
Software Design Lecture Notes

Creating and Using Software Libraries

Prof. Stewart Weiss

Creating and Using Software Libraries

1 Introduction

These notes summarize how to create and use static and shared libraries in a UNIX environment. They are
designed to be tutorial and elementary. For a more advanced explanation about creating and using library
�les, I strongly recommend that you read David Wheeler's Program Library HOWTO.

These notes begin by explaining a bit about software libraries in general, then proceed to describe the
di�erences between static and shared libraries. After this conceptual material, they describe the how-to's
about creating and using both types of libraries using the tools available in a GNU-based UNIX system such
as Linux. The discussion here is limited to executables and libraries in the Executable and Link Format

(ELF), which is the format used by Linux and most UNIX systems at the time of this writing. If you do not
know what this means or why it might be important, that is �ne; you may safely ignore this.

If you think you do not need the conceptual discussions, you can just �cut to the chase� and jump directly
to the appropriate section below, either �5 and �6 for static libraries or �7 and �8 for shared libraries.

2 About Libraries

A software library, also called a program library, is a �le containing compiled code and possibly data that
can be used by other programs. Libraries are not stand-alone executables � you can not �run� a library.
They contain things like functions, type de�nitions, and useful constants that other programs can use. You
have been using software libraries since your very �rst �Hello World� program, whether you knew it or not.
Whatever function that you used to print those words on the screen was contained in a library, most likely
either the C standard I/O library (if you used printf, for instance), or the C++ iostreams library (if you
used the insertion operator of the cout ostream object.)

Perhaps you might have reached the point where you realize that you are writing useful code, code that you
might want to use in more than one project, and that while you could continue to copy those functions into
each new project, perhaps you would like to reuse that code in a more e�cient way by creating a library �le
that contains it. If so, read on.

3 Static Versus Shared Libraries in UNIX

In UNIX, there are two kinds of library �les, static and shared. The term �static library� is short for
�statically linked library.� A static library is a library that can be linked to the program statically, after
the program is compiled, as part of the program executable �le. In other words, it is incorporated into the
program executable �le as part of the build of that executable. A shared library is a library that is linked
dynamically, either at loadtime or at runtime, depending on the particular system. Loadtime is when the
program is loaded into memory in order for it to execute. Runtime is the interval of time during which it
is actually running. If linking is delayed until runtime, then a symbol such as a function in the library is
linked to the program only when the program calls that function or otherwise references that symbol. The
fact that a shared library is a dynamically linked library is not to be confused with the use of that term by
Microsoft in what they call a DLL. While �DLL� is short for �dynamically linked library�, DLLs are di�erent
from UNIX shared libraries. In these notes, I use the term in the more general sense of a library that is
linked to a program either at loadtime or at runtime.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

http://tldp.org/HOWTO/Program-Library-HOWTO/index.html
http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

Creating and Using Software Libraries

Prof. Stewart Weiss

Static linking, which was the original form of linking, resolves references to externally-de�ned symbols such
as functions, by copying the library code directly into the executable �le when the executable (�le) is built.
The linkage editor, also called the link editor, or just the linker, performs static linking. The term �linker�
is a bit ambiguous, so I will avoid using it. The primary advantage of static linking, perhaps now the
only advantage, is that the executable is self-contained and can run on multiple platforms. For example,
a program might use a graphical toolkit such as GTK that may not be present on all systems. With the
toolkit's libraries statically linked into the executable, the executable can run on other systems (with the
same machine architecture) without requiring the users on those systems to install those library �les. Once
upon a time, static linking resulted in faster code as well, but the gain is negligible today.

Dynamic linking can be done either when the program is loaded into memory, or while it is running and
references an unresolved symbol. In the former case, the start-up time of the program is slightly longer
than if it had been statically linked, since the libraries have to be located in memory (and possibly loaded
into memory if they were not already there) and then linked to the program before it can actually begin
execution. In the latter case, the program will experience slightly longer running time, because whenever
an unresolved symbol is found and must be resolved, there is a bit of overhead in locating the library and
linking to it. This latter approach is the more common approach because it only links symbols that are
actually used. For example, if a function from a shared library is not called during execution, it will not be
linked to the library at all, saving time.

There are several advantages of linking dynamically over linking statically. One is that, because the exe-
cutable program �le does not contain the code of the libraries that must be linked to it, the executable �le is
smaller. This means that it loads into memory faster and that it uses less space on disk. Another advantage
is that it makes possible the sharing of memory resources. Instead of multiple copies of a library being
physically incorporated into multiple programs, a single memory-resident copy of the library can be linked
to each program, provided that it is a shared library. Shared libraries are dynamically-linked libraries that
are designed so that they are not modi�ed when a process uses them. This is why they have the extension,
".so" � short for shared object.

Another advantage of linking to shared libraries is that this makes it possible to update the libraries without
recompiling the programs which use them, provided the interfaces to the libraries do not change. If bugs are
discovered and �xed in these libraries, all that is necessary is to obtain the modi�ed libraries. If they were
statically linked, then all programs that use them would have to be recompiled.

Still other advantages are related to security issues. Hackers often try to attack applications through knowl-
edge of speci�c addresses in the executable code. Methods of deterring such types of attacks involve ran-
domizing the locations of various relocatable segments in the code. With statically linked executables, only
the stack and heap address can be randomized: all instructions have a �xed address in all invocations.
With dynamically linked executables, the kernel has the ability to load the libraries at arbitrary addresses,
independent of each other. This makes such attacks much harder.

4 Identifying Libraries

Static libraries can be recognized by their ending: they end in ".a". Shared libraries have a ".so" extension,
possibly with a version number following, such as librt.so.1. Both types of libraries start with the pre�x
"lib" and then have a unique name that identi�es that library. So, for example, the standard C++ static
library is libstdc++.a, and the shared real-time library is librt.so.1. The "rt" in the name is short for
real-time.

5 Creating a Static Library

The steps to create a static library are fairly simple. Suppose that you have one or more source code �les
containing useful functions or perhaps de�nitions of useful types. For the sake of precision, suppose that
timestuff.c and errors.c are two such �les.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

Creating and Using Software Libraries

Prof. Stewart Weiss

1. Create a header �le that contains the prototypes of the functions de�ned in timestuff.c and errors.c.
Suppose that �le is called utils.h.

2. Compile the C source �les into object �les using the command

gcc -c timestuff.c gcc -c errors.c

This will create the two �les, timestuff.o and errors.o.

3. Run the GNU archiver, ar, to create a new archive and insert the two object �les into it:

ar rcs libutils.a timestuff.o errors.o

The �rcs� following the command name consists of a one-letter operation code followed by two modi�ers.
The "r" is the operation code that tells ar to insert the object �les into the archive. The �c� and �s�

are modi�ers; c means �create the archive if it did not exist� and s means �create an index,� like a
table of contents, in the archive �le. The name of the archive is given after the options but before the
list of �les to insert in the archive. In this case, our library will be named libutils.a.

This same command can be used to add new object �les to the library, so if you later decide to add
the �le datestuff.o to your library, you would use the command

ar rcs libutils.a datestuff.o

4. Install the library into some appropriate directory, and put the header �le into an appropriate directory
as well. I use the principle of "most-closely enclosing ancestral directory" for installing my custom
libraries. For example, a library that will be used only for programs that I write for my UNIX System
Programming class will be in a directory under the directory containing all of those programs, such as:

~/unix_demos/lib/libutils.a

and its header will be

~/unix_demos/include/utils.h

If I have a library, say libgoodstuff.a, that is generally useful to me for any programming task, I
will put it in my ~/lib directory:

~/lib/libgoodstuff.a

with its header in my ~/include directory:

~/include/goodstuff.h

5. Make sure that your LIBRARY_PATH environment variable contains paths to all of the directories in
which you might put your static library �les. Your .bashrc �le should have lines of the form1:

LIBRARY_PATH="$LIBRARY_PATH:~/lib:"

export LIBRARY_PATH

so that gcc will know "where to look" for your custom static libraries. If you want your libraries to be
searched before the standard ones, then reverse the order:

LIBRARY_PATH="~/lib:$LIBRARY_PATH"

export LIBRARY_PATH

1This is not the best way to do this. I use a shell function called pathmunge() for modifying paths. You can �nd examples
of pathmunge in web searches.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

Creating and Using Software Libraries

Prof. Stewart Weiss

6. Make sure that your CPATH or C_INCLUDE_PATH (or if using C++, your CPLUS_INCLUDE_PATH) contains
the path to the directory in which you put the header �le. My .bashrc �le has the lines

CPATH="~/include"

export CPATH

Note. Do not put your static libraries into the same directories as your shared libraries. Keep them separate.
There is a good reason for this, which will become clear later.

6 Using (Linking to) a Static Library

To use the library in a program, (1) you have to tell the compiler to include its interface, i.e., its header
�le, and (2) you have to tell the linkage editor to link to the library itself. The �rst task is accomplished by
putting an include directive in the program. The second task is achieved by using the -l option to gcc to
specify the name of the library. Remember that the name is everything between "lib" and the ".". The -l

option must follow the list of �les that refer to that library. For example, to link to the libutils.a library
you would do two things:

1. In the program you would include the header �le for the library:

#include "utils.h"

2. To build the executable, you would issue the command

gcc -o myprogram myprogram.c -lutils

or the following if you did not modify your CPATH:

gcc -o myprogram myprogram.c -lutils -I~/unix_demos/include

but in either case, only if you are certain that there is not a shared library with the same name in
a directory that will be searched ahead of the one in which libutils.a is located, or in the same
directory as libutils.a. This is because gcc, by default, will always choose to link to a shared library
of the same name rather than a static library of that name. This is one reason why you should not
put static libraries in the same directory as shared libraries.

If you get the error message

/usr/bin/ld: cannot find -lutils

collect2: ld returned 1 exit status

it means that you did not set up the LIBRARY_PATH properly. (Did you export it? Did you type it
correctly?)

If you want to be safe, you can use the -Ldir option to the compiler. This option adds dir to the list
of directories that will be searched when looking for libraries speci�ed with the -l option, as in

gcc -o myprogram myprogram.c -L~/unix_demos/lib -lutils

Directories speci�ed with -L will be searched before those contained in the LIBRARY_PATH environment
variable.

If you do a web search on this topic, you may see instructions for building your program of the form

gcc -static myprogram.c -o myprogram -lutils

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 4

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

Creating and Using Software Libraries

Prof. Stewart Weiss

This will probably fail with the error message

/usr/bin/ld: cannot find -lc

collect2: ld returned 1 exit status

because the -static option tells gcc to statically link myprogram.c to all libraries, not just libutils.a.
Since the C standard library no longer ships as a static library with most operating systems, the link editor,
ld, will not �nd libc.a anywhere. Do not try to use the -static option. Follow my instructions instead.

7 Creating a Shared Library

The ar command does not build shared libraries. You need to use gcc for that purpose. Before diving into
the details though, you need to understand a few things about shared libraries in UNIX to make sense out
of the options to be passed to gcc to create the library.

Shared Library Names

Every shared library has a special name called its �soname�. The soname is constructed from the pre�x
�lib�, followed by the name of the library, then the string ".so", and �nally, a period and a version number
that is incremented whenever the interface changes. So, for example, the soname of the math library, m,
might be libm.so.1.

Every shared library also has a �real name�, which is the name of the actual �le in which the library resides.
The real name is longer than the soname; it must be formed by appending to the soname a period, and a
minor number, and optionally, another period and a release number. The minor number and release number
are used for con�guration control.

Lastly, the library has a name that is used by the compiler, which is the soname without the version number.

Example 1

The utils library will have three names:

libutils.so.1 � This will be its soname.

libutils.so.1.0.1 � This will be the name of the �le. I will use a minor number of 0 and a release number
1

libutils.so � This is the name the compiler will use, which we will called the linker name.

Example 2

If you look in the /lib directory, you will see that links are created in a speci�c way; for each shared library
there are often at least three entries, such as

lrwxrwxrwx 1 root root 11 Aug 12 18:52 libacl.so -> libacl.so.1

lrwxrwxrwx 1 root root 15 Aug 12 18:51 libacl.so.1 -> libacl.so.1.1.0

-rwxr-xr-x 1 root root 31380 Aug 3 18:42 libacl.so.1.1.0

Notice that the compiler's name (without the version number) is a soft link to the soname, which is a soft
link to the actual library �le. When we set up our libutils library, we need to do the same thing. Every
library will have three �les in the directory where it is placed: the soname will be a soft link to the actual
library �le, and a soft link to the soname �le named with the linker name.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 5

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

Creating and Using Software Libraries

Prof. Stewart Weiss

Steps to Create the Library

1. For each source code �le that you intend to put into a shared library, say stuff.c, compile it with
position independent code using the following command:

gcc -fPIC -g -Wall -c stuff.c

This will produce an object �le, stuff.o, with debugging information included (the -g option), with
all warnings enabled (the -Wall option), which is always a safe thing to do. The "-fPIC" option is
what generates the position independent code (hence PIC). Position independent code is code that can
be executed regardless of where it is placed in memory. This is not the same thing as relocatable code.
Relocatable code is code that can be placed anywhere into memory with help from a linkage editor or
loader. Instructions such as those that specify addresses relative to the program counter are position
independent.

2. Suppose that stuff.o and tools.o are two object �les generated in accordance with the �rst step.
To create a shared library containing just those �les with soname libgoodstuff.so.1, and real �le
name libgoodstuff.so.1.0.1, use the following command:

gcc -shared -Wl,-soname,libgoodstuff.so.1 -o libgoodstuff.so.1.0.1 stuff.o tools.o

This will create the �le libgoodstuff.so.1.0.1 with the soname libgoodstuff.so.1 stored inter-
nally. Note that there cannot be any white space before or after the commas. The -Wl

option tells gcc to pass the remaining comma-separated list to the link editor as options. You might
be advised by someone else to use "-fpic" instead of "-fPIC" because it generates faster code. Do
not do so. It is not guaranteed to work in all cases. -fPIC generates bigger code but it never fails to
work.

3. It is time to install the library in the appropriate place. Unless you have superuser privileges, you will
not be able to install your nifty library in a standard location such as /usr/local/lib. Instead, you
will most likely put it in your own lib directory, such as ~/lib. Just copy the �le into the directory.

4. After you copy the �le into the directory, you should run ldconfig on that directory, with a -n option,
e.g.

ldconfig -n ~/lib

ldconfig, with the -n option, creates the necessary links and cache to the most recent shared libraries
found in the given directory. In particular, it will create a symbolic link from a �le named with the
soname to the actual library �le. If there are multiple minor versions or releases, ldconfig will link
the soname �le to the highest-numbered minor version and release combination. The -n option tells
ldconfig not to make any changes to the standard set of library directories. After ldconfig runs in
our example, we would have the link

libgoodstuff.so.1 -> libgoodstuff.so.1.0.1

After running ldconfig, you should manually create a link from a �le with the linker name to the
highest-numbered soname link. In our example, we would type

ln -s libgoodstuff.so.1 libgoodstuff.so

to create the link

libgoodstuff.so -> libgoodstuff.so.1

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 6

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

Creating and Using Software Libraries

Prof. Stewart Weiss

5. If at some future time, you revise the goodstuff library, you would increment either the minor version
number or the release number, or perhaps even the major version number, if the interface to the library
changed. If you just change an algorithm internally or �xed a few bugs, you would not change the
major number, only the minor one or the release number. Suppose that you create a new release,
libgoodstuff.so.1.0.2, with soname libgoodstuff.1. You would copy the �le into the same direc-
tory as the older release and run ldconfig again. ldconfig would change the link from the soname
to the later release. A listing of that directory would then look like

libutils.so -> libutils.so.1

libutils.so.1 -> libutils.so.0.2

libutils.so.1.0.1

libutils.so.1.0.2

8 Using a Shared Library

What you need to understand about how to use shared libraries is that it is a two-step linking process. In the
�rst step, the linkage editor will create some static information in your executable �le that will be used later
by the dynamic linker at runtime. So both the linkage editor and a dynamic linker participate in creating a
working executable.

You link your program to a shared library in the same way that you link it to a static library, using the -l
option to gcc, to name the library to which you want your program linked, and using the -Ldir option to
tell it which directory it is in if it is not in a standard location. For example:

gcc -o myprogram myprogram.c -L~/lib -lgoodstuff

will create the executable myprogram, to be linked dynamically to the library ~/lib/libgoodstuff.so. We
can also write

gcc -o myprogram myprogram.c ~/lib/libgoodstuff.so

skipping the options -l and -L. The two methods are equivalent. If ~/lib is in the LIBRARY_PATH environ-
ment variable, then you can also write

gcc -o myprogram myprogram.c -lgoodstuff

and this will be equivalent as well. All of the above assume that the directory containing the header �le
is in your CPATH or is in a standard location. Otherwise remember to add the option -Iincludedir to this
command.

This is just the �rst step. Your executable will not run correctly unless the dynamic linker can �nd you shared
library �le. One way to tell whether it will run correctly is with the ldd command. The ldd command prints
shared dependencies in a �le. Translation: it displays a list of shared libraries upon which your program
depends. If ldd does not display the path to ~/lib/libgoodstuff.so, then myprogram will fail to �nd the
�le and will not run. If the dynamic linker will be able to �nd my library, the output of ldd would look
something like:

linux-gate.so.1 => (0x00a31000)

libgoodstuff.so.1 => ~/lib/libgoodstuff.so.1 (0x00caa000)

libc.so.6 => /lib/libc.so.6 (0x00110000)

/lib/ld-linux.so.2 (0x00bd5000)

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 7

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

Creating and Using Software Libraries

Prof. Stewart Weiss

If it will not be able to �nd it, I will see

linux-gate.so.1 => (0x00a31000)

libgoodstuff.so.1 => not found

libc.so.6 => /lib/libc.so.6 (0x00110000)

/lib/ld-linux.so.2 (0x00bd5000)

If you had the means to put your shared library �le in a standard directory, this problem would be solved
easily. Unfortunately, with just user privileges and not superuser privileges, you cannot do this. The easiest
solution to this problem is one that is not recommended for various reasons: you can modify the environment
variable LD_LIBRARY_PATH, which the dynamic linker uses at loadtime and runtime to locate shared libraries.
To be precise, the dynamic linker searches the directories in this variable before any in the standard locations.
Therefore, you can put the line

LD_LIBRARY_PATH="~/lib"

export LD_LIBRARY_PATH

in your .bashrc �le to have the dynamic linker search that directory at run time. The alternative is to
modify the variable every time you run the program, which is a nuisance I think, or to hard code the path
to the libraries into the executable using the -rpath option to the linkage editor (which is described in the
ld man page.)

There is one other option. You can de�ne the LD_RUN_PATH variable to contain the directory in which you
put your libraries, in your .bashrc file:

LD_RUN_PATH="~/lib"

export LD_RUN_PATH

If this variable is de�ned when you compile the executable, then the run path will be hard-coded into the
executable and the dynamic linker will �nd your libraries at run time.

9 Displaying the Contents of a Library

This section is a bit more advanced and can be skipped if all you want to do is create your own libraries.
It is also not very thorough. Its purpose is to give you some �leads� in case you want to understand more
about the structure of libraries and code in general. There are several utilities that can be used to examine
the contents of library �les, with varying degrees of information provided and ease of use.

The least amount of information is obtained with the GNU archiver, ar, which will display a list of
the names of the .o �les contained in a static library �le. Use the t operation code. For example,
if you list the .o �les in the GNU Standard C++ library, you would �rst �nd it, usually in a direc-
tory such as /usr/lib/gcc/<machine_architecture>/<version>. For example, on my system it is in
/usr/lib/gcc/i686-redhat-linux/4.4.5. Then the command

ar t libstdc++.a

will produce a very long list containing each of the object �les that has been incorporated into the library.
A partial list would include

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 8

http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes

Creating and Using Software Libraries

Prof. Stewart Weiss

atomic.o

codecvt.o

compatibility.o

complex_io.o

ctype.o

debug.o

hash.o

globals_io.o

hashtable.o

ios.o

...

This doesn't tell you very much, and ar does not work on shared libraries. You can use the nm -s command
to get information about shared and static libraries. For static libraries, you would type

nm -s <libraryname>

For shared libraries, you need the --dynamic option:

nm -s --dynamic <libraryname>

In either case, unless you know how to interpret the output, this will not be very useful. But if all you want
to do is see if a particular function name is actually in the library, you can grep for the name in the output.
If you do not �nd it, it is not in that library.

The readelf utility is a command designed to display information about ELF �les in general2. ELF stands
for �Executable and Linkable Format�. ELF is a standard format for executable �les, object �les, and
libraries. It replaces the older �a.out� and COFF formats. It was developed by UNIX System Laboratories
and has been adopted by almost all UNIX vendors. It will be even more di�cult to understand the output of
readelf unless you spend some time learning about the structure of ELF �les and the output of the readelf
command itself. But if all you want to do is check what functions or other symbols are in an executable,
you can type

readelf -s <elf-file>

and you will see a large amount of output that you can pass through a �lter. For example, if I run readelf

on a program, say myprogram, that was linked to my libutils.so shared library,

readelf -s myprogram

a portion of the output looks like this:

Symbol table '.dynsym' contains 17 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 00000000 0 NOTYPE LOCAL DEFAULT UND

1: 00000000 0 FUNC GLOBAL DEFAULT UND show_time

2: 00000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

The fact that show_time has a value of 0 means that it is not yet bound to an address. This is to be
expected, because the actual binding will not take place until runtime. To learn more, read the man page
for ELF and then for readelf. You can also download the speci�cation of ELF at various websites.

2On some systems such as Solaris, there is no readelf; use elfdump instead

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 9

http://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	About Libraries
	Static Versus Shared Libraries in UNIX
	Identifying Libraries
	Creating a Static Library
	Using (Linking to) a Static Library
	Creating a Shared Library
	Using a Shared Library
	Displaying the Contents of a Library

