
Software Design Lecture Notes

Introduction to Software Testing

Prof. Stewart Weiss

Introduction to Software Testing

1 Software Faults

Every day we hear of serious problems caused by software. They have caused space missions to fail1, aircraft
to fall out of the sky2, banks and commercial enterprises to expose millions of customers' personal data to
theft3, and much, much more. The causes of these problems can be put into two general categories:

• software that does exactly what an incorrect "speci�cation" says it should do, and

• software that fails to do exactly what its "speci�cation" states.

Before we go any further, we need to explain the concept of a software speci�cation . For the most part,
software is written to do some particular "thing", such as editing photos, sending messages, or guiding an
aircraft along a planned route. The "thing" it is supposed to do, however complex it might be, must be
clearly de�ned and unambiguous. For most "real" software, the problem is so complex that this clear and
unambiguous description of what it is supposed to do is written down and might be many hundreds of pages
long. This written description of what the software is supposed to do under all possible circumstances is
called the software requirements speci�cation , or the software spec, or simply the �spec", as software
professionals usually call it.

If you are a student learning programming, when you are given an assignment, that assignment's description
is a software spec, or is supposed to be. Some teachers may not write down every detail, either because they
forgot to, or because certain details do not matter to them, or because the details do matter but they want
the students to �ll in the missing logic and make the decisions. From this point forward we will assume that
the speci�cation is always a written document, and we elaborate on this twofold categorization of problems
caused by software.

As noted above, one category are those problems caused by software that does exactly what it is supposed
to do, but whose speci�cation is at fault. An example, is when the spec says it should output the sum of
values computed when it should have said to output the sum of the squares of those values.

The other category are those problems caused by software that does not do what its speci�cation requires
of it. For example the spec says to output the sum of squares of the values, but the software outputs the
sum of the absolute values of the values. This does not rule out the possibility that the speci�cation is
also incorrect; it is possible that even if the software did what its speci�cation required, a di�erent problem
might occur because the speci�cation is wrong anyway. For example, the spec might say to output the sum
of values when it should have said to output the sum of the squares of those values, but the software outputs
the sum of the absolute values of the values. Even if it did what the spec said, it would be wrong.

When software does not "meet" its spec, we say it has a fault , or a "bug". When that software is run and
the fault causes the program to behave incorrectly, we say the software failed . Yes, that sounds harsh, but
that is the word we use!

A programmer cannot solve problems of the �rst category - if a spec is wrong, the problem was injected into
the software development process before the programmer's job was started. (Sometimes the programmer
might read a spec that has such a blatant mistake that it is obvious, but in this case the programmer is
really wearing a di�erent hat - that of a spec proofreader.) A programmer must prevent the second kind of
problem from occurring, and one means of doing that is by testing.

1 See the Washington Post, October 1, 1999 for details.
2 See the article about the Airbus 440 failure in May 2009 at http://www.theguardian.com/technology/2015/may/20/airbus-

issues-alert-software-bug-fatal-plane-crash
3 See, for example, http://www.cbsnews.com/news/gsa-system-showed-ssns-for-183k-contractors.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 1

http://creativecommons.org/licenses/by-sa/4.0/ 


Software Design Lecture Notes

Introduction to Software Testing

Prof. Stewart Weiss

2 The Mindset of a Software Tester

A programmer's job is to write code that has no faults. But programmers are human and they make mistakes.
They write code that does have faults. Therefore, they need to put on a di�erent hat every once in a while
and take on the role of the person who will �nd their mistakes, the tester . The tester is the person who
tries to �nd all of the mistakes in the software before it is given to the users of that software.

The job of the tester is to �nd all of the mistakes. If the tester does not �nd mistakes he or she is
not doing his or her job. The tester has to assume that mistakes exist but that they are hiding. The hardest
mistakes to �nd are the ones that have been hidden so well that they are only exposed by the most clever
of software tests. These are the big payo� in the world of software testers, because these types of software
faults are the ones that might not be exposed in the beginning, but they may cause disaster later on, when
it is too late. The software tester is doing a better job the more bugs he or she �nds.

When you have to test your own code, it is hard to overcome a natural fear of �nding your own mistakes.
Many people do not test their code thoroughly because they have the wrong attitude - they fear �nding
mistakes and so devise tests that fail to �nd them. Your mission is to �nd your mistakes before anyone else
(like your instructor) does!

3 Software Testing Strategies

There has been quite a bit of research about how to test software, including a great deal of theorizing and a
great deal of experimentation. There are some pretty sophisticated concepts that underlie many strategies.
We will not discuss these concepts now, choosing instead to start with simple, easy to understand, and easy
to master strategies. They may not �nd all bugs, but they will get you thinking.

What is a test? The word �test� is mostly used as a shorthand for a �test case�. A test case has two parts:
the input to be given to the program, and the expected output of the program. This is a simpli�cation, as
the input includes a complete description of the state of the environment in which the program runs, and
the output includes a description of the expected environment after a correct program processes the input.
For now we stick to the easy-to-understand concept that a test case has a test input and a test output, and
we use the word test interchangeably with the term test case.

A very basic strategy for devising tests is to read the software speci�cation and build a set of tests based
almost entirely on the information in the spec. When a set of tests is based only on the spec, it is called
a black-box test set . This term makes reference to the fact that the program is being treated like a box
whose insides are invisible to the tester. The tester does not see the code. The code is a black box.

We say "almost" entirely because the design of the test set relies upon our understanding of human nature
and our experience. For example, a speci�cation might have a rule that states that when the value of some
variable, say X, is less than 100, the program should output a message A, and when it is not, then the
program should output the message B. It seems reasonable to conclude that any set of tests that �nds all
errors in a potential implementation of this spec should include a test input that outputs message A and
one that outputs message B, so two tests seems like enough. The �rst would force X to be less than 100
and the second would force X to be greater than 100. The astute reader might observe that my description
of the second input is incorrect: it should be a test input that forces X to be greater than or equal to 100,
because this is the complement of the condition that X is less than 100. In any case, our reasoning leads us
to conclude that two test inputs that force X to be 50 and 150 are enough.

But people often make the mistake of using the <= operator instead of the < operator when they code.
Suppose we are testing such a program, which has the expression X <= 100 instead of X < 100. For this
program, when X == 100, the condition X <= 100 is true and message A will be output instead of message
B. If the two test cases force X to be 50 and 150 respectively, they will not "expose" this potential error in
coding. We need a third test input that forces X to be exactly 100 to make sure that message B is output.
The fact that we need this third test stems from our experience with the kinds of mistakes people tend to
make.

This discussion about the role that understanding human nature plays in selecting test cases is very impor-
tant. It is telling you not to forget the way you and others think when you wear the software tester's hat.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 2

http://creativecommons.org/licenses/by-sa/4.0/ 


Software Design Lecture Notes

Introduction to Software Testing

Prof. Stewart Weiss

The idea used in the example above is so common that it has been given various names. It is one requirement
of a strategy called boundary-value testing , and is also called fencepost testing . We will discuss these
ideas formally at a later time.

The intent of the previous discussion is to get you thinking a bit about methodical ways to test software
and about how information in a program's written speci�cation can be used to devise a set of test cases. In
the next section, we will explore by way of example how to devise a set of black box tests that are �pretty
good� for certain kinds of programs.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 3

http://creativecommons.org/licenses/by-sa/4.0/ 

	1 Software Faults
	2 The Mindset of a Software Tester
	3 Software Testing Strategies 

