
Software Design Lecture Notes Prof. Stewart Weiss
Vectors and Arrays: A Summary

Vectors and Arrays

Arrays
 Available regardless of which platform you use
 Easy to understand
 Low-level and fast
 Easy to initialize

A homogeneous aggregation is a collection of variables in which all members of the collection
are the same type. C and C++ provide a homogeneous aggregation called an array.

Motivation: Arrays are used for manipulating collections of data.

An array is conceptually a linear collection of elements, indexed by subscripts:

0 1 2 3 4

Elements can be any type (called the base type). For example, they can be ints, strings, structs, or
classes, provided that the base type has a default (i.e. parameterless) constructor.

 0 1 2 3 4

Subscripts or indices are the "names" for the individual elements of the vector or array. If the
above array was declared as

string trees[5];

then trees[2] has the value "ebony" and trees[4] has the value "maple".

Defining an array
basetype arrayname[size expr];
basetype arrayname[size expr] = { list with <= sizeexpr vals };
basetype arrayname[] = { list with any number of values };

Examples
#define MAXWORDS 20000

const int SIZE = 100;
double numbers[SIZE];
string words[MAXWORDS];
string days[7] = {"Sun","Mon","Tues","Wed","Thurs","Fri","Sat"};
int powers[] = {0,1,2,4,9,16,25,36,49,64,81,100};
int counts[100] = {0};

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 1

45 89 77 95 60

birch oak ebony cherry maple

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes Prof. Stewart Weiss
Vectors and Arrays: A Summary

int counts[100] = {1}; // <-- does not work
 Arrays can also be initialized using loops.
 Cannot assign one array to another.
 Array parameters are always passed by reference -- they are called array parameters because

you do not need to put the reference operator & to the left of the name. It is enough to put
brackets next to the parameter name.

Example
int coins[] = {1,5,10,25,50};
void display (ostream & output , int list[], int size)
{
 for (int i = 0; i < size; i++) {
 output << list[i];
 output << (i < size-1?",":"\n");
 }
}

Implementation note: Array names are really pointers to the first cell of the array.

Vectors

Vectors are one of the container class templates defined in the Standard Template Library. There
are three ways to declare a vector.

Syntax
#include <vector> // must include this file
using namespace std; // might need this as well

vector<base type> arrayname; // contains 0 cells
vector<base type> arrayname(size expression);
vector<base type> arrayname(size expression, value);
 // contains size-expression cells, each initialized to value

The expression can be any expression that evaluates to a number. If the number is not an integer,
it is truncated.

Examples
vector<int> grades(5,0); // vector of 5 ints, all 0
vector<string> trees(50); // vector of 50 strings
vector<Point> hexagon(6); // vector of 6 Points
 // because Point had a default constructor)

or, more interestingly:

cout << "Enter the number of sides:";
cin >> n;
vector<Point> polygon(n);
vector<double> chordlengths(n*(n+1)/2);

But,

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 2

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes Prof. Stewart Weiss
Vectors and Arrays: A Summary

vector<MyClass> Object(2);

will be illegal if MyClass does not have a default constructor.

To access an individual element, use the vector name and an index:

grades[0] = 100;
cin >> grade[1];
cout << "The grade is " << grade[1];
for (int i = 0; i < 5; i++)
 cin >> grades[i];

To initialize a vector to 0:

for (int k = 0; k < 5; k++)
 grades[k] = 0;

To compute the average of the values:

sum = 0.0;
for (int k = 0; k < 5; k++)
 sum += grades[k];
average = sum/5;

Example

This simulates rolling a pair of dice with NSIDES many sides 20,000 times and counts how many
times each possible sum (2,3,4,5,..., 2*NSIDES) occurs.

#include <vector>

// use vector to simulate rolling of two dice
const int NSIDES = 4;
int main()
{
 int sum, k;
 Dice d(NSIDES); // Dice defined elsewhere
 vector<int> diceStats(2*NSIDES+1); // room for largest sum
 int rollCount = 20000;

 for (k = 2; k <= 2*NSIDES; k++) // initialize to zero
 diceStats[k] = 0;

 // could have done this at declaration time
 for(k=0; k < rollCount; k++) // simulate all the rolls
 { sum = d.Roll() + d.Roll();
 diceStats[sum]++;
 }

 cout << "roll\t\t# of occurrences" << endl;
 for(k=2; k <= 2*NSIDES; k++)
 cout << k << "\t\t" << diceStats[k] << endl;
 return 0;
}

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 3

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes Prof. Stewart Weiss
Vectors and Arrays: A Summary

vector parameters

Vectors can be passed as parameters to functions.

int Sum(const vector<int> & numbers, int length)
{
 sum = 0;

for (int k = 0; k < length; k++)
 sum += numbers[k];

 return sum;
}

void Shuffle(vector<string> & words, int count)
{
 RandGen gen; // for random # generator
 int randWord;
 string temp;
 int k;
 // choose a random word from [k..count-1] for song # k

 for (k=0; k < count - 1; k++)
 { randWord = gen.RandInt(k,count-1); // random track
 temp = words[randWord]; // swap entries
 words[randWord] = words[k];
 words[k] = temp;
 }
}

Collections and Lists Using vectors

A vector's size is not the same as its capacity. Suppose we have

vector<string> trees(8);

and we have filled it with 6 tree names as follows.

 0 1 2 3 4 5 6 7

The capacity is 8 but the size is 6. We don't have to keep track of this in our program if we use
the methods of the vector class.

The vector class has methods of growing itself and keeping track of how big it is.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 4

birch oak ebony cherry maple ash

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes Prof. Stewart Weiss
Vectors and Arrays: A Summary

vector::size() // returns current size
vector::push_back(value) // adds another value to a tvector
 // and if it does not have enough
 // cells it doubles capacity

vector<double> prices(1000); // prices.size() == 1000
vector<int> scores(20); // scores.size() == 20
vector<string> words; // words.size() == 0;

words.push_back("camel"); // size() == 1, capacity() = 2
words.push_back("horse"); // size() == 2, capacity() = 2
words.push_back("llama"); // size() == 3, capacity() = 4
words.push_back("okapi"); // size() == 4, capacity() = 4
words.push_back("bongo"); // size() == 5, capacity() = 8

size() always returns current size, not the number of elements added by push_back. If a
vector is initially size 0, and push_back is used exclusively to grow it, size() will return the
number of elements pushed onto it.

vector::reserve(size expression)
//allocates an initial capacity but keeps size at 0:

vector<int> votes;
votes.reserve(32000); size() == 0 but capacity == 32000
vector<int> ballots(32000) size() = 32000 and capacity == 32000
for (int i = 0; i < 100; i++){
 cin >> x;
 votes.push_back(x);
} // what is capacity now?

Vector Idioms: Insertion, Deletion, Searching

Typical operations in data processing are:

 insert into a vector (or array)
 delete data from a vector
 search a vector for data

Building an unsorted vector

for (int i = 0; i < 100; i++){
 cin >> x;
 v.push_back(x);
}

or, reading from a file:
 vector<double> v;

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 5

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes Prof. Stewart Weiss
Vectors and Arrays: A Summary

 ifstream fin;
 fin.open("inputdata.txt");
 double x;
 while (fin >> x) {
 v.push_back(x);
 }

The data are in the order read from the file now.

Deleting from a vector using pop_back()

The pop_back() member function of the vector class deletes the last element of a vector and
reduces the size by 1. It does not affect capacity. E.g., assume
vector <double> v(5) contains 8,4,2,10,3

v.pop_back(); => 8 4 2 10
v.pop_back(); => 8 4 2
v.pop_back(); => 8 4

If the vector is unsorted, deletion from position pos is easy. We overwrite the item in position
pos by copying the last element into v[pos], then we delete the last element with
pop_back():

 int lastIndex = v.size() – 1;
 v[pos] = v[lastIndex];
 v.pop_back();

Searching an unsorted vector (linear search)

To search an unsorted vector it is necessary to look through the entire vector. To look for the cell
with the value key:

int k;
for (k = 0; k < v.size(); k++){
 if (v[k] == key)
 break;
}
if (k < v.size())
 // not found

 Or, the function:
void LinSearch(const vector<double> & v, double key, int & loc)
{
 int k;
 for (k = 0; k < v.size(); k++){
 if (v[k] == key)
 loc = k;
 return;
 }
 loc = -1;
}

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 6

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes Prof. Stewart Weiss
Vectors and Arrays: A Summary

Sorted vectors
Vectors can be built in sorted order by inserting data in the right position during creation.
This makes later searching faster but makes creation a little slower.
Idea:
 while there is more data available
 read the next data item
 let k be the index of the largest element of
 the vector that is smaller than the item
 put this data item into position k+1, shifting
 all larger elements of the vector up one cell

This is one way to do it. The author does it slightly differently. To be more precise
declare

 vector<double> sortedNums;
 double s;
 while there is more data available
 let count = sortedNums.size(); //current size of vector
 cin >> s; //read the next data item s
 sortedNums.push_back(s) //push onto the end of vector
 // now it has count+1 items
 let k = count;
 while (0 < k && s <= sortedNums[k-1]) {
 sortedNums[k] = sortedNums[k-1];
 k--;
 }

Use the example data
 4.5 10 6.3 3.0 1.0

Suppose we have a sorted vector with some large number of items. To delete the item at index n,
0 <= n < size(), we can shift items n+1 to size()-1 down 1 and delete the last:

for (k = n; k < a.size()-1; k++)
 a[k] = a[k+1];
a.pop_back();

More generally, a function to delete an item from an int vector

void delete(vector<int> & a, int p)
{
 int k;
 if ((p < 0) || (a.size() <= p))
 return;

 for (k = p; k < a.size()-1; k++)
 a[k] = a[k+1];
 a.pop_back();
}

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 7

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Software Design Lecture Notes Prof. Stewart Weiss
Vectors and Arrays: A Summary

Searching a sorted vector

If a vector is sorted we can use more efficient method called binary search.

Binary Search
int bsearch(const vector<string>& list, const string& key)
// precondition: list.size() == # elements in list
// postcondition: returns index of key in list, -1 if key not found
{
 int low = 0; // leftmost possible entry
 int high = list.size()-1; // rightmost possible entry
 int mid; // middle of current range
 while (low <= high)
 {
 mid = (low + high)/2;
 if (list[mid] == key) // found key, exit search
 { return mid;
 }
 else if (list[mid] < key) // key in upper half
 { low = mid + 1;
 }
 else // key in lower half
 { high = mid - 1;
 }
 }
 return -1; // not in list
}

Example

Search for each of: "ash" "kapok" "elm" in

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by- sa /4.0/ . 8

ash birch cherry dogwood ebony imbuya kapok maple

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Vectors and Arrays
	Arrays
	Defining an array
	Examples
	Example

	Vectors
	Syntax
	Examples
	Example
	vector parameters

	Collections and Lists Using vectors
	Vector Idioms: Insertion, Deletion, Searching
	Building an unsorted vector
	Deleting from a vector using pop_back()
	Searching an unsorted vector (linear search)
	Sorted vectors
	Searching a sorted vector

	Binary Search

