10011     111 
 + 101    +111 
 11000    1110 
 

It is not a coincidence that 111 + 111 = 1110, i.e., the same numeral but with a zero on the right. 
After all, 111 + 111 is the same as doubling 111, which is the same as 2 × 111, and since 2 is 
written as 10 in binary, this is the same as  

 
   111       
 ×  10     
   000   
  111     
      1110 

So you see that multiplying by 2 in binary is as easy as multiplying by ten in decimal -- just put 0 
on the right side of the numeral! If you know this fact and you know how to add, you can do 
multiplication in binary. You can do more complicated examples as long as you remember your 
binary arithmetic tables, namely 
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× 0 1 
0 0 0 
1 0 1 

+ 0 1 
0 0 1 
1 1 10 

 

1.2.2 Decimal To Binary Conversion 

Converting decimal numbers to binary is a little harder.  There are two methods.  

1.2.2.1 Remainder Method 

In this method you use the kind of division you learned about in elementary school before you 
knew about the existence of fractions. It actually has a name. It is called integer division. When 
you divide the dividend by the divisor you get a quotient and a remainder.  

For example, 11 divided by 4 is 2 remainder 3, and 17 divided by 3 is 5 remainder 2. In integer 
division, dividing by 2 has only two possible results: no remainder (a remainder of 0) or a 
remainder of 1: 9/2 = 4 remainder 1 and 8/2 = 4 remainder 0. 

Most importantly: 
 1/2 = 0 remainder 1  
 0/2 = 0 remainder 0. 
 

Let x be the decimal number you wish to write in binary. Use integer division in the following 
algorithm.  

1. Divide x by 2. 
2. Write the remainder to the immediate left of the previous remainder. If this is the first 

remainder, right it down leaving room to its left for more bits.  
3. If the quotient is not 0, make the quotient the new value of x and go back to step 1, 

otherwise go to step 4. 
4. The binary numeral is the sequence of remainders in left-to-right order.   

 
Example 
Let x = 1000.  

x Arithmetic Quotient of x div 2 Remainders
1000 1000/2 = 500 r 0 500 0
500 500/2 = 250 r 0 250 00
250 250/2 = 125 r 0 125 000
125 125/2 = 62 r 1 62 1000
62 62/2 = 31 r 0 31 01000
31 31/2 = 15 r 1 15 101000
15 15/2 = 7 r 1 7 1101000
7 7/2 = 3 r 1 3 11101000
3 3/2  = 1 r 1 1 111101000
1 1/2 = 0 r 1 0 1111101000
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The method stops when the quotient is 0, and the answer is 1111101000. You can verify that this 
is correct by using the binary-to-decimal conversion table and adding up the powers of two. 

1.2.2.2 Subtraction Method 
The procedure is as follows. 
Let x be the decimal numeral you want to write in binary. 
 Repeat the following until x equals 0: 

1. Find the largest power of 2 that is less than or equal to x. Suppose it is 2n.  Let y =   x - 2n. 
Write 2n on the side. 

2. If y is not 0, set x = y and repeat step 1. Otherwise go to step 3 
3. Write the powers of 2 set aside in descending order. If an exponent is missing, fill its 

place with 0. Replace the powers by 1's. 
 

It helps to know the powers of 2. Here are the first 17 of them: 
 
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
2n 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
 
Example 
To convert 1000 to binary,   
Find the largest power of 2 less than or equal to 1000:  
 1000 - 512 = 488.  Using the table, 512 = 29. 

Find the largest power of 2 less than or equal to 488: 
 488 - 256 = 232.  Using the table, 256 = 28. 

Find the largest power of 2 less than or equal to 232: 
 232 - 128 = 104.  Using the table, 128 = 27. 

Find the largest power of 2 less than or equal to 104: 
 104 - 64 = 40.   Using the table, 64 = 26. 

Find the largest power of 2 less than or equal to 40: 
 40 - 32 = 8.   Using the table, 32 = 25. 

Find the largest power of 2 less than or equal to 8: 
 8 - 8 = 0.   Using the table, 8 = 23. 

Since the remainder is 0,  1000 we stop. 
Write the powers, filling in with 0's. 29    28    27   26  25   0   23  0   0   0.  Replace the powers by 
1's:  1 1 1 1 1 0 1 0 0 0. The binary is this 1111101000: 
 

29 28 27 26 25 24 23  22 21  20

1 1 1 1 1 0 1 0 0 0 
Exercises. 

1. Find the binary representations of  
a. 1023 
b. 81 
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c. 224 
2. Find the decimal representations of these 8-bit binary numbers. 

a. 11111111 
b. 11110000 
c. 11001100 
d. 10101010 

3. Without converting these numbers to decimals, find their products 
a. 101  ×  110 
b. 111  ×  111 

1.2.3 Negative Numbers  

You may be wondering how to represent negative binary numbers. There are two different 
methods, but the most common one is called two's complement, and it depends how many bits 
are used to represent numbers. In most computers, 32 bits are used to represent whole numbers. 
Sticking with the 32-bit representation, the number 1 looks like this: 

   0000 0000 0000 0000 0000 0000 0000 0001 

the number 32,769 looks like this: 

   0000 0000 0000 0000 1000 0000 0000 0001 

and the number 2,147,483,647 looks like 

   0111 1111 1111 1111 1111 1111 1111 1111   

There is a reason that I put spaces between every four bits. It makes them easier to read, and it 
will come into play when I introduce hexadecimal numbers, below. The last number above is the 
largest whole number that can fit in 32 bits. If the leftmost bit had a 1 in it, the number would be 
negative. So,  

   1111 1111 1111 1111 1111 1111 1111 1111   

is surprisingly the number -1.  If a binary number has a 1 in the 32nd bit, to find its value, 
subtract 1 from it and then turn every 1 into a 0 and every 0 into a 1: 

subtract 1:  1111 1111 1111 1111 1111 1111 1111 1110   

switch 1's and 0's: 0000 0000 0000 0000 0000 0000 0000 0001 

The number is the negative of the binary number you get from this.  So the last row is 1, and the 
number with all 1 bits is -1.  

To find what the binary numeral for -2 would be, reverse the process:  start with positive 2, 
switch 1's and 0's, then add 1: 

positive 2:  0000 0000 0000 0000 0000 0000 0000 0010 

switch 1's and 0's: 1111 1111 1111 1111 1111 1111 1111 1101 

add 1:   1111 1111 1111 1111 1111 1111 1111 1110 

This is -2 in binary. 

So what is the value of 1000 0000 0000 0000 0000 0000 0000 0000? 
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Start with 

   1000 0000 0000 0000 0000 0000 0000 0000 

Subtract 1 and you get 

   0111 1111 1111 1111 1111 1111 1111 1111   

Then switch bits: 1000 0000 0000 0000 0000 0000 0000 0000 

You get back the same numeral you started with! This tells you that the binary number that has a 
1 in the leftmost position followed by all zeros, is -231, which is -2,147,483,648. 

Food for Thought. How do you think fractions can be represented in this system? 

1.3 Hexadecimal Number System 

It is difficult to read binary numerals. They are long, compared to their equivalent decimal 
numerals. (In fact, the binary representation is a little over three times as long as the decimal 
equivalent, on average.) For this reason, binary numerals are often transformed to either octal or 
hexadecimal numerals.  

The word "hexadecimal" took on life in the early 1950's within the halls of IBM.2 The word 
means "16". It was originally sexadecimal, since that is closer to pure Latin, but for evident 
reasons, they replaced the "sex" with the Greek "hex". 

The hexadecimal number system is base 16. Since it uses 16 digits but there are only 10 digits in 
the decimal system, the first six letters of the alphabet are used as the next six digits. Thus, the 
digits of the hexadecimal system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F, in which A is 
ten, B is eleven, C is twelve, D, thirteen, E, fourteen, and F, fifteen.  

The hexadecimal number system solves two problems. 

• Each hexadecimal digit uses exactly four bits, making the conversion from binary to 
hexadecimal easy, and 

• Hexadecimal numbers are very compact and easy to read. 

The reason that hexadecimal digits use four bits is that 16 = 24.  The four-bit codes for the 
hexadecimal digits are in the table below. 

                                                           
2 According to Wikipedia. 
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Notice that these codes are just the 4-bit binary numerals that 
represent the numbers from 0 to 15.  

Why is this helpful?  Take any binary number to illustrate. 
Suppose it is a long, hard-to-read number, such as 
01101100011111111000110011110010 

Break it up into 4-bit groups: 
0110 1100 0111 1111 1000 1100 1111 0010 

Now use the table to the left and replace each 4-bit group by 
the corresponding hexadecimal number: 
   6    C    7    F    8    C    F    2 

Put these together and you have 
 6C7F8CF2 

This is the hexadecimal representation of the 32-bit binary 
number above. Usually, hexadecimal numbers are preceded by  
"0x" to let people know what they are: 

 0x6C7F8CF2 

is the right way to write the above number. 

It is very easy to reverse this process, i.e., to go from 
hexadecimal to binary. For example, to convert the 

hexadecimal number 0x7FF011A4 to binary, use the table to replace each hexadecimal digit by 
the 4-bit code for it: 

Hexadecimal Binary Code 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

A 1010 

B 1011 

C 1100 

D 1101 

E 1110 

F 1111 

 0x 7FF011A4  =  0111 1111 1111 0000 0001 0001 1010 0100 

It is also possible to convert decimal numbers to hexadecimal numbers but the method is 
different than it was for converting from base 10 to base 2. Again it is helpful to have a table of 
the powers of 16 (or a calculator). 

 
n 0 1 2 3 4 5 6 7 8 
16n 1 16 256 4,096 65,536 1,048,576 16,777,216 268,435,456 4,294,967,296

 

Example 
To convert 100,000 to binary,   
Find the largest power of 16 less than or equal to 100,000. Divide 100,000 by this number and 
save the quotient and the remainder:  
 100,000 ÷ 65,536 = 1 r 34,464. Put a 1 in position 4 and continue. 

Find the largest power of 16 less than or equal to 34,464 and divide 34,464 by this number: 
 34,464 ÷ 4096 = 8 r 1696.  Put an 8 in position 3 and continue. 

Find the largest power of 16 less than or equal to 1666 and divide 1666 by this number:: 
 1696 ÷  256 =  6 r 160.  Put a 6 in position 2 and continue. 
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Find the largest power of 16 less than or equal to 130 and divide again: 
 160 ÷  16  = 10 r 0.  10 is A in base 16, so put an A in position 1. Since the 

remainder is 0, all positions to the right are filled with 0's. 
In this case it is just position 0. 

Thus,  100,000  in hexadecimal is 186A0. 

1.4 Octal Number System 

The word "octal" comes from the Latin root of "eight". The octal number system is an 8-digit 
number system. Because it has 8 digits, octal numerals are shorter than their binary equivalents 
(but longer than their decimal and hexadecimal equivalents.) It is easy to convert binary to octal. 
The principle is the same as it is in converting to hexadecimal, except that we decompose the 
binary number into groups of 3 bits each, since 8 = 23. If the binary numeral does not have a 
multiple of 3 bits, the leftmost group may be 1 or 2 bits long. 

The codes for the octal numbers are below: 

Example 
Convert the following to octal: 
01101100011111111000110011110010 

Break it up into 3-bit groups: 
01 101 100 011 111 111 000 110 011 110 010 

Now use the table to the left and replace each 3-bit group by the 
corresponding octal number: 
 1   5   4   3   7   7   0   6   3   6   2 

Put these together and you have 
 15437706362 

Octal Binary Code 

0 000 

1 001 

2 010 

3 011 

4 100 

5 101 

6 110 

7 111 

  

Exercises. 
4. Convert the following binaries to octal: 

a. 1001011111011100110010 
b. 100010111001011001 

5. Figure out how to convert octal to binary on your own and write these octal numerals in 
binary: 
a. 37001 
b. 177523 
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