
Software Lecture Notes Prof. Stewart Weiss
Binary Search

Binary Search

Binary search is a method of searching a sorted array. Assume that the array is named list and
that it has N elements. The elements are list[0], list[1], list[2], ..., list[N-1].
The array is being searched to see if it contains a particular value. That value is called the search
key. For example, if the array contains names of animals, and we are searching for the word
"gorilla", then "gorilla" is the search key.

The idea is to compute the middle position, middle = N/2, and compare list[middle] to the
search key. If it is bigger, then the key must be in the lower half, so we repeat this procedure in
the lower half. For example, if list[middle] contains "leopard", then if "gorilla" is in the
list at all, it must be somewhere between list[0] and list[middle-1]. So we repeat the
same algorithm on the array that starts at 0 and ends at middle-1.

Summarizing, if list is the array being searched, N is the size of the array, and key is the item
being sought, binary search is of the form

start of search region = 0;
end of search region = N-1;
while key is not found in list and the search region is not empty
 middle = (start of search region + end of search region)/2
 if key is smaller than list[middle]
 search the lower half
 else if key is larger than list[middle]
 search the upper half
 else
 key is found at position middle

This can be refined as follows:

int first = 0;
int last = N-1;
bool found = false;

while (!found and (last - first >= 0)) {
 int middle = (first + last)/2;
 if (key < list[middle])
 last = middle - 1;
 else if key > list[middle]
 first = middle + 1;
 else
 found = true;
}
if (found)
 return middle;
else
 return -1;

1

Software Lecture Notes Prof. Stewart Weiss
Binary Search

This can be packaged into a function and tidied up a bit to make it a little more efficient, but the
idea is still the same. We can eliminate the Boolean variable found since it is redundant. We
can return from within the loop if we find our key.

int bsearch(const element list[], int size, const element & key)
// precondition: size == # elements in list AND list is sorted
// postcondition: returns index of key in list, -1 if key not found
{
 int low = 0; // leftmost possible entry
 int high = size-1; // rightmost possible entry
 int mid; // middle of current range
 while (low <= high) {
 mid = (low + high)/2;
 if (key < list[mid]) // key in lower half
 high = mid - 1;
 else if (key > list[mid]) // key in upper half
 low = mid + 1;
 else // key == list[mid]
 return mid;

 }
 return -1; // not in list
}

We can analyze the performance of this algorithm. Suppose list has N elements and N is a
power of 2, i.e., N = 2k. Each time that the while loop is executed, the size of the list being
searched is cut in half. Either high is reduced to mid-1 or low is increased to mid+1.
Therefore the size of the sub-array being searched goes roughly from 2k to 2k-1 to 2k-2, and so on,
until it becomes size 4, then 2, then 1, and then 0 in the worst possible situation. (Actually, it is
slightly less than this each time, because we are removing the middle element each time.) So in
the worst case, it loops log2 N times. In other words, the total number of comparisons in which
the key is compared to an element of the list is at most 2 * log2 N (twice in each loop iteration).
This is MUCH smaller than the time used by linear search.

Example

If we search for "kapok" in

 0
1

2 3 4 5 6 7

We first compare "kapok" to "dogwood" because 3 = (0 + 7)/2. Since "kapok" is larger, we set
first = 4 and compare "kapok" to "imbuya" because (4+7)/2 = 11/2 = 5. Since it is still larger, we
set first = 6 and we compare "kapok" to "kapok" because (6+7)/2 = 13/2 = 6, and that is where
we find the key.

2

ash birch cherry dogwood ebony imbuya kapok maple

	Binary Search

